Numerical Analysis Lecture Notes - Wilf

Status
Not open for further replies.

tonyart

Member level 3
Joined
Jun 19, 2002
Messages
63
Helped
0
Reputation
0
Reaction score
0
Trophy points
1,286
Activity points
260
Lectures on Numerical Analysis
Dennis Deturck and Herbert S. Wilf
Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104-6395

Contents
1 Differential and Diference Equations 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Linear equations with constant coeffcients . . . . . . . . . . . . . . . . . . . 8
1.3 Difference equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Computing with difference equations . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Stability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Stability theory of difference equations . . . . . . . . . . . . . . . . . . . . . 19

2 The Numerical Solution of Differential Equations 23
2.1 Euler'smethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Software notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Systems and equations of higher order . . . . . . . . . . . . . . . . . . . . . 29
2.4 How to document a program . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Themidpoint and trapezoidal rules . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Comparison of themethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Predictor-corrector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 Truncation error and step size . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.9 Controlling the step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.10 Case study: Rocket to the moon . . . . . . . . . . . . . . . . . . . . . . . . 60
2.11 Maple programs for the trapezoidal rule . .. . . . . . . . . . . . . . . . . 65
2.11.1 Example: Computing the cosine function . . . . . . . . . . . . . . . 67
2.11.2 Example: Themoon rocket in one dimension . . . . . . . . . . . . . 68
2.12 The big leagues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.13 Lagrange and Adams formulas . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Numerical linear algebra 81
3.1 Vector spaces and linear mappings . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3 Building blocks for the linear equation solver . . . . . . . . . . . . . . . . . 92
3.4 How big is zero? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5 Operation count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.6 To unscramble the eggs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.7 Eigenvalues and eigenvectors of matrices . . . . . . . . . . . . . . . . . 108
3.8 The orthogonal matrices of Jacobi . . . . . . . . . . . . . . . . . . . . . . . 112
3.9 Convergence of the Jacobi method . . . . . . . . . . . . . . . . . . . . . . . 115
3.10 Corbato's idea and the implementation of the Jacobi algorithm . . 118
3.11 Getting it together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.12 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
 

this is primary course of numerical analysis course book for undergraduate student.
 

Status
Not open for further replies.

Similar threads

Cookies are required to use this site. You must accept them to continue using the site. Learn more…