For the sake of clarity we should probably consider the issue of the current biased inverter separately from the design of the actual current bias. So for arguments regarding the inverter we presume we have a controllable current source with high bandwidth, and worry about how to actually implement that later.
...Thankyou, yes, you are correct, there is such thing as a "current source inverter" and this is entirely genuine. It involves an upstream inductor controlled basically in a kind of "hysteretic mode" so that its peak and troughs are defined, and thus its average level is defined (half way between the peak and trough).......
however, as discussed in the post 1, this is not the situation of this bogus drive methodology.
We have already agreed that the method of post 1 has no supporting documentation literally anywhere in the world, from any book or website whatsoever, -you yourself have also suggested that at best, its certainly no better than other more "normal" drive methods. FvM has delivered comment to indicate that FvM has considerable doubts about the method of post 1.
Post 1 , as you know, is not a "current source inverter", and I am declaring it bogus.
Also didn't you say your DC capacitor was 300uF and the motor was 56uH? That gives a resonance at 1.23kHz. If your buckboost is operating at 150kHz then getting a bandwidth higher than that should not be a problem.
...you are touching on something here that I was investigating some months ago whilst I was actually working at the place, -I was considering whether it would be possible if the buckboost bandwidth was high enough. -At the time, there was no reponse to this. (by the way, it was 200uF and 56uH and thus 1.5kHZ)...We couldn't fit 300uF onto the small PCB.
So you are saying that the method of post 1 is ok if the buckboost bandwith is significantly greater than the LC resonant frequency? (dc link cap and motor coil)
BTW: I am surprised that no-one has brought up the fact that the "bogus" method of post 1 , if it could be workable , has the advantage of less switching losses in the igbt's (since they only commutation switch, and don't high frequency pwm switch the motor coils). Also, in theory, the reduction in high frequency pwm'ing of the motor coils, could (?) in theory mean a reduction in the radio interference chucked out from the motor (?).