I don't know if I missed the point of the answer(s) or if I asked the question in a way not intended.
But to be sure everyone is on the same page:
I am planning two revisions of this device, one minimalist revision in which the heating element is tailored to <0,12Ω, and a buck style converter built with the minimum components possible to save space and complexity. The MOSFET is in both this and the next revision controlled by a microcontroller which is responsible for generating the switching signal as well as the user interface(a small OLED or LCD or some kind of display with some buttons to control the device and one dedicated "fire" button to activate the atomizer.
Then the second revision(which is the one I am working on because I can't construct a heating coil build to reach <0,12Ω, not until I receive SS316L wire that is thicker than anything I can find in Sweden, so it will be a couple of weeks minimum until I get the wire and can find out if I can make such a coil build that I like) is built with two batteries as opposed to the first revision which only has a single 3,7V(3-32V(fully discharged) to 4,2V(fully charged)) but more importantly I will create a more elaborate circuit. I have a two-switch Buck-Boost converter in mind, here is a picture of a LTspice simulation which I am currently building and I will use models for the MOSFETs that I will buy and I will(I have already done it once but will certainly do it more times) calculate the value for the inductor and output capacitor(s) so that the LTspice simulation is as close to the real circuit as possible:
I have hidden some component names because the bother me, but this isn't working as thought, the output voltage doesn't change no matter how I adjusts the duty cycle of ether MOSFET.
What I tried to ask before was how to design the circuit going between the mcu I/O pin and the MOSFET gates if I would have a converter like the picture above, I thought that the MOSFETs gate charge(Q
g) parameter was what determined how much current a gate drive circuit needs t be able to source/sink, Q
g as well as knowledge about over what kind of time span it needs to be charged/discharged but while looking for MOSFETs with gate-source threshold voltage(V
gs-th) <= 3V and RDS
ON below 10mΩ and as low a Q
g as I can find, it started to look weird that the gate charge would determine the driver current requirement(I thought it is weird due to the varying values of Q
g between different MOSFETs) but I don't know.
- - - Updated - - -
(
The rest of this post does not concern electronics but rather the possibly harmful substances in e-cigarettes and ordinary tobacco cigarettes)
About that thing about harmful substances in so called e-liquids or e-juices, it isn't any good case made for that.
The harmful stuff is more specifically diketones,the first such substance being used was diacetyl.
But then there where an occurrence of factory workers in Mexico that worked at a factory producing popcorn and after having inhaled vast amounts of diacetyl they developed lung disease of some kind. That is the only evidence that I know of, but that have been enough for producers of e-liquids to work to eliminate diacetyl from there products(diketones are often used within food manufacturing to give buttery or creamy flavors and those substances is not harmful to digest, ordinary butter contains lots of them) but inhaling them is another matter and although the levels of those substances in e-liquids are nothing compared to the amounts those Mexican workers inhaled it has still caused all manufacturers of e-liquids to substitute diacetyl for other rather similar substances like acetoin and acetyl propionyl, which can in some situations change form into small amounts of diatecyl but are apart from that not as possibly dangerous as diacetyl.
A side note, cigarettes made out of tobacco contains huge amounts of these same substances(compared to e-liquids), so the bad news for vapers is still worse news to smokers I'm afraid.
I have talked online to some people whom have high degrees in chemistry and have an understanding about these things that I completely lack, but they have told me that it isn't the fact that one is inhaling these things one needs to worry about but the concentration of these substances, low enough concentration is nothing to worry about apparently.
But in general I don't bother to think about this stuff, I did but came to the conclusion that it isn't worth thinking about, even though it doesn't govern my choices of flavor additives I am aware of which of my flavors concentrates contains any of this stuff and which does not, many many flavors doesn't contain these harmful substances at all while others contain anything from 0,01% up to a few %. I personally like flavor concentrates from Flavour Art since they don't use these substances at all.
I mix all my liquids at home so I have a pretty good idea of how much of these substances I have in my liquids and it isn't at such levels as to cause me any concern.
Thanks for writing about it though