The equivalent input resistor R1 is Equal to the input voltage Vi Divided by the current into the summing junction (Iin) as shown in Fig 1. Since the feedback resistor R39 holds the inverting input at virtual ground, we can replace the "Tee" network with the equivalent circuit of Fig 2 for the purpose of calculating the Voltage Va and the current Iin.
Rp = R41 X R36 / (R41 +R36)
Va = Vin X Rp/(Rp + R35)
Substituting for Rp:
Va = Vin X (R41 X R36 /(R41 + R36) /( R41 X R36 /(R41 + R36) + R35))
Multiplying Numerator and Denominator by (R41 + R36):
Va = Vin X (R41 X R36 / (R41 X R36 + R35 X (R41 + R36)))
Va = Vin X R41 X R36 /( R41 X R36 + R35 X R41 + R35 X R36)
Iin = Va/R36
Substituting for Va:
Iin = Vin X R41/(R41 X R36 + R35 X R41 + R35 X R36)
Req = Vin / Iin
Req = 1 / (R41 / (R41 X R36+ R35 X R41 + R35 X R36))
Req =( R41 X R36 + R41 X R35 + R35 X R36) / R41
Req = R36 + R35 + R36 X R35 / R41
- - - Updated - - -
The equivalent input resistor R1 is Equal to the input voltage Vi Divided by the current into the summing junction (Iin) as shown in Fig 1. Since the feedback resistor R39 holds the inverting input at virtual ground, we can replace the "Tee" network with the equivalent circuit of Fig 2 for the purpose of calculating the Voltage Va and the current Iin.
Rp = R41 X R36 / (R41 +R36)
Va = Vin X Rp/(Rp + R35)
Substituting for Rp:
Va = Vin X (R41 X R36 /(R41 + R36) /( R41 X R36 /(R41 + R36) + R35))
Multiplying Numerator and Denominator by (R41 + R36):
Va = Vin X (R41 X R36 / (R41 X R36 + R35 X (R41 + R36)))
Va = Vin X R41 X R36 /( R41 X R36 + R35 X R41 + R35 X R36)
Iin = Va/R36
Substituting for Va:
Iin = Vin X R41/(R41 X R36 + R35 X R41 + R35 X R36)
Req = Vin / Iin
Req = 1 / (R41 / (R41 X R36+ R35 X R41 + R35 X R36))
Req =( R41 X R36 + R41 X R35 + R35 X R36) / R41
Req = R36 + R35 + R36 X R35 / R41