mascail
Newbie level 1
- Joined
- Sep 4, 2015
- Messages
- 1
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1
- Activity points
- 30
Good day friends,
The IDE I use is 'Keil µVision5'.
I own a STM32F4-Discovery Board, to which I connected a Bosch Sensortec BNO055 9-Axis IMU. I want them to communicate via I²C to each other, thus I already made the required connections as follows:
I'm sorry for the solder joints..
I downloaded the BNO055_driver, which contains the file 'bno055_support.c' (it includes code examples on how to get data from the sensor).
bno055_support.c:
I find this very confusing. I don't know exactly which lines of code I need to include in my project.
I tried it, and I also included some lines that should be relevant for I²C, and I think would set the 'PB6' and 'PB7' Pins for I²C usage. I must say I am very unexperienced in programming and microcontrollers in general. And it's just like a bunch of pieces of code that I scrambled together, which probably don't make any sense. Please bear with me. Here you can see the code I tried.
The mess I've got so far:
The 'BNO055 sensor' has buit in sensor fusion algorithms (blends accelerometer, magnetometer and gyroscope data into stable three-axis orientation output). So it can output the data that I need. I would like to recieve 'X, Y and Z Linear acceleration data as m/s2' and print it out on the Computer screen. I don't know if it is even possible to print out the data on my PC screen, since I connected the Discovery Board via USB. If it is not possible then maybe its possible to print it out on the Discovery Board's built in LCD Display?
Any help to clarify my concern would be greatly welcomed.
Thanks in advance and thanks for your attention!
The IDE I use is 'Keil µVision5'.
I own a STM32F4-Discovery Board, to which I connected a Bosch Sensortec BNO055 9-Axis IMU. I want them to communicate via I²C to each other, thus I already made the required connections as follows:
Sensor | Discovery Board | |
Vin | -> | 5V |
GND | -> | GND |
SDA | -> | PB7 |
SCL | -> | PB6 |
I'm sorry for the solder joints..
I downloaded the BNO055_driver, which contains the file 'bno055_support.c' (it includes code examples on how to get data from the sensor).
bno055_support.c:
Code:
/*
****************************************************************************
* Copyright (C) 2014 Bosch Sensortec GmbH
*
* bno055_support.c
* Date: 2014/12/12
* Revision: 1.0.3 $
*
* Usage: Sensor Driver support file for BNO055 sensor
*
****************************************************************************
* License:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the copyright holder nor the names of the
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
* OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
* The information provided is believed to be accurate and reliable.
* The copyright holder assumes no responsibility
* for the consequences of use
* of such information nor for any infringement of patents or
* other rights of third parties which may result from its use.
* No license is granted by implication or otherwise under any patent or
* patent rights of the copyright holder.
**************************************************************************/
/*---------------------------------------------------------------------------*
Includes
*---------------------------------------------------------------------------*/
#include "bno055.h"
/*----------------------------------------------------------------------------*
* The following functions are used for reading and writing of
* sensor data using I2C communication
*----------------------------------------------------------------------------*/
#ifdef BNO055_API
/* \Brief: The function is used as I2C bus read
* \Return : Status of the I2C read
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be read
* \param reg_data : This data read from the sensor, which is hold in an array
* \param cnt : The no of byte of data to be read
*/
s8 BNO055_I2C_bus_read(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt);
/* \Brief: The function is used as SPI bus write
* \Return : Status of the SPI write
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be written
* \param reg_data : It is a value hold in the array,
* will be used for write the value into the register
* \param cnt : The no of byte of data to be write
*/
s8 BNO055_I2C_bus_write(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt);
/*
* \Brief: I2C init routine
*/
s8 I2C_routine(void);
#endif
/********************End of I2C function declarations***********************/
/* Brief : The delay routine
* \param : delay in ms
*/
void BNO055_delay_msek(u32 msek);
/* This function is an example for reading sensor data
* \param: None
* \return: communication result
*/
s32 bno055_data_readout_template(void);
/*----------------------------------------------------------------------------*
* struct bno055_t parameters can be accessed by using BNO055
* BNO055_t having the following parameters
* Bus write function pointer: BNO055_WR_FUNC_PTR
* Bus read function pointer: BNO055_RD_FUNC_PTR
* Burst read function pointer: BNO055_BRD_FUNC_PTR
* Delay function pointer: delay_msec
* I2C address: dev_addr
* Chip id of the sensor: chip_id
*---------------------------------------------------------------------------*/
struct bno055_t bno055;
/* This function is an example for reading sensor data
* \param: None
* \return: communication result
*/
s32 bno055_data_readout_template(void)
{
/* Variable used to return value of
communication routine*/
s32 comres = ERROR;
/* variable used to set the power mode of the sensor*/
u8 power_mode = BNO055_ZERO_U8X;
/*********read raw accel data***********/
/* variable used to read the accel x data */
s16 accel_datax = BNO055_ZERO_U8X;
/* variable used to read the accel y data */
s16 accel_datay = BNO055_ZERO_U8X;
/* variable used to read the accel z data */
s16 accel_dataz = BNO055_ZERO_U8X;
/* variable used to read the accel xyz data */
struct bno055_accel_t accel_xyz;
/*********read raw mag data***********/
/* variable used to read the mag x data */
s16 mag_datax = BNO055_ZERO_U8X;
/* variable used to read the mag y data */
s16 mag_datay = BNO055_ZERO_U8X;
/* variable used to read the mag z data */
s16 mag_dataz = BNO055_ZERO_U8X;
/* structure used to read the mag xyz data */
struct bno055_mag_t mag_xyz;
/***********read raw gyro data***********/
/* variable used to read the gyro x data */
s16 gyro_datax = BNO055_ZERO_U8X;
/* variable used to read the gyro y data */
s16 gyro_datay = BNO055_ZERO_U8X;
/* variable used to read the gyro z data */
s16 gyro_dataz = BNO055_ZERO_U8X;
/* structure used to read the gyro xyz data */
struct bno055_gyro_t gyro_xyz;
/*************read raw Euler data************/
/* variable used to read the euler h data */
s16 euler_data_h = BNO055_ZERO_U8X;
/* variable used to read the euler r data */
s16 euler_data_r = BNO055_ZERO_U8X;
/* variable used to read the euler p data */
s16 euler_data_p = BNO055_ZERO_U8X;
/* structure used to read the euler hrp data */
struct bno055_euler_t euler_hrp;
/************read raw quaternion data**************/
/* variable used to read the quaternion w data */
s16 quaternion_data_w = BNO055_ZERO_U8X;
/* variable used to read the quaternion x data */
s16 quaternion_data_x = BNO055_ZERO_U8X;
/* variable used to read the quaternion y data */
s16 quaternion_data_y = BNO055_ZERO_U8X;
/* variable used to read the quaternion z data */
s16 quaternion_data_z = BNO055_ZERO_U8X;
/* structure used to read the quaternion wxyz data */
struct bno055_quaternion_t quaternion_wxyz;
/************read raw linear acceleration data***********/
/* variable used to read the linear accel x data */
s16 linear_accel_data_x = BNO055_ZERO_U8X;
/* variable used to read the linear accel y data */
s16 linear_accel_data_y = BNO055_ZERO_U8X;
/* variable used to read the linear accel z data */
s16 linear_accel_data_z = BNO055_ZERO_U8X;
/* structure used to read the linear accel xyz data */
struct bno055_linear_accel_t linear_acce_xyz;
/*****************read raw gravity sensor data****************/
/* variable used to read the gravity x data */
s16 gravity_data_x = BNO055_ZERO_U8X;
/* variable used to read the gravity y data */
s16 gravity_data_y = BNO055_ZERO_U8X;
/* variable used to read the gravity z data */
s16 gravity_data_z = BNO055_ZERO_U8X;
/* structure used to read the gravity xyz data */
struct bno055_gravity_t gravity_xyz;
/*************read accel converted data***************/
/* variable used to read the accel x data output as m/s2 or mg */
double d_accel_datax = BNO055_ZERO_U8X;
/* variable used to read the accel y data output as m/s2 or mg */
double d_accel_datay = BNO055_ZERO_U8X;
/* variable used to read the accel z data output as m/s2 or mg */
double d_accel_dataz = BNO055_ZERO_U8X;
/* structure used to read the accel xyz data output as m/s2 or mg */
struct bno055_accel_double_t d_accel_xyz;
/******************read mag converted data********************/
/* variable used to read the mag x data output as uT*/
double d_mag_datax = BNO055_ZERO_U8X;
/* variable used to read the mag y data output as uT*/
double d_mag_datay = BNO055_ZERO_U8X;
/* variable used to read the mag z data output as uT*/
double d_mag_dataz = BNO055_ZERO_U8X;
/* structure used to read the mag xyz data output as uT*/
struct bno055_mag_double_t d_mag_xyz;
/*****************read gyro converted data************************/
/* variable used to read the gyro x data output as dps or rps */
double d_gyro_datax = BNO055_ZERO_U8X;
/* variable used to read the gyro y data output as dps or rps */
double d_gyro_datay = BNO055_ZERO_U8X;
/* variable used to read the gyro z data output as dps or rps */
double d_gyro_dataz = BNO055_ZERO_U8X;
/* structure used to read the gyro xyz data output as dps or rps */
struct bno055_gyro_double_t d_gyro_xyz;
/*******************read euler converted data*******************/
/* variable used to read the euler h data output as degree or radians */
double d_euler_data_h = BNO055_ZERO_U8X;
/* variable used to read the euler r data output as degree or radians */
double d_euler_data_r = BNO055_ZERO_U8X;
/* variable used to read the euler p data output as degree or radians */
double d_euler_data_p = BNO055_ZERO_U8X;
/* structure used to read the euler hrp data output as as degree or radians */
struct bno055_euler_double_t d_euler_hpr;
/*********************read linear acceleration converted data*************************/
/* variable used to read the linear accel x data output as m/s2*/
double d_linear_accel_datax = BNO055_ZERO_U8X;
/* variable used to read the linear accel y data output as m/s2*/
double d_linear_accel_datay = BNO055_ZERO_U8X;
/* variable used to read the linear accel z data output as m/s2*/
double d_linear_accel_dataz = BNO055_ZERO_U8X;
/* structure used to read the linear accel xyz data output as m/s2*/
struct bno055_linear_accel_double_t d_linear_accel_xyz;
/********************Gravity converted data*****************************/
/* variable used to read the gravity sensor x data output as m/s2*/
double d_gravity_data_x = BNO055_ZERO_U8X;
/* variable used to read the gravity sensor y data output as m/s2*/
double d_gravity_data_y = BNO055_ZERO_U8X;
/* variable used to read the gravity sensor z data output as m/s2*/
double d_gravity_data_z = BNO055_ZERO_U8X;
/* structure used to read the gravity xyz data output as m/s2*/
struct bno055_gravity_double_t d_gravity_xyz;
/*---------------------------------------------------------------------------*
*********************** START INITIALIZATION ************************
*--------------------------------------------------------------------------*/
#ifdef BNO055_API
/* Based on the user need configure I2C interface.
* It is example code to explain how to use the bno055 API*/
I2C_routine();
#endif
/*--------------------------------------------------------------------------*
* This function used to assign the value/reference of
* the following parameters
* I2C address
* Bus Write
* Bus read
* Chip id
* Page id
* Accel revision id
* Mag revision id
* Gyro revision id
* Boot loader revision id
* Software revision id
*-------------------------------------------------------------------------*/
comres = bno055_init(&bno055);
/* For initializing the BNO sensor it is required to the operation mode
of the sensor as NORMAL
Normal mode can set from the register
Page - page0
register - 0x3E
bit positions - 0 and 1*/
power_mode = POWER_MODE_NORMAL; /* set the power mode as NORMAL*/
comres += bno055_set_power_mode(power_mode);
/*--------------------------------------------------------------------------*
************************* END INITIALIZATION *************************
*---------------------------------------------------------------------------*/
/************************* START READ RAW SENSOR DATA****************/
/* Using BNO055 sensor we can read the following sensor data and
virtual sensor data
Sensor data:
Accel
Mag
Gyro
Virtual sensor data
Euler
Quaternion
Linear acceleration
Gravity sensor */
/* For reading sensor raw data it is required to set the
operation modes of the sensor
operation mode can set from the register
page - page0
register - 0x3D
bit - 0 to 3
for sensor data read following operation mode have to set
* SENSOR MODE
*0x01 - OPERATION_MODE_ACCONLY
*0x02 - OPERATION_MODE_MAGONLY
*0x03 - OPERATION_MODE_GYRONLY
*0x04 - OPERATION_MODE_ACCMAG
*0x05 - OPERATION_MODE_ACCGYRO
*0x06 - OPERATION_MODE_MAGGYRO
*0x07 - OPERATION_MODE_AMG
based on the user need configure the operation mode*/
comres += bno055_set_operation_mode(OPERATION_MODE_AMG);
/* Raw accel X, Y and Z data can read from the register
page - page 0
register - 0x08 to 0x0D*/
comres += bno055_read_accel_x(&accel_datax);
comres += bno055_read_accel_y(&accel_datay);
comres += bno055_read_accel_z(&accel_dataz);
comres += bno055_read_accel_xyz(&accel_xyz);
/* Raw mag X, Y and Z data can read from the register
page - page 0
register - 0x0E to 0x13*/
comres += bno055_read_mag_x(&mag_datax);
comres += bno055_read_mag_y(&mag_datay);
comres += bno055_read_mag_z(&mag_dataz);
comres += bno055_read_mag_xyz(&mag_xyz);
/* Raw gyro X, Y and Z data can read from the register
page - page 0
register - 0x14 to 0x19*/
comres += bno055_read_gyro_x(&gyro_datax);
comres += bno055_read_gyro_y(&gyro_datay);
comres += bno055_read_gyro_z(&gyro_dataz);
comres += bno055_read_gyro_xyz(&gyro_xyz);
/************************* END READ RAW SENSOR DATA****************/
/************************* START READ RAW FUSION DATA ********
For reading fusion data it is required to set the
operation modes of the sensor
operation mode can set from the register
page - page0
register - 0x3D
bit - 0 to 3
for sensor data read following operation mode have to set
*FUSION MODE
*0x08 - OPERATION_MODE_IMUPLUS
*0x09 - OPERATION_MODE_COMPASS
*0x0A - OPERATION_MODE_M4G
*0x0B - OPERATION_MODE_NDOF_FMC_OFF
*0x0C - OPERATION_MODE_NDOF
based on the user need configure the operation mode*/
comres += bno055_set_operation_mode(OPERATION_MODE_NDOF);
/* Raw Euler H, R and P data can read from the register
page - page 0
register - 0x1A to 0x1E */
comres += bno055_read_euler_h(&euler_data_h);
comres += bno055_read_euler_r(&euler_data_r);
comres += bno055_read_euler_p(&euler_data_p);
comres += bno055_read_euler_hrp(&euler_hrp);
/* Raw Quaternion W, X, Y and Z data can read from the register
page - page 0
register - 0x20 to 0x27 */
comres += bno055_read_quaternion_w(&quaternion_data_w);
comres += bno055_read_quaternion_x(&quaternion_data_x);
comres += bno055_read_quaternion_y(&quaternion_data_y);
comres += bno055_read_quaternion_z(&quaternion_data_z);
comres += bno055_read_quaternion_wxyz(&quaternion_wxyz);
/* Raw Linear accel X, Y and Z data can read from the register
page - page 0
register - 0x28 to 0x2D */
comres += bno055_read_linear_accel_x(&linear_accel_data_x);
comres += bno055_read_linear_accel_y(&linear_accel_data_y);
comres += bno055_read_linear_accel_z(&linear_accel_data_z);
comres += bno055_read_linear_accel_xyz(&linear_acce_xyz);
/* Raw Gravity sensor X, Y and Z data can read from the register
page - page 0
register - 0x2E to 0x33 */
comres += bno055_read_gravity_x(&gravity_data_x);
comres += bno055_read_gravity_y(&gravity_data_y);
comres += bno055_read_gravity_z(&gravity_data_z);
comres += bno055_read_gravity_xyz(&gravity_xyz);
/************************* END READ RAW FUSION DATA ************/
/******************START READ CONVERTED SENSOR DATA****************/
/* API used to read accel data output as double - m/s2 and mg
float functions also available in the BNO055 API */
comres += bno055_convert_double_accel_x_msq(&d_accel_datax);
comres += bno055_convert_double_accel_x_mg(&d_accel_datax);
comres += bno055_convert_double_accel_y_msq(&d_accel_datay);
comres += bno055_convert_double_accel_y_mg(&d_accel_datay);
comres += bno055_convert_double_accel_z_msq(&d_accel_dataz);
comres += bno055_convert_double_accel_z_mg(&d_accel_dataz);
comres += bno055_convert_double_accel_xyz_msq(&d_accel_xyz);
comres += bno055_convert_double_accel_xyz_mg(&d_accel_xyz);
/* API used to read mag data output as double - uT(micro Tesla)
float functions also available in the BNO055 API */
comres += bno055_convert_double_mag_x_uT(&d_mag_datax);
comres += bno055_convert_double_mag_y_uT(&d_mag_datay);
comres += bno055_convert_double_mag_z_uT(&d_mag_dataz);
comres += bno055_convert_double_mag_xyz_uT(&d_mag_xyz);
/* API used to read gyro data output as double - dps and rps
float functions also available in the BNO055 API */
comres += bno055_convert_double_gyro_x_dps(&d_gyro_datax);
comres += bno055_convert_double_gyro_y_dps(&d_gyro_datay);
comres += bno055_convert_double_gyro_z_dps(&d_gyro_dataz);
comres += bno055_convert_double_gyro_x_rps(&d_gyro_datax);
comres += bno055_convert_double_gyro_y_rps(&d_gyro_datay);
comres += bno055_convert_double_gyro_z_rps(&d_gyro_dataz);
comres += bno055_convert_double_gyro_xyz_dps(&d_gyro_xyz);
comres += bno055_convert_double_gyro_xyz_rps(&d_gyro_xyz);
/* API used to read Euler data output as double - degree and radians
float functions also available in the BNO055 API */
comres += bno055_convert_double_euler_h_deg(&d_euler_data_h);
comres += bno055_convert_double_euler_r_deg(&d_euler_data_r);
comres += bno055_convert_double_euler_p_deg(&d_euler_data_p);
comres += bno055_convert_double_euler_h_rad(&d_euler_data_h);
comres += bno055_convert_double_euler_r_rad(&d_euler_data_r);
comres += bno055_convert_double_euler_p_rad(&d_euler_data_p);
comres += bno055_convert_double_euler_hpr_deg(&d_euler_hpr);
comres += bno055_convert_double_euler_hpr_rad(&d_euler_hpr);
/* API used to read Linear acceleration data output as m/s2
float functions also available in the BNO055 API */
comres += bno055_convert_double_linear_accel_x_msq(&d_linear_accel_datax);
comres += bno055_convert_double_linear_accel_y_msq(&d_linear_accel_datay);
comres += bno055_convert_double_linear_accel_z_msq(&d_linear_accel_dataz);
comres += bno055_convert_double_linear_accel_xyz_msq(&d_linear_accel_xyz);
/* API used to read Gravity sensor data output as m/s2
float functions also available in the BNO055 API */
comres += bno055_convert_gravity_double_x_msq(&d_gravity_data_x);
comres += bno055_convert_gravity_double_y_msq(&d_gravity_data_y);
comres += bno055_convert_gravity_double_z_msq(&d_gravity_data_z);
comres += bno055_convert_double_gravity_xyz_msq(&d_gravity_xyz);
/*-----------------------------------------------------------------------*
************************* START DE-INITIALIZATION ***********************
*-------------------------------------------------------------------------*/
/* For de - initializing the BNO sensor it is required to the operation mode
of the sensor as SUSPEND
Suspend mode can set from the register
Page - page0
register - 0x3E
bit positions - 0 and 1*/
power_mode = POWER_MODE_SUSPEND; /* set the power mode as SUSPEND*/
comres += bno055_set_power_mode(power_mode);
/*---------------------------------------------------------------------*
************************* END DE-INITIALIZATION **********************
*---------------------------------------------------------------------*/
return comres;
}
#ifdef BNO055_API
/*--------------------------------------------------------------------------*
* The following function is used to map the I2C bus read, write, delay and
* device address with global structure bno055_t
*-------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*
* By using bno055 the following structure parameter can be accessed
* Bus write function pointer: BNO055_WR_FUNC_PTR
* Bus read function pointer: BNO055_RD_FUNC_PTR
* Delay function pointer: delay_msec
* I2C address: dev_addr
*--------------------------------------------------------------------------*/
s8 I2C_routine(void) {
bno055.bus_write = BNO055_I2C_bus_write;
bno055.bus_read = BNO055_I2C_bus_read;
bno055.delay_msec = BNO055_delay_msek;
bno055.dev_addr = BNO055_I2C_ADDR1;
return BNO055_ZERO_U8X;
}
/************** I2C buffer length******/
#define I2C_BUFFER_LEN 8
#define I2C0 5
/*-------------------------------------------------------------------*
*
* This is a sample code for read and write the data by using I2C
* Use either I2C based on your need
* The device address defined in the bno055.h file
*
*-----------------------------------------------------------------------*/
/* \Brief: The function is used as I2C bus write
* \Return : Status of the I2C write
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be written
* \param reg_data : It is a value hold in the array,
* will be used for write the value into the register
* \param cnt : The no of byte of data to be write
*/
s8 BNO055_I2C_bus_write(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt)
{
s32 iError = BNO055_ZERO_U8X;
u8 array[I2C_BUFFER_LEN];
u8 stringpos = BNO055_ZERO_U8X;
array[BNO055_ZERO_U8X;] = reg_addr;
for (stringpos = BNO055_ZERO_U8X; stringpos < cnt; stringpos++) {
array[stringpos + BNO055_ONE_U8X] = *(reg_data + stringpos);
}
/*
* Please take the below function as your reference for
* write the data using I2C communication
* "IERROR = I2C_WRITE_STRING(DEV_ADDR, ARRAY, CNT+1)"
* add your I2C write function here
* iError is an return value of I2C read function
* Please select your valid return value
* In the driver SUCCESS defined as 0
* and FAILURE defined as -1
* Note :
* This is a full duplex operation,
* The first read data is discarded, for that extra write operation
* have to be initiated. For that cnt+1 operation done in the I2C write string function
* For more information please refer data sheet SPI communication:
*/
return (s8)iError;
}
/* \Brief: The function is used as I2C bus read
* \Return : Status of the I2C read
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be read
* \param reg_data : This data read from the sensor, which is hold in an array
* \param cnt : The no of byte of data to be read
*/
s8 BNO055_I2C_bus_read(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt)
{
s32 iError = BNO055_ZERO_U8X;
u8 array[I2C_BUFFER_LEN] = {BNO055_ZERO_U8X;};
u8 stringpos = BNO055_ZERO_U8X;
array[BNO055_ZERO_U8X;] = reg_addr;
/* Please take the below function as your reference
* for read the data using I2C communication
* add your I2C rad function here.
* "IERROR = I2C_WRITE_READ_STRING(DEV_ADDR, ARRAY, ARRAY, 1, CNT)"
* iError is an return value of SPI write function
* Please select your valid return value
* In the driver SUCCESS defined as 0
* and FAILURE defined as -1
*/
for (stringpos = BNO055_ZERO_U8X; stringpos < cnt; stringpos++) {
*(reg_data + stringpos) = array[stringpos];
}
return (s8)iError;
}
/* Brief : The delay routine
* \param : delay in ms
*/
void BNO055_delay_msek(u32 msek)
{
/*Here you can write your own delay routine*/
}
#endif
I find this very confusing. I don't know exactly which lines of code I need to include in my project.
I tried it, and I also included some lines that should be relevant for I²C, and I think would set the 'PB6' and 'PB7' Pins for I²C usage. I must say I am very unexperienced in programming and microcontrollers in general. And it's just like a bunch of pieces of code that I scrambled together, which probably don't make any sense. Please bear with me. Here you can see the code I tried.
The mess I've got so far:
Code:
#include "stm32f4xx.h"
#include "system_stm32f4xx.h"
#include "stm32f4xx_i2c.h"
#include "stm32f4xx_gpio.h"
#include <stdint.h>
#include "bno055.h"
#include "stm32f4xx_rcc.h"
#define SLAVE_ADDRESS 0x29 // BNO055 Slave Address
void init_I2C1(void){
GPIO_InitTypeDef GPIO_InitStruct;
I2C_InitTypeDef I2C_InitStruct;
// enable APB1 peripheral clock for I2C1
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
// enable clock for SCL and SDA pins
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
/* setup SCL and SDA pins
* You can connect I2C1 to two different
* pairs of pins:
* 1. SCL on PB6 and SDA on PB7
* 2. SCL on PB8 and SDA on PB9
*/
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; // we are going to use PB6 and PB7
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; // set pins to alternate function
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; // set GPIO speed
GPIO_InitStruct.GPIO_OType = GPIO_OType_OD; // set output to open drain --> the line has to be only pulled low, not driven high
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP; // enable pull up resistors
GPIO_Init(GPIOB, &GPIO_InitStruct); // init GPIOB
// Connect I2C1 pins to AF
GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1); // SCL
GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_I2C1); // SDA
// configure I2C1
I2C_InitStruct.I2C_ClockSpeed = 100000; // 100kHz
I2C_InitStruct.I2C_Mode = I2C_Mode_I2C; // I2C mode
I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; // 50% duty cycle --> standard
I2C_InitStruct.I2C_OwnAddress1 = 0x00; // own address, not relevant in master mode
I2C_InitStruct.I2C_Ack = I2C_Ack_Disable; // disable acknowledge when reading (can be changed later on)
I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; // set address length to 7 bit addresses
I2C_Init(I2C1, &I2C_InitStruct); // init I2C1
// enable I2C1
I2C_Cmd(I2C1, ENABLE);
}
/* This function issues a start condition and
* transmits the slave address + R/W bit
*
* Parameters:
* I2Cx --> the I2C peripheral e.g. I2C1
* address --> the 7 bit slave address
* direction --> the tranmission direction can be:
* I2C_Direction_Tranmitter for Master transmitter mode
* I2C_Direction_Receiver for Master receiver
*/
void I2C_start(I2C_TypeDef* I2Cx, uint8_t address, uint8_t direction){
// wait until I2C1 is not busy anymore
while(I2C_GetFlagStatus(I2Cx, I2C_FLAG_BUSY));
// Send I2C1 START condition
I2C_GenerateSTART(I2Cx, ENABLE);
// wait for I2C1 EV5 --> Slave has acknowledged start condition
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_MODE_SELECT));
// Send slave Address for write
I2C_Send7bitAddress(I2Cx, address, direction);
/* wait for I2C1 EV6, check if
* either Slave has acknowledged Master transmitter or
* Master receiver mode, depending on the transmission
* direction
*/
if(direction == I2C_Direction_Transmitter){
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));
}
else if(direction == I2C_Direction_Receiver){
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));
}
}
/* This function transmits one byte to the slave device
* Parameters:
* I2Cx --> the I2C peripheral e.g. I2C1
* data --> the data byte to be transmitted
*/
void I2C_write(I2C_TypeDef* I2Cx, uint8_t data)
{
I2C_SendData(I2Cx, data);
// wait for I2C1 EV8_2 --> byte has been transmitted
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
}
/* This function reads one byte from the slave device
* and acknowledges the byte (requests another byte)
*/
uint8_t I2C_read_ack(I2C_TypeDef* I2Cx){
// enable acknowledge of recieved data
I2C_AcknowledgeConfig(I2Cx, ENABLE);
// wait until one byte has been received
while( !I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED) );
// read data from I2C data register and return data byte
uint8_t data = I2C_ReceiveData(I2Cx);
return data;
}
/* This function reads one byte from the slave device
* and doesn't acknowledge the recieved data
*/
uint8_t I2C_read_nack(I2C_TypeDef* I2Cx){
// disabe acknowledge of received data
// nack also generates stop condition after last byte received
// see reference manual for more info
I2C_AcknowledgeConfig(I2Cx, DISABLE);
I2C_GenerateSTOP(I2Cx, ENABLE);
// wait until one byte has been received
while( !I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED) );
// read data from I2C data register and return data byte
uint8_t data = I2C_ReceiveData(I2Cx);
return data;
}
/* This funtion issues a stop condition and therefore
* releases the bus
*/
void I2C_stop(I2C_TypeDef* I2Cx){
// Send I2C1 STOP Condition
I2C_GenerateSTOP(I2Cx, ENABLE);
}
int main(void){
init_I2C1(); // initialize I2C peripheral
uint8_t received_data[2];
while(1){
I2C_start(I2C1, SLAVE_ADDRESS<<1, I2C_Direction_Transmitter); // start a transmission in Master transmitter mode
I2C_write(I2C1, 0x20); // write one byte to the slave
I2C_write(I2C1, 0x03); // write another byte to the slave
I2C_stop(I2C1); // stop the transmission
I2C_start(I2C1, SLAVE_ADDRESS<<1, I2C_Direction_Receiver); // start a transmission in Master receiver mode
received_data[0] = I2C_read_ack(I2C1); // read one byte and request another byte
received_data[1] = I2C_read_nack(I2C1); // read one byte and don't request another byte, stop transmission
}
}
/*----------------------------------------------------------------------------*
* The following functions are used for reading and writing of
* sensor data using I2C communication
*----------------------------------------------------------------------------*/
#ifdef BNO055_API
/* \Brief: The function is used as I2C bus read
* \Return : Status of the I2C read
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be read
* \param reg_data : This data read from the sensor, which is hold in an array
* \param cnt : The no of byte of data to be read
*/
s8 BNO055_I2C_bus_read(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt);
/* \Brief: The function is used as SPI bus write
* \Return : Status of the SPI write
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be written
* \param reg_data : It is a value hold in the array,
* will be used for write the value into the register
* \param cnt : The no of byte of data to be write
*/
s8 BNO055_I2C_bus_write(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt);
/*
* \Brief: I2C init routine
*/
s8 I2C_routine(void);
#endif
/********************End of I2C function declarations***********************/
s32 bno055_data_readout_template(void)
{
/*---------------------------------------------------------------------------*
*********************** START INITIALIZATION ************************
*--------------------------------------------------------------------------*/
#ifdef BNO055_API
/* Based on the user need configure I2C interface.
* It is example code to explain how to use the bno055 API*/
I2C_routine();
#endif
/*--------------------------------------------------------------------------*
* This function used to assign the value/reference of
* the following parameters
* I2C address
* Bus Write
* Bus read
* Chip id
* Page id
* Accel revision id
* Mag revision id
* Gyro revision id
* Boot loader revision id
* Software revision id
*-------------------------------------------------------------------------*/
comres = bno055_init(&bno055);
/* For initializing the BNO sensor it is required to the operation mode
of the sensor as NORMAL
Normal mode can set from the register
Page - page0
register - 0x3E
bit positions - 0 and 1*/
power_mode = POWER_MODE_NORMAL; /* set the power mode as NORMAL*/
comres += bno055_set_power_mode(power_mode);
/*--------------------------------------------------------------------------*
************************* END INITIALIZATION *************************
/************************* START READ RAW SENSOR DATA****************/
/* Using BNO055 sensor we can read the following sensor data and
virtual sensor data
Sensor data:
Accel
Mag
Gyro
Virtual sensor data
Euler
Quaternion
Linear acceleration
Gravity sensor */
/* For reading sensor raw data it is required to set the
operation modes of the sensor
operation mode can set from the register
page - page0
register - 0x3D
bit - 0 to 3
for sensor data read following operation mode have to set
* SENSOR MODE
*0x01 - OPERATION_MODE_ACCONLY
*0x02 - OPERATION_MODE_MAGONLY
*0x03 - OPERATION_MODE_GYRONLY
*0x04 - OPERATION_MODE_ACCMAG
*0x05 - OPERATION_MODE_ACCGYRO
*0x06 - OPERATION_MODE_MAGGYRO
*0x07 - OPERATION_MODE_AMG
based on the user need configure the operation mode*/
comres += bno055_set_operation_mode(OPERATION_MODE_ACCONLY);
/******************START READ CONVERTED SENSOR DATA****************/
/* API used to read Linear acceleration data output as m/s2
float functions also available in the BNO055 API */
comres += bno055_convert_double_linear_accel_x_msq(&d_linear_accel_datax);
comres += bno055_convert_double_linear_accel_y_msq(&d_linear_accel_datay);
comres += bno055_convert_double_linear_accel_z_msq(&d_linear_accel_dataz);
comres += bno055_convert_double_linear_accel_xyz_msq(&d_linear_accel_xyz);
/*-----------------------------------------------------------------------*
************************* START DE-INITIALIZATION ***********************
*-------------------------------------------------------------------------*/
/* For de - initializing the BNO sensor it is required to the operation mode
of the sensor as SUSPEND
Suspend mode can set from the register
Page - page0
register - 0x3E
bit positions - 0 and 1*/
power_mode = POWER_MODE_SUSPEND; /* set the power mode as SUSPEND*/
comres += bno055_set_power_mode(power_mode);
/*---------------------------------------------------------------------*
************************* END DE-INITIALIZATION **********************
*---------------------------------------------------------------------*/
return comres;
}
#ifdef BNO055_API
/*--------------------------------------------------------------------------*
* The following function is used to map the I2C bus read, write, delay and
* device address with global structure bno055_t
*-------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*
* By using bno055 the following structure parameter can be accessed
* Bus write function pointer: BNO055_WR_FUNC_PTR
* Bus read function pointer: BNO055_RD_FUNC_PTR
* Delay function pointer: delay_msec
* I2C address: dev_addr
*--------------------------------------------------------------------------*/
s8 I2C_routine(void) {
bno055.bus_write = BNO055_I2C_bus_write;
bno055.bus_read = BNO055_I2C_bus_read;
bno055.delay_msec = BNO055_delay_msek;
bno055.dev_addr = BNO055_I2C_ADDR2;
return BNO055_ZERO_U8X;
}
/************** I2C buffer length******/
#define I2C_BUFFER_LEN 8
#define I2C0 5
/*-------------------------------------------------------------------*
*
* This is a sample code for read and write the data by using I2C
* Use either I2C based on your need
* The device address defined in the bno055.h file
*
*-----------------------------------------------------------------------*/
/* \Brief: The function is used as I2C bus write
* \Return : Status of the I2C write
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be written
* \param reg_data : It is a value hold in the array,
* will be used for write the value into the register
* \param cnt : The no of byte of data to be write
*/
s8 BNO055_I2C_bus_write(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt)
{
s32 iError = BNO055_ZERO_U8X;
u8 array[I2C_BUFFER_LEN];
u8 stringpos = BNO055_ZERO_U8X;
array[BNO055_ZERO_U8X;] = reg_addr;
for (stringpos = BNO055_ZERO_U8X; stringpos < cnt; stringpos++) {
array[stringpos + BNO055_ONE_U8X] = *(reg_data + stringpos);
}
/*
* Please take the below function as your reference for
* write the data using I2C communication
* "IERROR = I2C_WRITE_STRING(DEV_ADDR, ARRAY, CNT+1)"
* add your I2C write function here
* iError is an return value of I2C read function
* Please select your valid return value
* In the driver SUCCESS defined as 0
* and FAILURE defined as -1
* Note :
* This is a full duplex operation,
* The first read data is discarded, for that extra write operation
* have to be initiated. For that cnt+1 operation done in the I2C write string function
* For more information please refer data sheet SPI communication:
*/
return (s8)iError;
}
/* \Brief: The function is used as I2C bus read
* \Return : Status of the I2C read
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be read
* \param reg_data : This data read from the sensor, which is hold in an array
* \param cnt : The no of byte of data to be read
*/
s8 BNO055_I2C_bus_read(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt)
{
s32 iError = BNO055_ZERO_U8X;
u8 array[I2C_BUFFER_LEN] = {BNO055_ZERO_U8X;};
u8 stringpos = BNO055_ZERO_U8X;
array[BNO055_ZERO_U8X;] = reg_addr;
/* Please take the below function as your reference
* for read the data using I2C communication
* add your I2C rad function here.
* "IERROR = I2C_WRITE_READ_STRING(DEV_ADDR, ARRAY, ARRAY, 1, CNT)"
* iError is an return value of SPI write function
* Please select your valid return value
* In the driver SUCCESS defined as 0
* and FAILURE defined as -1
*/
for (stringpos = BNO055_ZERO_U8X; stringpos < cnt; stringpos++) {
*(reg_data + stringpos) = array[stringpos];
}
return (s8)iError;
}
#endif
The 'BNO055 sensor' has buit in sensor fusion algorithms (blends accelerometer, magnetometer and gyroscope data into stable three-axis orientation output). So it can output the data that I need. I would like to recieve 'X, Y and Z Linear acceleration data as m/s2' and print it out on the Computer screen. I don't know if it is even possible to print out the data on my PC screen, since I connected the Discovery Board via USB. If it is not possible then maybe its possible to print it out on the Discovery Board's built in LCD Display?
Any help to clarify my concern would be greatly welcomed.
Thanks in advance and thanks for your attention!