SEPIC article is not correct?

Status
Not open for further replies.

grizedale

Advanced Member level 3
Joined
Jun 13, 2011
Messages
838
Helped
17
Reputation
34
Reaction score
17
Trophy points
1,298
Visit site
Activity points
8,804
Hello,

Do you realise that the following article about leakage inductance of SEPIC inductors is nonsense?


Power Tip 32: Beware of circulating currents in a SEPIC coupled-inductor –Part 1
By Robert Kollman , Texas Instruments

**broken link removed**


It is for sure that there is NO BENEFIT of a SEPIC inductor with higher leakage inductance, so why are they writing this article?

If anything the SEPIC inductor with higher leakage brings about more unwanted resonations between itself and the SEPIC capacitor.



The following articles make NO mention about the danger of well-coupled SEPIC inductors in SEPIC converters……….

Inductor selection for SEPIC designs
By Coiltronics

**broken link removed**


Bottom left of the first page of the following article states how GOOD coupling in the SEPIC inductor is actually BENEFICIAL……………..

Selecting coupled inductors for SEPIC applications
By Coilcraft.
http://www.polyscope.ch/dlCenter/ps/2011_4/04_11.01.pdf




The following is an LTspice simulation of SEPIC with 1:1 coupling of the inductor, and as expected, these so called “circulating currents” are NOWHERE to be seen.

SEPIC LTspice simulation........just put in .asc doc and run.....

Code:
Version 4
SHEET 1 3492 832
WIRE 1488 -656 -1552 -656
WIRE 2304 -640 2096 -640
WIRE 1488 -608 1488 -656
WIRE 2304 -608 2304 -640
WIRE 2304 -496 2304 -544
WIRE 1488 -480 1488 -544
WIRE 160 -432 64 -432
WIRE 1184 -432 240 -432
WIRE 64 -400 64 -432
WIRE 944 -384 928 -384
WIRE 1056 -384 1008 -384
WIRE 1152 -384 1136 -384
WIRE 2304 -384 2304 -432
WIRE -1216 -304 -1248 -304
WIRE -1248 -288 -1248 -304
WIRE -1248 -288 -1392 -288
WIRE -592 -288 -1248 -288
WIRE -448 -288 -592 -288
WIRE -176 -288 -448 -288
WIRE 160 -288 -96 -288
WIRE 928 -288 928 -384
WIRE 928 -288 240 -288
WIRE 960 -288 928 -288
WIRE 1024 -288 960 -288
WIRE 1152 -288 1152 -384
WIRE 1152 -288 1088 -288
WIRE 1184 -288 1184 -432
WIRE 1184 -288 1152 -288
WIRE 1296 -288 1184 -288
WIRE 1488 -288 1488 -400
WIRE 1488 -288 1360 -288
WIRE 1888 -288 1888 -576
WIRE 1888 -288 1488 -288
WIRE 2096 -288 2096 -640
WIRE 2096 -288 1888 -288
WIRE 2304 -272 2304 -320
WIRE 2560 -240 2480 -240
WIRE -448 -224 -448 -288
WIRE 2560 -224 2560 -240
WIRE -592 -208 -592 -288
WIRE -1744 -192 -1744 -256
WIRE 1488 -192 1488 -288
WIRE 1488 -192 1392 -192
WIRE 208 -176 -272 -176
WIRE 2304 -176 2304 -208
WIRE -1216 -144 -1216 -304
WIRE -1392 -128 -1392 -288
WIRE 1488 -128 1488 -192
WIRE 2560 -128 2560 -160
WIRE -448 -80 -448 -144
WIRE -448 -80 -480 -80
WIRE -1744 -64 -1744 -112
WIRE 2304 -64 2304 -112
WIRE -592 -32 -592 -128
WIRE -544 -32 -592 -32
WIRE 2560 -16 2560 -64
WIRE -112 0 -112 -48
WIRE -16 0 -112 0
WIRE -448 16 -480 16
WIRE -272 16 -272 -176
WIRE -272 16 -448 16
WIRE 1392 16 1392 -192
WIRE 208 32 208 -176
WIRE 1792 32 1680 32
WIRE 1968 32 1856 32
WIRE 2304 32 2304 0
WIRE 960 48 960 -288
WIRE -16 80 -16 0
WIRE 0 80 -16 80
WIRE 2560 80 2560 48
WIRE -976 96 -1120 96
WIRE -592 96 -592 -32
WIRE -560 96 -592 96
WIRE -448 96 -448 16
WIRE -448 96 -496 96
WIRE -272 96 -304 96
WIRE 48 96 -272 96
WIRE -1120 128 -1120 96
WIRE 704 128 368 128
WIRE 912 128 784 128
WIRE 1488 128 1488 -48
WIRE -848 144 -848 16
WIRE 2304 144 2304 96
WIRE -272 160 -272 96
WIRE -256 160 -272 160
WIRE -144 160 -192 160
WIRE 0 160 0 80
WIRE 0 160 -64 160
WIRE 48 160 0 160
WIRE 1680 160 1680 32
WIRE 1776 160 1680 160
WIRE 1968 160 1968 32
WIRE 1968 160 1856 160
WIRE 960 176 960 144
WIRE 1120 176 1120 -16
WIRE 1120 176 960 176
WIRE -976 192 -976 96
WIRE -912 192 -976 192
WIRE 2560 192 2560 144
WIRE 0 208 -16 208
WIRE -96 224 -192 224
WIRE 0 224 0 208
WIRE 0 224 -96 224
WIRE 48 224 0 224
WIRE 2304 240 2304 208
WIRE -96 256 -96 224
WIRE 496 256 368 256
WIRE -1120 272 -1120 208
WIRE -448 272 -448 96
WIRE -304 272 -304 96
WIRE -592 288 -592 96
WIRE 48 288 0 288
WIRE 1392 288 1392 80
WIRE 1488 288 1488 192
WIRE 1488 288 1392 288
WIRE 2560 288 2560 256
WIRE 496 304 496 256
WIRE 672 304 496 304
WIRE 768 304 672 304
WIRE 960 304 960 176
WIRE 960 304 848 304
WIRE -192 320 -192 224
WIRE 1840 336 1840 304
WIRE 1968 352 1968 160
WIRE 1968 352 1872 352
WIRE 2144 352 1968 352
WIRE 2256 352 2224 352
WIRE 2304 352 2304 304
WIRE 2480 352 2480 -240
WIRE 2480 352 2304 352
WIRE -96 368 -96 336
WIRE 0 368 0 288
WIRE 0 368 -96 368
WIRE 1680 368 1680 160
WIRE 1808 368 1680 368
WIRE 672 384 672 304
WIRE 1968 384 1872 384
WIRE -96 400 -96 368
WIRE 960 400 960 304
WIRE 2560 432 2560 352
WIRE 2560 432 2400 432
WIRE 1968 464 1968 384
WIRE 2064 464 1968 464
WIRE 2144 464 2064 464
WIRE 2400 464 2400 432
WIRE 2400 464 2224 464
WIRE 2560 496 2560 432
WIRE 1968 512 1968 464
WIRE -1392 528 -1392 -48
WIRE -1216 528 -1216 -80
WIRE -1216 528 -1392 528
WIRE -1120 528 -1120 352
WIRE -1120 528 -1216 528
WIRE -848 528 -848 240
WIRE -848 528 -1120 528
WIRE -592 528 -592 352
WIRE -592 528 -848 528
WIRE -448 528 -448 336
WIRE -448 528 -592 528
WIRE -192 528 -192 384
WIRE -192 528 -448 528
WIRE -96 528 -96 464
WIRE -96 528 -192 528
WIRE 208 528 208 352
WIRE 208 528 -96 528
WIRE 672 528 672 448
WIRE 672 528 208 528
WIRE 960 528 960 480
WIRE 960 528 672 528
WIRE 1488 528 1488 288
WIRE 1488 528 960 528
WIRE 1840 528 1840 400
WIRE 1840 528 1488 528
WIRE 2064 544 2064 464
WIRE 2096 544 2064 544
WIRE 2400 544 2400 464
WIRE 2400 544 2368 544
WIRE 208 560 208 528
WIRE 1840 624 1840 528
WIRE 1968 624 1968 592
WIRE 1968 624 1840 624
WIRE 2256 624 2256 352
WIRE 2256 624 1968 624
WIRE 2560 624 2560 576
WIRE 2560 624 2256 624
WIRE -1552 688 -1552 -656
WIRE -304 688 -304 352
WIRE -304 688 -1552 688
WIRE -224 688 -304 688
WIRE 1680 688 1680 368
WIRE 1680 688 -144 688
FLAG 208 560 0
FLAG -1744 -64 0
FLAG -1744 -256 5V
FLAG 1840 304 5V
FLAG 1888 -576 VOUT
FLAG -112 -48 COMP
FLAG 1120 -16 RSEN
FLAG 64 -400 0
FLAG -16 208 vref
FLAG -848 16 COMP
SYMBOL PowerProducts\\LT1243 208 192 R0
SYMATTR InstName U1
SYMBOL voltage -1392 -144 R0
WINDOW 123 0 0 Left 2
WINDOW 39 24 124 Left 2
WINDOW 3 24 152 Left 2
SYMATTR SpiceLine Rser=0.001
SYMATTR Value 10
SYMATTR InstName V3
SYMBOL ind2 144 -272 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L1
SYMATTR Value 10µ
SYMATTR Type ind
SYMATTR SpiceLine Rser=0.05
SYMBOL schottky 1296 -272 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D1
SYMATTR Value MBR20100CT
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL nmos 912 48 R0
SYMATTR InstName M1
SYMATTR Value BSC057N08NS3
SYMBOL res 800 112 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R1
SYMATTR Value 1
SYMBOL cap -208 320 R0
SYMATTR InstName C2
SYMATTR Value 4µ7
SYMATTR SpiceLine Rser=0.003
SYMBOL cap 1472 128 R0
SYMATTR InstName C3
SYMATTR Value 22µ
SYMATTR SpiceLine Rser=0.005
SYMBOL Opamps\\LT1006 1840 304 M0
SYMATTR InstName U2
SYMBOL voltage -1744 -208 R0
WINDOW 123 0 0 Left 2
WINDOW 39 24 44 Left 2
SYMATTR SpiceLine Rser=0.001
SYMATTR InstName V5
SYMATTR Value 5
SYMBOL LED 2288 -272 R0
SYMATTR InstName D2
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 -176 R0
SYMATTR InstName D3
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 -64 R0
SYMATTR InstName D4
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 32 R0
SYMATTR InstName D5
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 144 R0
SYMATTR InstName D6
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 240 R0
SYMATTR InstName D7
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2544 -224 R0
SYMATTR InstName D8
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2544 -128 R0
SYMATTR InstName D9
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2544 -16 R0
SYMATTR InstName D10
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2544 80 R0
SYMATTR InstName D11
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2544 192 R0
SYMATTR InstName D12
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2544 288 R0
SYMATTR InstName D13
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res 2544 480 R0
SYMATTR InstName R2
SYMATTR Value 0.36
SYMBOL res 1872 144 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R4
SYMATTR Value 15k
SYMBOL res 2240 336 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R5
SYMATTR Value 750
SYMBOL res 2240 448 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R6
SYMATTR Value 750
SYMBOL res 1952 496 R0
SYMATTR InstName R7
SYMATTR Value 15k
SYMBOL cap 1856 16 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C1
SYMATTR Value 10n
SYMATTR SpiceLine Rser=0.001
SYMBOL res -320 256 R0
SYMATTR InstName R9
SYMATTR Value 7k5
SYMBOL res -48 144 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R10
SYMATTR Value 5k1
SYMBOL cap -192 144 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C5
SYMATTR Value 10n
SYMBOL res 2192 528 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R12
SYMATTR Value 750
SYMBOL cap 2368 528 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C7
SYMATTR Value 10n
SYMBOL LED 2288 -384 R0
SYMATTR InstName D14
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 -496 R0
SYMATTR InstName D15
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 2288 -608 R0
SYMATTR InstName D16
SYMATTR Value LXHL-BW02
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res 1472 -496 R0
SYMATTR InstName R15
SYMATTR Value 2k2
SYMBOL cap 1472 -608 R0
SYMATTR InstName C8
SYMATTR Value 33n
SYMBOL res -128 672 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R11
SYMATTR Value 18k
SYMBOL cap 1088 -304 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C6
SYMATTR Value 6µ6
SYMATTR SpiceLine Rser=0.005
SYMBOL ind2 144 -416 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L2
SYMATTR Value 10µ
SYMATTR Type ind
SYMATTR SpiceLine Rser=0.05
SYMBOL res -112 240 R0
SYMATTR InstName R16
SYMATTR Value 5600
SYMBOL cap -112 400 R0
SYMATTR InstName C9
SYMATTR Value 3n
SYMATTR SpiceLine Rser=0.001
SYMBOL res 864 288 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R19
SYMATTR Value 330r
SYMBOL res 944 384 R0
SYMATTR InstName R3
SYMATTR Value 0.1
SYMBOL cap 656 384 R0
SYMATTR InstName C4
SYMATTR Value 330p
SYMATTR SpiceLine Rser=0.001
SYMBOL res -80 -304 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R8
SYMATTR Value 0.1
SYMBOL res 1472 -144 R0
SYMATTR InstName R13
SYMATTR Value 0.1
SYMBOL npn -544 -80 R0
SYMATTR InstName Q1
SYMATTR Value 2N3904
SYMBOL zener -576 352 R180
WINDOW 0 -34 64 Left 2
WINDOW 3 -66 -6 Left 2
SYMATTR InstName D17
SYMATTR Value BZX84C10L
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res -608 -224 R0
SYMATTR InstName R14
SYMATTR Value 3k3
SYMBOL cap -464 272 R0
SYMATTR InstName C10
SYMATTR Value 2µ2
SYMATTR SpiceLine Rser=0.005
SYMBOL res -464 -240 R0
SYMATTR InstName R17
SYMATTR Value 100
SYMBOL cap 1376 16 R0
SYMATTR InstName C11
SYMATTR Value 2µ2
SYMATTR SpiceLine Rser=0.005
SYMBOL diode -496 80 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName D18
SYMATTR Value 1N4148
SYMBOL voltage -1120 256 R0
WINDOW 3 24 44 Left 2
WINDOW 123 0 0 Left 2
WINDOW 39 0 0 Left 2
SYMATTR Value 0
SYMATTR InstName V1
SYMBOL npn -912 144 R0
SYMATTR InstName Q2
SYMATTR Value 2N3904
SYMBOL res -1136 112 R0
SYMATTR InstName R18
SYMATTR Value 3K3
SYMBOL cap 1008 -400 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C12
SYMATTR Value 100n
SYMBOL res 1152 -400 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R20
SYMATTR Value 2r2
SYMBOL cap -1232 -144 R0
SYMATTR InstName C13
SYMATTR Value 6µ6
SYMATTR SpiceLine Rser=0.005
TEXT 104 632 Left 2 !.tran 0 150m 0 startup
TEXT 1592 -336 Left 2 !.ic V(VOUT) = 47
TEXT 2016 -216 Left 2 ;.save I(D16)\n.save I(L1)\n.save I(M1)\n.save I(C5)\n.save I(C8)\n.save V(VOUT)\n.save V(COMP)\n.save V(RSEN)\n.save V(CMP-)
TEXT 160 -496 Left 2 !K L1 L2  1
 

First of all, the article is explicitly referring to converters operating in CCM. Your simulation is operating in DCM. Second, it also explicitly states that a large C_AC will mitigate the effect, and you do have a large C_AC.

I modified your file to force CCM, and lowered C_AC to 1uF. I also added slope compensation, and also changed the FET (since I didn't have the model for yours).

Now when you change K from 1 to 0.9, you see significant reduction in ripple current on both inductors, and on C_AC.

You should really read articles more thoroughly before you dismiss them like that.
 

Attachments

  • grizedale sepic modified.zip
    2.6 KB · Views: 210
Right i will go and run your sim.

I hope your findings dont mean that in CCM SEPIC, the sizing of the fet source sense resistor depends on the amount of coupling in the sepic inductor, because most sepic inductor datasheets dont even state the degree of coupling...eg...

Sepic inductor datasheet

https://www.bourns.com/data/global/pdfs/SRF1280.pdf
 
Expectable coupling of industry standard SEPIC inductors is an interesting question. The fact, that it's rarely specified in datasheet obviously won't mean, that it's 1.0. Some manufacturers are even offering low and high leakage inductance types without specifying numbers. That's really absurd.

The said manufacturer (WE-online.com) however suggest "high" (whatever it is) leakage inductance for SEPIC and "low" leakage inductance for flyback applications. The k=0.9 number assumed by mtwieg sounds like a good first guess. I tend to translate "low" leakaga inductance with k >= 0.95 and high with k at least < 0.9, may be considerably lower. If you want to know more exactly, you should measure inductors of your choice yourself. Technically according to the core shape of typical SEPIC inductors, very low low leakage inbductance isn't feasible.

I'm not presently working with SEPIC designs, thus I didn't yet evaluate the pros and cons of different coupling factors.
 
Yes, the coupling often isn't given, and can't be extracted from the information they give (though it could be measured fairly easily). With small inductance values (a few uH or less) I'd expect them to be pretty low; like 0.8 at most.
 

thanks mtwieg i ran your sim.

youre right there is less primary inductor ripple with the greater leakage.

Thats nice to know.

However, its too expensive to get sepic inductors custom wound with high leakage.

Therefore, one has to make do with the multitude of off-the-shelf sepic inductors which have a clearly stated good coupling of >0.96.

....there are plenty of these around so obscelescence wont be an issue.

So, sepic with high leakage is good......but not "that" much better than a sepic with low leakage.

So i would think that for a sepic , just pick one of the many sepic inductors with coupling >0.96 and be done with it.

Would you agree?
 

Depends completely on the application... If you're going to be operating in DCM, then a leaky inductor probably isn't worthwhile. Even when operating heavily in CCM, the leaky inductor won't make a huge difference in efficiency. But as the article states, it will significantly reduce input and output ripple, and reduce EMI.

As to what the effect on variation in coupling is, I don't know. I doubt it affects stability in any significant way, but only a detailed analysis would say for sure...
 

Where did you get the k > 0.96 number? I didn't see it any of the linked datasheets?

P.S.: I found, that Coilcraft gives coupling for nearly all coupled inductors. It's in fact mostly above 0.95, often 0.99. Apparently, they don't see a problem yet to suggest these parts for SEPIC. So your initial question is justified.
 
Last edited:

FvM:

K>0.96 is the general number that i saw from the same coilcraft datasheets that you have seen.

-As you rightly say, its easy to get good coupling with a sepic inductor, you just wind the coils bifilar.
 

I think most power electronics engineers who saw the white paper realized straight away that when you couple the inductors on a sepic, you get something that is not a pure sepic any more; rather it now has a large resonant element to its behavior. If you take the switching frequency up much higher then you operate well inside the resonant half cycle and the behavior returns to more like pure sepic. This can also be seen if you let the switching freq go very low - and you can clearly see the resonant ringing inside a switching cycle.
Increasing the leakage has the effect of pushing the resonance lower in freq which makes the switching time a small part of the resonant half cycle - thus back to more like pure sepic operation.
 
Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…