dwayne22
Junior Member level 2
Re: Any experience in design 1uA 32.786KHz crystal oscillato
The simulator's algorithm can actually act to 'damp' the oscillation. The Gear integration algorithm will do this. I suspect that numerical roundoff errors might also. Trapezoidal rule integration routines are under-damped, which can cause oscillators to work in simulation which won't in real life.
So, transient analysis is not only time-consuming, but doesn't help a whole lot.
That's why using an accurate loop gain (AC analysis) method is important. In oscillators, the loop gain assumptions can be violated, so the simple method is insufficient. Worse, it usually overestimates the gain!
The Middlebrook method is accurate and has worked for me ...
Also, AC analysis is fast, so doing a bunch of corners in no problem.
The simulator's algorithm can actually act to 'damp' the oscillation. The Gear integration algorithm will do this. I suspect that numerical roundoff errors might also. Trapezoidal rule integration routines are under-damped, which can cause oscillators to work in simulation which won't in real life.
So, transient analysis is not only time-consuming, but doesn't help a whole lot.
That's why using an accurate loop gain (AC analysis) method is important. In oscillators, the loop gain assumptions can be violated, so the simple method is insufficient. Worse, it usually overestimates the gain!
The Middlebrook method is accurate and has worked for me ...
Also, AC analysis is fast, so doing a bunch of corners in no problem.