Hi all,
I came across a simple inverting amplifier circuit. It has a capacitor in parallel to the feedback amplifier.
I can tell the circuit functions as an inverting amplifer with a gain of 15 and that no (negligible ??) current flows through the capacitor and the 1k resistor.
Can anyone please tell me whats the function of the 1pF capacitor and the 1K resistor ? .
I think that it is a way how to do frequency compensation of this amplifier in order to provide its stable behavior.
Try the following:
1) Make the wye-delta transformation of R1, Rf, and R2. You obtain resistors Ra, Rb, Rc; Ra=11.666kOhms between Vin and - nodes, Rb=17.5kOhms between - and Vout nodes, and Rc=165kOhms between Vin and Vout terminals.
2) Rc does not affect the amplifier behavior since it is between Vin and Vout, thus it is not necessary to consider it.
3) R3 is only for current offset compensation. It does not affect the amplifier gain.
4) Considering 1) to 3), your circuit can be simplified to OmpAmp with Rb in parallel to C1 in the feedback path, and Ra in the forward path. Then the DC gain is equal to -Rb/Ra=-1.5.
5) The schematic 4) with small capacitor C1 represents the so-called "lead compensation". The product Rb*C1 forms the transfer zero in the circuit transfer function on the frequency 1/(2*pi*Rb*C1)=9MHz. It serves for the compensation of the OpAmp second pole which is anticipated on this frequency. In addition, C1 adds also one pole to the transfer function at the frequency 1/(2*pi*Rb//Ra*C1)=22.7MHz. However, it is far from the second pole, thus it does not cause problems in terms of the circuit stability.
For more details, see, for example, the file
**broken link removed**
pages 9-10.