Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

Sentaurus. Simulation of superjunction diode in SiliconCarbide

Status
Not open for further replies.

Gio88

Newbie level 1
Newbie level 1
Joined
Jul 11, 2013
Messages
1
Helped
0
Reputation
0
Reaction score
0
Trophy points
1
Activity points
8
Hi everybody.
I had to simulate the i v characteristic of a SJ diode in siliconcarbide for the company where i work.
I want to see the characteristic iv when my device is in breakdown.
I will never used software Sentaurus and i would want to know if my file command is right to simulate the Breakdown of my device.
In the solve voice i did a sweep of voltage of anodo from 0 to -3000. I saved the graph to 0V and the graph to -3000V.
Then i load the solution with 0V and i swept the voltage of anodo from 0 to 20 to draw the characterstic in forward polarization.
Is this correct?!
Sorry for my bad english.
Bye Giovanni
Code:
-------------------------------------------


#--------------FILE COMANDI DI SIMULAZIONE DI UN DIODO A SUPERGIUNZIONE REALIZZATO IN SILICONCARBIDE---------------


#------------------------------------------------------------------------------------------------------------------
File
   
   {
   * File di ingresso
   Grid = "./tdr/diodosupergiunzione_msh.tdr"
   * File di uscita
   Plot = "./GraficiSvisual/Plot_des.tdr"
   Parameter = "./Parametri/models.par"
   Current = "Current_des.plt"
   Output = "Output_des.log"
   }

Electrode
   {
      { Name="catodo" Voltage=0.0 }
      { Name="anodo" Voltage=0.0 }
   }

Physics
   {
   Fermi
   EffectiveIntrinsicDensity(NoBandGapNarrowing)
   Mobility(
           HighFieldSaturation
           Enormal ( Lombardi( AutoOrientation ) )
          )
       Recombination(Avalanche(vanOverstraetendeMan))
   }

Plot
   {
   eCurrent hCurrent
   Potential 
   SpaceCharge 
   ElectricField
   eMobility hMobility 
   eVelocity hVelocity
   eDensity hDensity
   eCurrent/Vector hCurrent/Vector
   Doping 
   DonorConcentration AcceptorConcentration
   ConductionCurrent   
   hTrappedCharge eTrappedCharge
   xMoleFraction
   ConductionBand ValenceBand   
   BandGapNarrowing
   Affinity
   BandGap
   eGradQuasiFermi hGradQuasiFermi
   eQuasiFermi hQuasiFermi
   }

Math
   {
   Extrapolate
     RelErrControl
     Digits= 15
     RHSmin= 1e-10
     Notdamped= 50
     Iterations= 20
     ExitOnFailure
     eDrForceRefDens= 1e12
     hDrForceRefDens= 1e12
   }

Solve
   {
   Poisson
   Coupled { Poisson Hole Electron }
   
   # Faccio uno sweep della tensione di catodo per vedere come risponde la mia struttura al breakdown
   
   Quasistationary (initialstep=1e-4 Minstep=1e-8 MaxStep=0.025 Increment=1.35 Goal{Name="anodo" Voltage=-3000})
      { Coupled {Poisson Electron}
      Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_0V" time=(0.0) Compressed )
      Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_-3000V" time=(1.0) Compressed )
      }
      
   NewCurrent= "DiodoSuperGiunzione_Forward_Anodo_20V"
   load(fileprefix = "DiodoSuperGiunzione_SweepAnodo_0V")
   Quasistationary (initialstep=1e-4 Minstep=1e-8 MaxStep=0.025 Increment=1.35 Goal{Name="anodo" Voltage=20})
      { Coupled {Poisson Electron}
      Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_20V" time=(1.0) Compressed )
      }
   }
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top