newgirl
Newbie level 3
- Joined
- Feb 25, 2008
- Messages
- 3
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1,281
- Activity points
- 1,313
halls said:I'm not sure if this is what you are looking for, but, Vrms of a signal is the equivalent DC voltage that would dissipate the same energy. For example if the Vrms of a signal is 10 V, and it is connected to a resistor R, that resistor would dissipate the same energy as if we had a 10 V DC source connected to the R load, in stead of the AC source mentioned...
i'm not really sure if i am making myself clear...
XNOX_Rambo said:...and the above is only valid for sinusoidal signals.
If you for instance have a square wave signal, Vrms equals Vpeak.
That's true, but the fact that they get charged to the maximum peak value doesn't mean the rectified DC signal's value is that maximum value. Actually it isn't, i'll explain.fala said:Well, in bridge rectifiers, you usually use a capacitor that charges to the peak value,so...?
newgirl said:As you've said "Vrms of a signal is the equivalent DC voltage that would dissipate the same energy"
So what does VDC represent? i don't understand....
newgirl said:Given the rectified signal below, Vrms= 0.707 (Vm/sqrt2)and Vdc= .636Vm (2Vm/pi)
So what does VDC represent? i don't understand....
halls said:That's true, but the fact that they get charged to the maximum peak value doesn't mean the rectified DC signal's value is that maximum value. Actually it isn't, i'll explain.fala said:Well, in bridge rectifiers, you usually use a capacitor that charges to the peak value,so...?
If you charge a capacitor with a constant value, it will start charging until it gets the maximum value, which is that constant voltage. But if what you charge with is an alternating value (like the rectified sinusoidal) you will have a variable charge. If you look close to what happens in the capacitor you will see that in the raising half period of the signal, until it gets to the peak, the capacitor will start charging, getting to its maximum value. But when the signal starts to decrease, voltage in capacitor will also decrease, slower than the signal of course, but decreasing as well.
There's some point where the signal starts increasing again, and encounters a discharging capacitor, which will start charging again. So what in the end you will have is an alternating signal which will be variating from peak value to another value which will be the maximum discharge value allowed by the variable input signal. It's something similar to this (it's not exactly the same case): **broken link removed**
To this you have to add that there are also ohmic losses and so, signal will be lost too. So, summarizing, that final rectified DC signal won't be the peak value in any case.
halls said:Fine... and? What newgirl was asking was a sinusoidal rectified signal. Actually, this equation is valid for ANY periodic signal:
\[V_{RMS}=\sqrt{\frac{1}{T_0}\cdot{\int_{0}^{T_0}v^2(t)\cdot{d\cdot t}}}\]
fala said:Wrong! the job of diodes in bridge rectifier is to make sure that only charging of capacitor happens not discharging, so even when output of bridge rectifier would have been lower than capacitor voltage if capacitor wasn't present at all, diodes do not let any discharge of capacitor happens! unless those diodes leak hell of current or in other words unless those diodes are faulty!
The only scenario that may leads to drop of voltage in rectifier capacitor is when load demand is higher than the capacity of capacitor to maintain constant voltage. In this case simply with increasing rectifier capacitor value problem can be solved.
halls said:fala said:Wrong! the job of diodes in bridge rectifier is to make sure that only charging of capacitor happens not discharging, so even when output of bridge rectifier would have been lower than capacitor voltage if capacitor wasn't present at all, diodes do not let any discharge of capacitor happens! unless those diodes leak hell of current or in other words unless those diodes are faulty!
The only scenario that may leads to drop of voltage in rectifier capacitor is when load demand is higher than the capacity of capacitor to maintain constant voltage. In this case simply with increasing rectifier capacitor value problem can be solved.
Ehrm... i believe you are mistaken. Discharging doesn't mean the capacitor voltage between terminals reaches null. When a capacitor is charging, the voltage in its terminals getting higher. In the moment the applied voltage is lower than that in the terminals, its behavior changes to a discharging behavior, which means it offers voltage in stead of taking.
If you see a graph of the voltage output after a capacitor in the output stage of a rectifier (alas, the picture i posted above), you will see how a little "negative ramp" appears from max voltage. This happens exactly when the input signal (the one strictly coming out from the rectifier) starts decreasing. As the capacitor was charged at the maximum voltage, when the signal is lower, the capacitor has more voltage than the one it is being applied, thus, it starts discharging.
While the capacitor is discharging, the rectified input (that coming from the output of the bridge rectifier) is decreasing. But then reaches a point where it starts increasing again (look at first picture of the thread). There is a point when the increasing signal reaches the voltage of the capacitor and keeps raising, thus charging again the capacitor, and the procedure repeats again. This is why the capacitor never gets absolutely discharged.
What you are saying about the diode rectifier doesn't have to do directly with the capacitor. You can have a bridge rectifier with no capacitor, and their job will be the same one: change negative cycles of the signal to positive ones, so there are not any negative cycles in the signal (that is what is called rectifying).
Take a look at this page i found: https://www.allaboutcircuits.com/vol_6/chpt_5/6.html
i think i never said it was discharging by the rectifier, i might not have made myself clear in this, sorry. What i meant to say was that when the voltage supplied to the cap is lower than that already charged in the cap, the cap tends to discharge. Of course that discharging will be across the load, because the load gets more volts from the cap than from the rectifier...fala said:If you see voltage of capacitor drops, it is not because it is discharging by bridge rectifier.
When you talk about discharging current i believe you talk about current towards the left side of the cap, this is, the rectifier. Then we agree (actually is what i was saying in posts above). But there is a discharging current, towards the load, so the cap DOES discharge.fala said:As I said diodes will never allow discharging current.
Now i don't agree with this one, sorry. I agree that the bigger the cap, the slower the discharging rate, which means that the voltage will remain closer to the peak value for longer, but there will always be a discharging rate, even if this is very small.fala said:The reason for the drop you see is, after the peak diodes turn off and load only is supplied by cap if load demand is high enough it will cause a discharge in capacitor and a drop of voltage but if you place a big enough cap that dose not happen.
I don't think the matter is who knows best... is just someone was misunderstanding the other's explanation, and finally seemed to be both of us. But sometimes it is worth to take the little time to try to understand what the other one is trying to say.fala said:those pictures are for educational purposes the amount of drop is only determined by capacitor capacity and load current. I said what it and I don't see any need to repeat many times unless you bring some evidence to prove there is a hole in my knowledge. do not post a link to whole lengthy page because I do not have time to re read what I already know.
You said itfala said:I also invite other electronic men to judge our posts
halls said:Last minute discovery!
newgirl said:Given the rectified signal below, Vrms= 0.707 (Vm/sqrt2)and Vdc= .636Vm (2Vm/pi)
So what does VDC represent? i don't understand....
As seen in the picture below, the VDC you refer to is the voltage after capacitor filtering. This is, if after the full wave rectifier, whose output is the image you displayed, you put a capacitor, the DC voltage achieved could be approximated to the value you mention.
**broken link removed**
This is my best guess by the moment
newgirl said:can someone give me a link on where i can get the relationship between VRMS and VDC( given rectified signal below) or are the the same ?
hxxp://www.kpsec.freeuk.com/images/dcvary.gif
thank you
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?