Agreed, a 2N2222 is only rated at 75V so it would go pop even with no signal fed to it. Even if the transistors were sufficiently voltage rated, they would dissipate around 25 Watts each!
I'm interested in your half wave dipole, did you really make one 5.5 metres (about 18 feet) in length?
Brian.
Can we have the circuit of you existing TX? . Also the range of all transmitters are infinite, its just that the receivers can't pick up the miniscule signal. We do not know what power you have available or require. Also at this frequency layout and screening is importent or the amplifier will end up as being a high power oscillator.
So get hold of your favourite medium power RF transistor, like a 2n697 (bit poor) or a 2n3866 (brilliant). Connect the collector to +12 V via a 1K, connect the emitter to earth, connect the base to earth via a 1K and select resistors to go between the base and +12V just to cause the Vc to fall a bit, say to 11V. Now is the time to exercise your coil winding abilities! Wind a coil of about 20 turns around a 6mm former, spread the turns over 25mm. solder a tap on the windings at 5turns and ten turns. Connect the 5T tap to you existing RF source (and a earth to its case). Connect the 10T tap to the base of the transistor via a capacitor - any thing 100 PF-> 10 NF. Now you have to tune the coil to 27 MHZ, monitor the DC voltage drop across the 1K collector resistor, as the coil is brought to resonance, the volt drop will increase. So turn on and off you transmitter , see if you have a change in volt drop, if not put a small capacitor across the outside connections of the coil (20 PF), keep on incrementing the capacitor until there is a volt drop, then compress or stretch the coil to get a peak. Once the capacity is over 500 PF, then its obvious the coil is too small, try again with a 30 turn version. Once you have found the maximum. Switch off, copy the coil/capacitor and wire into the collector circuit replacing the 1K, 5T tap via a 1NF capacitor to the aerial, 10T tap to collector, 5T end to +12V, leaving the other end just connected to the tuning capacitor.
Now you need a diode probe to tune the coil, connect a small capacitor to the aerial connection as well as your aerial. connect the other end to a signal diode cathode, its anode going to earth. At this junction connect a 47K resistor. With you DVM measure the voltage between the 47K and earth and tune the collector coil for maximum output, as before.
Frank
Why are you using such a low frequency if small aerials are important to you?
433MHz kit is off the shelf and needs a much smaller aerial system and 2.4 or 5Ghz stuff can be had.
Power amplifieres are of course possible, and there are plenty of designs out there for broadband solid state PA strips up to many hundreds of watts, but going there is the wrong answer to your problem.
73 Dan.
You need to analyze the problem before looking for solutions. More power will not necessarily improve your signal. The clue is in the other frequencies you could see at the receiver. As an experiment, try turning the transmitter off altogether and see what comes out of the receiver, I think you will find you still have a signal!
The transmitter is 'OOK' (On Off Keying), in other words it transmits a carrier when the modulation signal voltage is high and turns the carrier off when it is low. It does this by using the modulation to provide the bias to the output transistor, no bias means no output, except for a tiny amount of leakage through stray capacitance.
Consider what comes out of your receiver when the transmitter is turned off, you will see exactly the same 'interference' when the modulation voltage is zero. So although you transmit 350Hz, what you receive is carrier when the 555 outputs a high and interference when it outputs a low. Adding a power amplifer will still give no output when the carrier is off.
There are several solutions to the problem but before looking at them, tell us how the signal is supposed to operate the servo systems, for example are they proportional controlled (PWM) or frequency controlled and how many servos are there?
Brian.
.....the range of all transmitters are infinite, its just that the receivers can't pick up the miniscule signal......
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?