Agreed with WinRFP. Wave port solves a 2D eigen value problem, any shape in a cross sectional cut only support a certain amount of wave-modes that can propagate through. For example, a Rectangular waveguide with width and height given, then it only support TE10 or TM01 ...... mode (Check Balanie's book chapter 6). Such a mode is a 2D spatial distribution of the field on the cross section of your structure. Waveguide, coaxial, TL can all be feeded by such called waveport. It guarantees that the field you put in to X+ will never get a reflection from the X- direction due to the mode-matching.
However, everything depends on your real problem, if you are feeding your antenna (e.g. horn antenna) with a rectangular waveguide, then of course when you design your horn, you want to use a waveport as the feeding since in reality you did use waveguide to feed. If you are designing a microstrip antenna, at least in my best knowledge, most of the time the TL is fed with SMA with only the pin touching the TL and outer touching the ground plane, then in such case, lumped port is good enough and obviously better than waveport to model this situation, since SMA simply induce a voltage/current at one point on the TL which is best described by lumped port behavior. Of course, in such a case, you should expect some reflections from your simulation due to the discontinuity, but such reflection is in reality as well.