Jadeit
Member level 5
I am building a laboratory muffle furnace for heating molds and melting.
Temperature up to 1350C, power 4kW, heating, heating wire kanthal A1 approx. 0.5 kg,, izolation 10cm AlO3+SiO2. Temperature measurement, thermocouple, for now K, later S or B.
such a classic, nothing special-
Now I'm starting to solve the furnace control.
I will use MCU (STM32) for control.
What can it do?
1. Reach the desired temperature and hold it there for the specified time.
2. They reach the desired temperature in the specified time. That is do not exceed dT/dt, for example 1C per 1 minute.
it looks simple. I measure the temperature once per second, if it is lower than the desired one, I heat it, if not, I don't heat it.
At the same time, from perhaps 20 measurements, I will calculate the speed of the temperature increase, and if it is higher than the required one, I will block the first control loop from heating even if the required temperature is not reached.
alternatively I can incorporate the PID into the control loop.¨However, I have no practical experience with PID (coefficient tuning) or furnace control.
I would welcome a practical example of furnace drive or at least advice from someone who has already dealt with a similar matter.
Thanks
Temperature up to 1350C, power 4kW, heating, heating wire kanthal A1 approx. 0.5 kg,, izolation 10cm AlO3+SiO2. Temperature measurement, thermocouple, for now K, later S or B.
such a classic, nothing special-
Now I'm starting to solve the furnace control.
I will use MCU (STM32) for control.
What can it do?
1. Reach the desired temperature and hold it there for the specified time.
2. They reach the desired temperature in the specified time. That is do not exceed dT/dt, for example 1C per 1 minute.
it looks simple. I measure the temperature once per second, if it is lower than the desired one, I heat it, if not, I don't heat it.
At the same time, from perhaps 20 measurements, I will calculate the speed of the temperature increase, and if it is higher than the required one, I will block the first control loop from heating even if the required temperature is not reached.
alternatively I can incorporate the PID into the control loop.¨However, I have no practical experience with PID (coefficient tuning) or furnace control.
I would welcome a practical example of furnace drive or at least advice from someone who has already dealt with a similar matter.
Thanks