A dot product conceptually is the projection that one vector has over another. This is why it is a scalar, it only tells the length of the projection. Another way of thinking is that it tells one how 'parallel' the two vectors are to one another. The larger a dot product between two unit vectors, the smaller the angle is between them in a given plane or more obtuse if the angle is greater than 90 degrees (the more parallel they are).
A cross product results in a vector that has a direction that is perpendicular to both vectors and a magnitude that is equal to the parallelogram with side lengths equal to the magnitudes of the two vectors and a skew equal to the angle between the vectors. Another way of thinking is that it, conversely to the dot product, tells one how 'perpendicular' the two vectors are. The larger the magnitude of the cross product between two unit vectors, the larger the angle between the vectors (up to 90 degrees) in a given plane (the more perpendicular they are).
Have Fun