Let's start from P(a,b)=a!/(a-b)! that is:
P(2n+1,n-1) = (2n+1)!/(2n+1-n+1)! = (2n+1)!/(n+2)!
P(2n-1,n) = (2n-1)!/(2n-1-n)! = (2n-1)!/(n-1)!
then:
P(2n+1,n-1)/P(2n-1,n) = [(2n+1)!/(n+2)!]/[(2n-1)!/(n-1)!] = (2n+1)!*(n-1)!/[(2n-1)!*(n+2)!]
but:
(2n+1)! = (2n+1)*2n*(2n-1)!
(n+2)! = (n+2)*(n+1)*n*(n-1)!
thus:
P(2n+1,n-1)/P(2n-1,n) = (2n+1)*2n*(2n-1)!*(n-1)!/[(n+2)*(n+1)*n*(n-1)!*(2n-1)!]
simplifying:
P(2n+1,n-1)/P(2n-1,n) = (2n+1)*2/[(n+2)*(n+1)]
then:
(4n+2)/(n²+3n+2) = 3/5
20n+10=3n²+9n+6
3n²-11n-4=0
the acceptable solution is: (11+13)/6=4
the other one is negative.