Alan0354
Full Member level 4
For Polar coordinates, \[r^2=x^2+y^2\] and \[x=r\cos \theta\], \[y=r\sin\theta\]
\[r^2=x^2+y^2\Rightarrow\; r\frac{\partial {r}}{\partial {x}}=x+y\frac{\partial {y}}{\partial {x}}\]
\[\Rightarrow\; \frac{\partial {r}}{\partial {x}}=\frac{x}{r}+\frac{y}{r}\frac{\partial {y}}{\partial {x}}\]
\[\frac{\partial {y}}{\partial {x}}=0\], then \[\frac{\partial {r}}{\partial {x}}=\frac{x}{r}\]
\[\frac{\partial {r}}{\partial {x}}=\cos\theta\] as \[\frac{\partial {y}}{\partial {x}}=0 \]
You can now put in \[90^o\;>\;\theta\;>45^o\], you'll get \[r>x\] and \[\frac{\partial {r}}{\partial {x}}>1\]
Let's just use an example where ##\theta =60^o##, so to every unit change of \[x\], \[r\]will change for 2 unit. So \[\frac{\partial {r}}{\partial {x}}=2\]
The same reasoning, \[r=2x\]. So using this example, \[\frac{\partial {r}}{\partial {x}}=\cos 60^o=0.5\] which does not agree with the example I gave.
I am missing something, please help.
\[r^2=x^2+y^2\Rightarrow\; r\frac{\partial {r}}{\partial {x}}=x+y\frac{\partial {y}}{\partial {x}}\]
\[\Rightarrow\; \frac{\partial {r}}{\partial {x}}=\frac{x}{r}+\frac{y}{r}\frac{\partial {y}}{\partial {x}}\]
\[\frac{\partial {y}}{\partial {x}}=0\], then \[\frac{\partial {r}}{\partial {x}}=\frac{x}{r}\]
\[\frac{\partial {r}}{\partial {x}}=\cos\theta\] as \[\frac{\partial {y}}{\partial {x}}=0 \]
You can now put in \[90^o\;>\;\theta\;>45^o\], you'll get \[r>x\] and \[\frac{\partial {r}}{\partial {x}}>1\]
Let's just use an example where ##\theta =60^o##, so to every unit change of \[x\], \[r\]will change for 2 unit. So \[\frac{\partial {r}}{\partial {x}}=2\]
The same reasoning, \[r=2x\]. So using this example, \[\frac{\partial {r}}{\partial {x}}=\cos 60^o=0.5\] which does not agree with the example I gave.
I am missing something, please help.