gateox=20 angstroms (0.002 um) X.val=0.005------------>first Tox result
gateox=17.7442 angstroms (0.00177442 um) X.val=0.005---->second one
p1dvt=2.6415e+14 V X.val=0.49-----------------> very strange value of Vth
For this process, a Vth of 0.2 V, a gate oxide of 1.5-2 nm, and junction depth of 40 - 80 nm are required. Could you please lend a hand in getting these values ? (at least the first two, while keeping the Vgs vs Ids curve the same)
btw, you seem to not use extract statements. How do you find Tox and Vth?
is Devedit the one that produced the graph you provided (and calculated the max slope) ?
Thanks again and I am looking forward to your kind help. Here is the code:
--------------------------------------------------------------------------
# This is a simple input deck representing a Process flow and a device
# test. All lines beggining with a '#' sigh may be treated as directive
# comments.....
# Start the Athena Process simulator running...
go athena
#
# Set up a mesh suitable for a single MOSFET device....
# Set up a mesh suitable for a single MOSFET device....
line x loc=0 spac=0.1
line x loc=0.35 spac=0.02
line x loc=0.5 spac=0.1
#
line y loc=0.00 spac=0.005
line y loc=0.3 spac=0.015
line y loc=0.5 spac=0.02
line y loc=2 spac=0.2
line y loc=5 spac=1
#
# Start off by defining silicon with 1e14 phos doping...
# Decrease the folowing space.mult parameter for a denser
# mesh and more accuracy...
init orientation=100 c.phos=1e15 space.mult=2
#
#pwell formation including masking off of the nwell
#
diffus time=30 temp=1000 dryo2 press=1.00 hcl=3
#
etch oxide thick=0.02
#
#N-well Implant
implant amorphous phos dose=1.0e12 energy=100 pears
#
diffus temp=950 time=100 weto2 hcl=3
#
#N-well implant amorphous not shown -
#
# welldrive
diffus time=220 temp=1200 nitro press=1
#
etch oxide all
#
#sacrificial "cleaning" oxide
diffus time=20 temp=1000 dryo2 press=1 hcl=3
#
etch oxide all
#
#gate oxide grown here:-
set partial_press=1.0
diffus time=9 temp=350 nitrogen hcl=1
diffus time=2 temp=450 dryo2 press=$partial_press
diffus time=11 temp=422 dryo2 press=$partial_press hcl=1
diffus time=8 temp=450 nitrogen hcl=1
diffus time=8 temp=350 t.final=750 nit hcl=1
#
# Extract a design parameter.....
extract name="gateox" thickness oxide mat.occno=1 x.val=0.005
#
#vt adjust implant amorphous
implant amorphous bf2 dose=1.5e12 energy=10 pearson
#
depo poly thick=0.250 div=3
#
etch poly left p1.x=0.45
#
# Relax the mesh below the 0.5um plane, for speed....
relax y.min=0.5
#
method fermi compress
diffuse time=5 temp=900 weto2 press=1
#
# PLDD implant amorphous
implant amorphous bf2 dose=6e15 energy=20 pearson
#
# This is a good way of defining the spacer.....define a variable
# first with the 'set' command....
set spacer=0.10
depo oxide thick=$"spacer" divisions=5
etch oxide dry thick=$"spacer"+0.004
#
# P++ Implant
implant amorphous bf2 dose=1.0e15 energy=20 pearson
# Final anneal.
method fermi compress
diffuse time=5 temp=900 nitro press=1.0
#
# Extract other design parameters...
# extract final S/D Xj...
extract name="pxj" xj silicon mat.occno=1 x.val=0.1 junc.occno=1
# Extract a design parameter.....
extract name="gateox" thickness oxide mat.occno=1 x.val=0.005
# extract the long chan Vt...
extract name="p1dvt" 1dvt ptype vb=0.0 qss=1e10 x.val=0.49
# extract a curve of conductance versus bias....
extract start material="Polysilicon" mat.occno=1 bias=0.0 bias.step=0.2 bias.stop=2 x.val=0.45
extract done name="sheet cond v bias" curve(bias,1dn.conduct material="Silicon" mat.occno=1 region.occno=1) outfile="extract.dat"
# extract the P++ regions sheet resistance...
extract name="p++ sheet rho" sheet.res material="Silicon" mat.occno=1 x.val=0.05 region.occno=1
# extract the sheet rho under the spacer, of the LDD region...
extract name="pldd sheet rho" sheet.res material="Silicon" mat.occno=1 x.val=0.3 region.occno=1
# extract the surface conc under the channel....
extract name="pchan surf conc" surf.conc impurity="Net Doping" material="Silicon" mat.occno=1 x.val=0.45
# Etch contact cuts and place the aluminium where electrodes are required.....
etch oxide left p1.x=0.35
deposit alumin thick=0.015 div=2
etch alumin right p1.x=0.28
# mirror the structure.....
structure mirror right
# Name the electrodes...
electrode name=gate x=0.6
electrode name=source x=0
electrode name=drain x=1.1
electrode name=substrate backside
# output the structure
structure outfile=mos1ex09_0.str
# plot it
tonyplot mos1ex09_0.str -set mos1ex09_0.set
go atlas2
# define the Gate workfunction
contact name=gate n.poly
# Define the Gate Qss
interface qf=3e10
# Use the cvt mobility model for MOS
models cvt srh
# set gate biases with Vds=0.0
solve init
solve vgate=-0.5 outf=solve_tmp1
solve vgate=-0.9 outf=solve_tmp2
solve vgate=-1.2 outf=solve_tmp3
#load in temporary files and ramp Vds
load infile=solve_tmp1
log outf=mos1ex09_1.log
solve name=drain vdrain=0 vfinal=-1.2 vstep=-0.8
load infile=solve_tmp2
log outf=mos1ex09_2.log
solve name=drain vdrain=0 vfinal=-1.2 vstep=-0.8
load infile=solve_tmp3
log outf=mos1ex09_3.log
solve name=drain vdrain=0 vfinal=-1.2 vstep=-0.8
# extract max current and saturation slope
extract name="pidsmax" max(abs(i."drain"))
extract name="p_sat_slope" slope(minslope(curve(abs(v."drain"),abs(i."drain"))))
tonyplot -overlay mos1ex09_1.log mos1ex09_2.log mos1ex09_3.log -set mos1ex09_1.set
############# PVt Test
go atlas
# set material models
models cvt srh print
contact name=gate n.poly
interface qf=1e10
# get initial solution
solve init
method newton trap
solve prev
# Bias the drain a bit...
solve vdrain=-0.1 name=drain
# Ramp the gate
log outf=pmos_1.log
solve vgate=0 vstep=-0.15 vfinal=-3.0 vdrain=-0.1 name=gate
save outf=pmos_1.str
# extract device parameters......
extract init inf="pmos_1.log"
extractname="pvt"(xintercept(maxslope(curve(abs(v."gate"),abs(i."drain"))))-abs(ave(v."drain"))/2.0)
extract init inf="pmos_1.log"
extractname="pbeta"((slope(maxslope(curve(abs(v."gate"),abs(i."drain"))))* (1.0/abs(ave(v."drain")))))
extract init inf="pmos_1.log"
extractname="ptheta"((max(abs(v."drain"))*$"pbeta")/max(abs(i."drain")))-(1.0 / (max(abs(v."gate")) -($"pvt")))
# plot results
tonyplot pmos_1.log
#Symmetric pmos thin gate (1.8V) thick gate (3.3V) HV NWell
#Source & Body are connected together by Cobalt silicide.
#
#west = left hand side of mesh, east = right hand side
#lg = gate length
#nsdw = width of active for N+ well tap contact
#psdw = width of active for P+ source drain (PSD) implant
#For implants .....
#pxtq = P- LDD implant dose pxtk : P- LDD implant energy
#psdq = P+ PSD implant dose psdk : P+ PSD implant energy
#nsdq = N+ implant dose nsdk : N+ implant energy
#
go athena
#
set lg=0.2
set nsdw=0.35
set psdw=0.35
#
set west = -0.5*$lg-$psdw-$nsdw
set gate = 0.0
set east = $lg+$psdw
#nsd implant 5:80
set nsdq=5
set nsdk=80
#psd implant 5:7
set psdq=5
set psdk=8
#p extension implant implant 3.5:25
set pxtq=3.5
set pxtk=25
#
set nam=E$"psdq"Q$"psdk"K$"pxtq"Q$"pxtk"K
#
line x loc=$west spac=0.1
line x loc=$west+$nsdw spac=0.1
line x loc=0 spac=0.001
line x loc=$psdw+0.5*$lg spac=0.1
line x loc=$east spac=0.1
#
line y loc=0.0 spac=0.002
line y loc=0.2 spac=0.005
line y loc=0.5 spac=0.025
line y loc=1.8 spac=0.15
#
init silicon orientation=100 c.boron=2.0e15 space.mul=2
#5nm screen oxide for implants ..........................................
deposit oxide thick=0.005
#nwell formation ........................................................
implant phos dose=1.3E13 energy=800 tilt=5
implant phos dose=2.6E13 energy=420 tilt=5
implant phos dose=8.5E12 energy=60 tilt=5
#... Well RTA ...........................................................
diffuse time=8 seconds temp=800 t.final=1018 dryo2
diffuse time=10 seconds temp=1020 dryo2 press=0.8
diffuse time=30 seconds temp=1020 t.final=700
struct outfile=$"nam"_wellrta.str
#------------------------------------------------------------------------
#Gate oxidation Thick gate is a combination of the this gate oxidation
#and the thin gate oxidation. Thin gate must see thin oxidation (thermal
#budget) then it is removed prior to thin oxidation.
#First, remove the implant screen oxide...
etch oxide all
#...Thick Gate total 88nm including thin gate ox.
diffuse temp=800 time=33 t.final=900 f.n2=6 press=1
diffuse temp=900 time=8 f.o2=0.06 f.n2=6 press=1
diffuse temp=900 time=1 f.o2=5.8 f.hcl=0.115 press=1
diffuse temp=900 time=10 f.o2=3.5 f.hcl=0.07 press=1
diffuse temp=900 time=46 f.n2=6
diffuse temp=900 time=36 t.final=750 f.n2=6
extract name="Thick Gate Tox" thickness oxide mat.occno=1 x.val=0.0
struct outfile=$"nam"_exthkox.str
#------------------------------------------------------------------------
#If you want to model the thin oxide structure (1.8V) then uncomment
#the next line. For thick gate make sure the next line in commented out.
#etch oxide thick=0.01
#...Thin Gate 37.7nm
diffuse temp=700 time=35 f.o2=0.5 f.n2=10 t.final=800 pres=1
diffuse temp=800 time=5 f.o2=20 pres=1
diffuse temp=800 time=15 f.o2=10 f.hcl=0.1 pres=1
diffuse temp=800 time=5 f.o2=10 pres=1
diffuse temp=800 time=15 inert
diffuse temp=800 time=20 inert t.final=700
extract name="Thin Gate Tox" thickness oxide mat.occno=1 x.val=0.0
struct outfile=$"nam"_exgox.str
#------------------------------------------------------------------------
depo poly thick=0.22 divi=10
etch poly left p1.x=-0.5*$lg angle=82
etch poly right p1.x= 0.5*$lg angle=82
struct outfile=$"nam"_expoly.str
#
method fermi compress
#...RTO Poly Ox
diffuse time=10 seconds temp=700 t.final=1040 dryo2
diffuse time=90 seconds temp=1040 dryo2
diffuse time=3.5 seconds temp=1040 t.final=900 dryo2
diffuse time=5 seconds temp=900 t.final=700 dryo2
extract name="PolyOxTox" thickness oxide mat.occno=1 x.val=$gate
extract name="screenTox" thickness oxide mat.occno=1 x.val=$west
struct outfile=$"nam"_expolyox.str
#------------------------------------------------------------------------
#P_Extension or LDD implant - Do not change this line, change the
#variables at the start of this code.
set thres=1.0
deposit barrier thick=$thres div=$thres*10
etch barrier right p1.x=$west+$nsdw
implant bf2 dose=$pxtq*1.0e13 energy=$pxtk
etch barrier all
#-------------------------------------------------------------------------
#Deposit spacer oxide then etch to for spacer
depo oxide thick=0.080 divisions=8
etch oxide dry thick=0.12 angle=60
#Now simulate leaving behind 12nm of oxide for the SD implants
deposit oxide thick=0.012 div=12
struct outfile=$"nam"_exnspcr.str
#-----------------------------------------------------------------------------
#NSD Implant
set thres=1.0
deposit barrier thick=$thres div=$thres*10
etch barrier left p1.x=$west+$nsdw
implant arsenic dose=$nsdq*1.0e15 energy=$nsdk
etch barrier all
#-----------------------------------------------------------------------------
method fermi compress
#...NSD RTA
diffusion temp=700 time=6.0 seconds t.final=760 f.o2=0.3 f.n2=2.7
diffusion temp=760 time=20 seconds f.o2=0.3 f.n2=2.7
diffusion temp=760 time=6.5 seconds t.final=1000 f.o2=0.3 f.n2=2.7
diffusion temp=1000 time=5 seconds f.o2=0.3 f.n2=2.7
diffusion temp=1000 time=7.7 seconds t.final=750 f.o2=0.3 f.n2=2.7
struct outfile=$"nam"_exnsdrta.str
#-----------------------------------------------------------------------------
#PSD Implant
deposit barrier thick=$thres div=$thres*10
etch barrier right p1.x=$west+$nsdw
implant boron dose=$psdq*1.0e15 energy=$psdk
etch barrier all
#-----------------------------------------------------------------------------
#...PSD RTA
diffusion temp=700 time=6 seconds t.final=760 f.o2=0.3 f.n2=2.7
diffusion temp=760 time=20 seconds f.o2=0.3 f.n2=2.7
diffusion temp=760 time=5.0 seconds t.final=1040 f.o2=0.3 f.n2=2.7
diffusion temp=1040 time=5 seconds f.o2=0.3 f.n2=2.7
diffusion temp=1040 time=7.0 seconds t.final=750 f.o2=0.3 f.n2=2.7
struct outfile=$"nam"_expsdrta.str
#-----------------------------------------------------------------------------
#Co Dep
etch oxide thick=0.018
deposit cobalt thick=0.035 div=10
struct outfile=$"nam"_excodep.str
#RTA Form
meth fermi grid.sil=0.005 init.time=1e-08
diffuse time=30 seconds temp=650
#Co Strip
etch cobalt all
struct outfile=$"nam"_exsal.str
#------------------------------------------------------------------------
electrode name=gate x=$gate y=0.1
electrode name=source x=$west+0.1
electrode name=drain x=$east-0.1
electrode name=substrate backside
struct outfile=$"nam"_process.str
#------------------------------------------------------------------------
go atlas
# Define the Gate Qss
interface qf=3e10
# Use the cvt mobility model for MOS
models cvt srh fermi print numcarr=2
#models kla shi fldmob srh bbt.kl print
method newton carriers=2 climit=1e-4 maxtrap=10
impact selb
# set gate biases with Vds=0.0
solve init
#Adjust the follwoing depending of you are modelling thick or thin
#gate transistors (thin gate max -1.8V)
solve vgate=-0.5 outf= $"nam"_t1
solve vgate=-1.0 outf= $"nam"_t2
solve vgate=-1.5 outf= $"nam"_t3
solve vgate=-2.0 outf= $"nam"_t4
solve vgate=-3.3 outf= $"nam"_t5
#
#load in temporary files and ramp Vds
load infile=$"nam"_t1
log outf=$"nam"_0p5.log
solve name=drain vdrain=0 vfinal=-3.3 vstep=-0.5 compl=-2.0e-3 cname=drain
log off
load infile=$"nam"_t2
log outf=$"nam"_1p0.log
solve name=drain vdrain=0 vfinal=-3.3 vstep=-0.5 compl=-2.5e-3 cname=drain
log off
load infile=$"nam"_t3
log outf=$"nam"_1p5.log
solve name=drain vdrain=0 vfinal=-3.3 vstep=-0.5 compl=-2.5e-3 cname=drain
log off
load infile=$"nam"_t4
log outf=$"nam"_2p0.log
solve name=drain vdrain=0 vfinal=-3.3 vstep=-0.5 compl=-2.5e-3 cname=drain
log off
load infile=$"nam"_t5
log outf=$"nam"_3p3.log
solve name=drain vdrain=0 vfinal=-3.3 vstep=-0.5 compl=-2.5e-3 cname=drain
log off
quit
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?