PlanarMetamaterials
Advanced Member level 4
- Joined
- Jun 13, 2012
- Messages
- 1,476
- Helped
- 407
- Reputation
- 818
- Reaction score
- 385
- Trophy points
- 1,363
- Location
- Edmonton, Canada
- Activity points
- 9,960
After starting to write up this process, I realized what you want may be more simple than what we've been discussing.
I've been trying to help you determine quantities used in the equations from post #1, but if you're willing to do a numerical simulation, you can effectively bypass that derivation and compute the ABCD matrix directly.
Since you have the [Z] and [Y] parameters of the MTL, you can convert either of them (or average both, for accuracy) to your ABCD matrix directly:
\[ \left[Y\right] = \left[ \begin{array}{cc} \left[Y_A\right] & \left[Y_B\right] \\ \left[Y_C\right] & \left[Y_D\right] \\ \end{array} \right] \ \ \ \ ,\ \ \ \ \left[ABCD\right] = \left[ \begin{array}{cc} -\left[Y_C\right]^{-1} \left[Y_D\right] & -\left[Y_C\right]^{-1} \\ \left[Y_B\right] - \left(\left[Y_A\right] \left[Y_C\right]^{-1} \left[Y_D\right]\right) & -\left[Y_A\right] \left[Y_C\right]^{-1} \\ \end{array} \right] \]
\[ \left[Z\right] = \left[ \begin{array}{cc} \left[Z_A\right] & \left[Z_B\right] \\ \left[Z_C\right] & \left[Z_D\right] \\ \end{array} \right] \ \ \ \ ,\ \ \ \ \left[ABCD\right] = \left[ \begin{array}{cc} \left[Z_A\right] \left[Z_C\right]^{-1} & \left( \left[Z_A\right] \left[Z_C\right]^{-1} \left[Z_D\right] \right) - \left[Z_B\right] \\ \left[Z_C\right]^{-1} & \left[Z_C\right]^{-1} \left[Z_D\right]^{-1} \\ \end{array} \right] \]
Would this solve your problem, or do you still want to go through the analytical process using the equation from post #1?
I've been trying to help you determine quantities used in the equations from post #1, but if you're willing to do a numerical simulation, you can effectively bypass that derivation and compute the ABCD matrix directly.
Since you have the [Z] and [Y] parameters of the MTL, you can convert either of them (or average both, for accuracy) to your ABCD matrix directly:
\[ \left[Y\right] = \left[ \begin{array}{cc} \left[Y_A\right] & \left[Y_B\right] \\ \left[Y_C\right] & \left[Y_D\right] \\ \end{array} \right] \ \ \ \ ,\ \ \ \ \left[ABCD\right] = \left[ \begin{array}{cc} -\left[Y_C\right]^{-1} \left[Y_D\right] & -\left[Y_C\right]^{-1} \\ \left[Y_B\right] - \left(\left[Y_A\right] \left[Y_C\right]^{-1} \left[Y_D\right]\right) & -\left[Y_A\right] \left[Y_C\right]^{-1} \\ \end{array} \right] \]
\[ \left[Z\right] = \left[ \begin{array}{cc} \left[Z_A\right] & \left[Z_B\right] \\ \left[Z_C\right] & \left[Z_D\right] \\ \end{array} \right] \ \ \ \ ,\ \ \ \ \left[ABCD\right] = \left[ \begin{array}{cc} \left[Z_A\right] \left[Z_C\right]^{-1} & \left( \left[Z_A\right] \left[Z_C\right]^{-1} \left[Z_D\right] \right) - \left[Z_B\right] \\ \left[Z_C\right]^{-1} & \left[Z_C\right]^{-1} \left[Z_D\right]^{-1} \\ \end{array} \right] \]
Would this solve your problem, or do you still want to go through the analytical process using the equation from post #1?