I have two questions:
(1)As the tittle, if \[u(a,\theta,t)=0\], is
\[\frac{\partial{u}}{\partial {t}}=\frac{\partial^2{u}}{\partial {r}^2}+\frac{1}{r}\frac{\partial{u}}{\partial {r}}+\frac{1}{r^2}\frac{\partial^2{u}}{\partial {\theta}^2}\]
and
\[\frac{\partial^2{u}}{\partial {t}^2}=\frac{\partial^2{u}}{\partial {r}^2} +\frac{1}{r} \frac{\partial{u}}{\partial {r}}+\frac{1}{r^2}\frac{\partial^2{u}}{\partial {\theta}^2}\]
Just Poisson Equation \[\nabla^2u=h(r,\theta,t)\] Where
\[ h(r,\theta,t)=\frac{\partial{u}}{\partial {t}}\]
or \[\;h(r,\theta,t)=\frac{\partial^2{u}}{\partial {t}^2}\] respectively.
(2)AND if \[u(a,\theta,t)=f(r,\theta,t)\], then we have to use superposition of Poisson with zero boundary plus Dirichlet with \[u(a,\theta,t)=f(r,\theta,t)\]?
That is
\[ u(r,\theta,t)=u_1+u_2\]
where
\[\nabla^2u_1=h(r,\theta,t)\] with \[\;u(a,\theta,t)=0\]
and
\[\nabla^2u_2=0\] with \[u(a,\theta,t)=f(r,\theta,t)\]
Thanks