Math help to Sallen-Key transfer function

Status
Not open for further replies.

olemariendal

Newbie level 5
Joined
Apr 16, 2014
Messages
8
Helped
0
Reputation
0
Reaction score
0
Trophy points
1
Visit site
Activity points
67
Hi,

I need help to determine the transfer function for a Sallen-Key low pass filter. I need help step by step for the mathematics steps for the transfer function.

The circuit is this:


The steps i already have and end up with, is this.

\[\begin{equation}
V_{out}\cdot \left(\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}\cdot (k-G_3)\cdot (k-sC_2)\right)=G_1\cdot (V_{in})
\end{equation} \]

\[
\begin{equation}
V_{out}=\dfrac{G_1\cdot (V_{in})}{\left(\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}\cdot (k-G_3)\cdot (k-sC_2)\right)}
\end{equation}
\]

And then is \[G_{1,3}=\frac{1}{R_{1,3}}\]

\[\begin{equation}
V_{out}=\dfrac{\dfrac{1}{R_1}\cdot (V_{in})}{\left(\dfrac{\left(\dfrac{1}{R_3}+sC_4\right)\left(\dfrac{1}{R_1}+sC_2+\dfrac{1}{R_3}\right)}{\dfrac{1}{R_3}}\cdot (k)-\dfrac{1}{R_3}\cdot (k-sC_2)\right)}
\end{equation}\]

I'm stock here, please help me to continue, without CAS tools.

I know that the solution should be:
\[\begin{equation}
\dfrac{V_{out}}{V_{in}}=\dfrac{k}{s^2\cdot (R_1)\cdot (R_2)\cdot (C_2)\cdot (C_4+s)\cdot \left(R1\cdot (C2+R_3)\cdot (C_4+R_1)\cdot (C_4-k)\cdot (R1)\cdot (C2)\right)+1}
\end{equation}\]

Thanks for your time.
Sorry about me English writing skills.
 

In your post, the last transfer function ("should be") is wrong.
Please check the units. You have "funny" expressions like the following:
(s+C4), (C2+R3), (C4-k),...

And in your Vout equation I see (k-sC2).
I suppose k=(1+Ra/Rb), correct?

Please, verify everything.
 


Yes, k is the gain. The funny expressions is coming because I got error when I copied the LaTeX text to the forum.

It should be like this:
\[\dfrac{V_{out}}{V_{in}}=\dfrac{k}{s^2* R_1* R_2* C_2* C_4+s* \left(R1* C2+R_3* C_4+R_1* C_4-k* R1* C2\right)+1}\]

I just change the \cdot to *
 

Here is my advice how to find the transfer function: Apply Kirchoff`s current law for each node (currents in=currents out) using only conductances Y.
For example, for the first node:
(Vin-Vx)Y1=(Vx-V+)Y3+(Vx-Vout)Y2

Together with a similar equation for the other node and the gain expression Vout=(1+Ra/Rb)V+ = kV+
you have three equations for the three unknown quantities Vx, V+ and Vout/Vin.
Hence, you can solve for Vout/Vin.
 

My problem is to reorganize and solve this equation

\[
V_{out}=\dfrac{\dfrac{1}{R_1}* V_{in}}{\left(\dfrac{\left(\dfrac{1}{R_3}+sC_4\right)\left(\dfrac{1}{R_1}+sC_2+\dfrac{1}{R_3}\right)}{\dfrac{1}{R_3}}* k-\dfrac{1}{R_3}* k-sC_2\right)}\]

to the solution
\[
\dfrac{V_{out}}{V_{in}}=\dfrac{k}{s^2* R_1* R_2* C_2* C_4+s* \left(R1* C2+R_3* C_4+R_1* C_4-k* R1* C2\right)+1}\]
 

Are you sure that your expression is correct?
Because k should appear in the numerator, you could multiply numerator and denominator with k - however, in this case we have k^2 in the denominator which is not correct.
Therefore my question above.
I think, already the first equation in your post#1 is wrong.
 


This is all me steps, I hope it can explain what i'm trying to do:

\[
V_x\] is:

\[
\begin{equation}
V_x\left(\dfrac{1}{R_1}+sC_2+\dfrac{1}{R_3}\right)-\dfrac{1}{R_1}* V_{in}-\dfrac{1}{R_3}* V_+-sC_2* V_{out}=0
\end{equation}
\]
\[V_+\] is:
\[
\begin{equation}
V_+\left(\dfrac{1}{R_3}+sC_4\right)-\dfrac{1}{R_3}* V_x=0
\end{equation}
\]

Isolate \[V_x\] in equation 2:

\[
\begin{align*}
V_+\left(\dfrac{1}{R_3}+sC_4\right)-\dfrac{1}{R_3}* V_x=0 \\
V_+\left(\dfrac{1}{R_3}+sC_4\right)=\dfrac{1}{R_3}* V_x \\
\dfrac{V_+\left(\dfrac{1}{R_3}+sC_4\right)}{\dfrac{1}{R_3}}=V_x
\end{align*}
\]

We know that \[V_-\] is:

\[
\begin{equation}
V_-=V_{out}* \frac{R_a}{R_a+R_b}=V_+
\end{equation}
\]

It is an ideal op amp, so that means:

\[
V_+=V_-\]



All
\[\dfrac{1}{R_{1,3}}=G_{1,3}\]

and
\[\dfrac{1}{C_{2,4}}=sC_{2,4}\]



We substitute equation 3 into equation 1.

\[ \begin{equation}
\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* V_+-G_1* V_{in}-G_3* V_+-sC_2=0
\end{equation}
\]

Isolating V_{in} and V_{out}:

\[\begin{equation}
\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* V_+-G_3* V_+=G_1* V_{in}+sC_2* V_{out}
\end{equation}
\]

Replacing \[V_+\] with \[\dfrac{R_a}{R_a+R_b}*V_{out}\]

\[\begin{equation}
\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* \frac{R_a}{R_a+R_b}* V_{out}-G_3* \frac{R_a}{R_a+R_b}* V_{out}=G_1* V_{in}+sC_2* V_{out}
\end{equation}
\]

Lets say that \[\dfrac{R_a}{R_a+R_b}=k\] and then we get:

\[
\begin{equation}
\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* k* V_{out}-G_3* k* V_{out}=G_1* V_{in}+sC_2* V_{out}
\end{equation}
\]

Then isolate all \[V_{out}\] on left side.

\[
\begin{equation}
\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* k* V_{out}-G_3* k* V_{out}-sC_2* V_{out}=G_1* V_{in}
\end{equation}
\]

Then can we move \[V_{out}\] out of a braces:

\[
\begin{equation}
V_{out}* \left(\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* k-G_3* k-sC_2\right)=G_1* V_{in}
\end{equation}
\]

Take V_{out} out, so only that is on left side:

\[
\begin{equation}
V_{out}=\dfrac{G_1* V_{in}}{\left(\dfrac{\left(G_3+sC_4\right)\left(G_1+sC_2+G_3\right)}{G_3}* k-G_3* k-sC_2\right)}
\end{equation}
\]

Again can we replace \[G_{1,3}\] with \[\dfrac{1}{R_{1,3}}\]:

\[
\begin{equation}
V_{out}=\dfrac{\dfrac{1}{R_1}* V_{in}}{\left(\dfrac{\left(\dfrac{1}{R_3}+sC_4\right)\left(\dfrac{1}{R_1}+sC_2+\dfrac{1}{R_3}\right)}{\dfrac{1}{R_3}}* k-\dfrac{1}{R_3}* k-sC_2\right)}
\end{equation}
\]
 

Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…