Ben17
Newbie level 6
Hi guys,
I am simulating a single unit cell of a reflectarray antenna using HFSS. I place the unit cell inside an imaginary waveguide (a waveguide with periodic boundary conditions, PEC & PMC) in order to study the behavior of the unit cell. I excite the waveguide with an incident planewave and since the waveguide has periodic boundaries it supports the planewave.
I am interested in the pattern of the electric field. I am ploting the magnitude of the complex electric field on a surface 0.2 mm above the unit cell. I have the option of which field to plot (HFSS> Fields> Edit Sources.... see the images attached). In the first image attached, I have plotted the magnitude of the incident field on the surface, it has a constant magnitude of 1 volts/meter which makes perfect sense. The problem is the scattered field or the total field. As you can see (second image attached) the magnitude of the scattered field is ~20 times larger than the incident field!!! This is definitely wrong! Or I am missing something!!
I would like to find the reflection coefficient, \Gamma, on that surface. \Gamma is the scattered field divided by the incident field. Notice that max(mag(\Gamma))=1, using these results the reflection coefficient would be larger than 1!!! Any suggestion? What am I doing wrong?
Thanks,
Ben
I am simulating a single unit cell of a reflectarray antenna using HFSS. I place the unit cell inside an imaginary waveguide (a waveguide with periodic boundary conditions, PEC & PMC) in order to study the behavior of the unit cell. I excite the waveguide with an incident planewave and since the waveguide has periodic boundaries it supports the planewave.
I am interested in the pattern of the electric field. I am ploting the magnitude of the complex electric field on a surface 0.2 mm above the unit cell. I have the option of which field to plot (HFSS> Fields> Edit Sources.... see the images attached). In the first image attached, I have plotted the magnitude of the incident field on the surface, it has a constant magnitude of 1 volts/meter which makes perfect sense. The problem is the scattered field or the total field. As you can see (second image attached) the magnitude of the scattered field is ~20 times larger than the incident field!!! This is definitely wrong! Or I am missing something!!
I would like to find the reflection coefficient, \Gamma, on that surface. \Gamma is the scattered field divided by the incident field. Notice that max(mag(\Gamma))=1, using these results the reflection coefficient would be larger than 1!!! Any suggestion? What am I doing wrong?
Thanks,
Ben