How to save data from Spartan 3e ADC to .text file inside computer? [MOVED]

Status
Not open for further replies.

Asraf Mohamed

Newbie level 3
Joined
May 1, 2014
Messages
3
Helped
0
Reputation
0
Reaction score
0
Trophy points
1
Visit site
Activity points
63
hai there,
im doing project on converting analog signal to digital signal with Spartan 3e board.unfortunately, i have 2 issue here, first, i don't know whether the coding working properly..second..i need to save the converted analog signal into text file inside my computer. i attached with this threads my coding as well..please advise me..thank you..



Code Verilog - [expand]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
`timescale 1ns / 1ps
 
//////////////////////////////////////////////////////////////////////////////////
module test(clk,reset,spi_sck,amp_cs,spi_mosi,spi_miso,ad_conv,spi_ss_b,amp_cs,dac_cs,sf_ce0,fpga_init_b,amp_shdn,dac_clr,led);
 
input clk,reset;
input spi_miso;
 
output reg [7:0] led;
output reg spi_sck; 
output reg amp_cs;
output reg spi_mosi;
output reg ad_conv;
output reg amp_shdn;
output reg dac_clr;
 
output reg spi_ss_b;
output reg dac_cs;
output reg sf_ce0;
output reg fpga_init_b;
 
 
 
reg [6:0] counter;////count spi_sck for period 100 cycles
reg [4:0] counter2;////count spi_sck for period 20 cycles
reg [5:0] counter3;////count spi_sck for period 34 cycles
reg [4:0] state;
reg [1:0] state2;
reg [7:0] data;
reg [13:0] data_adc0;//assume from data to spi_miso first to test
reg [13:0] data_adc1;
reg [3:0] kire;
reg [3:0] kire_14bit;
reg [2:0] kire_adc;
 
reg [27:0] counter_led;
reg sclk;
 
reg [7:0] mem1 [0:255];// 8 bits memory with 16 location
reg [7:0] mem2 [0:255];// 8 bits memory with 16 location
reg [7:0] mem3 [0:255];// 8 bits memory with 16 location
reg [7:0] mem4 [0:255];// 8 bits memory with 16 location
reg [7:0] mem5 [0:255];// 8 bits memory with 16 location
reg [7:0] mem6 [0:255];// 8 bits memory with 16 location
 
reg [15:0] i1,i2,i3,i4,i5,i6;
 
integer m1,m2,m3,m4,m5,m6;
 
initial
begin
 
amp_cs<=1;
spi_sck=0;
counter<=0;
counter2<=0;
counter3<=0;
data=8'b00010001;
data_adc0=14'b0;
data_adc1=14'b0;
kire<=4'd7;
kire_adc<=4'd0;
kire_14bit<=4'd13;
ad_conv<=0;
led<=0;
end
 
always@(posedge clk or posedge reset)
begin
spi_ss_b<=1;
dac_cs<=1;
sf_ce0<=1;
fpga_init_b<=1;
amp_shdn<=0;
dac_clr<=0;
end
 
 
/////////////////////////counter//////////////////////////////////
always@(posedge clk or posedge reset)
begin
if(reset)
    begin
    counter<=0;
    end
else
    begin
        if(counter==7'd100)
            begin
            counter<=0;
            end
        else
            begin
            counter<=counter+1'b1;
            end
    end     
end
 
/////////////////////////counter2//////////////////////////////////
always@(posedge clk or posedge reset)
begin
if(reset)
    begin
    counter2<=0;
    end
else
    begin
        if(counter2==5'd20)
            begin
            counter2<=0;
            end
        else
            begin
            counter2<=counter2+1'b1;
            end
    end     
end
////////////////////////////for slow clock/////////////////////
 
 
always@(posedge clk or posedge reset)
begin
if(reset)
counter_led<=0;
else begin
if(counter_led==28'd5000000)
counter_led<=0;
else
counter_led<=counter_led+1;
end
end
 
 
always@(posedge clk or posedge reset)
begin
if(reset)
sclk=0;
else if(counter_led==28'd5000000)
sclk=0;
else if(counter_led==28'd0)
sclk=1;
end
 
 
always@(posedge clk or posedge reset )
begin
if(reset)
    begin
    state<=0;
    end
else
    begin
        case(state)
        
        0:  
                    begin
                    amp_cs<=1;
                    ad_conv<=0;
                    kire<=4'd7;
                    kire_adc<=4'd0;
                    counter3<=6'd0;
                    if(counter==7'd20)
                    state<=1;
                    else
                    state<=0;
                    end
        
        1:  
                    begin
                    amp_cs<=0;
                    spi_sck=0;
                    if(counter==7'd50)
                    state<=2;
                    else
                    state<=1;
                    end
        
 
        2:  
                    
                    begin
                    spi_sck=1;
                    spi_mosi<=data[kire];//data for amplifier
                    if(counter==7'd100)
                    state<=3;
                    else
                    state<=2;
                    end
                            
                    
        3:   
 
                    begin
                    spi_sck=0;
                    kire<=kire-1'b1;
                    if(kire==4'd0)
                    state<=4;
                    else
                    state<=1;
                    end
                    
        4:      
                    begin
                    amp_cs<=1;//disable first...amplifier
                    ad_conv<=1;
                    kire_adc<=kire_adc+1'b1;
                    if(kire_adc==4'd3)
                    state<=5;
                    else
                    state<=4;
                    end
                    
        5:          
                    begin
                    ad_conv<=0;
                    spi_sck=0;
                    kire_adc<=kire_adc+1'b1;
                    if(kire_adc==4'd7)
                    state<=6;
                    else
                    state<=5;
                    end
                    
        6:
                    begin
                    kire_adc<=0;
                    counter3<=counter3+1'b1;
                    if(counter3==6'd2)
                    state<=9;
                    else
                  state<=7;
                    end 
                    
                    
        7:
                    begin
                    spi_sck=1;
                    if(counter2==5'd10)
                    state<=8;
                    else
                    state<=7;
                    end
                    
        8:
                    begin
                    spi_sck=0;
                    if(counter2==5'd20)
                    state<=6;
                    else
                    state<=8;
                   end
                    
        9:
        
                    begin
                    spi_sck=1;
                    data_adc0[kire_14bit]<=spi_miso;
                    //spi_miso<=data_adc0[kire_14bit];
                    if(counter2==5'd10)
                    state<=10;
                    else
                    state<=9;
                    end
                    
        10: 
                    begin
                    spi_sck=0;
                    if(counter2==5'd20)
                    state<=11;
                    else
                    state<=10;
                   end
                    
        11:
                    begin
                    kire_14bit<=kire_14bit-1'b1;
                    counter3<=counter3+1'b1;
                    if(kire_14bit==0)
                    state<=12;
                    else
                    state<=9;
                    end
        
        12:
                    begin
                    kire_14bit<=4'd13;
                    spi_sck=1;
                    if(counter2==5'd10)
                    state<=13;
                    else
                    state<=12;
                    end
                    
        13:
                    begin
                    spi_sck=0;
                    if(counter2==5'd20)
                    state<=14;
                    else
                    state<=13;
                   end
                    
        14:
                    begin
                    counter3<=counter3+1'b1;
                    if(counter3==6'd18)
                    state<=15;
                    else
                    state<=12;
                    end
                    
        15:
                    begin
                    
                    spi_sck=1;
                    data_adc1[kire_14bit]<=spi_miso;
                    if(counter2==5'd10)
                    state<=16;
                    else
                    state<=15;
                    end
            
        16:         
                    begin
                    spi_sck=0;
                    if(counter2==5'd20)
                    state<=17;
                    else
                    state<=16;
                   end
                    
        17:
                    begin
                    kire_14bit<=kire_14bit-1'b1;
                    counter3<=counter3+1'b1;
                    if(kire_14bit==0)
                    state<=18;
                    else
                    state<=15;
                    end 
 
        18:
                    begin
                    kire_14bit<=4'd13;
                    spi_sck=1;
                    if(counter2==5'd10)
                    state<=19;
                    else
                    state<=18;
                    end
                    
        19:
                    begin
                    spi_sck=0;
                    if(counter2==5'd20)
                    state<=20;
                    else
                    state<=19;
                   end
                    
        20:
                    begin
                    counter3<=counter3+1'b1;
                    if(counter3==6'd34)
                    state<=21;//state<=0;
                    else
                    state<=18;
                    end
        
        21:
                    begin
                    ad_conv<=0;
                    kire_adc<=kire_adc+1'b1;
                    if(kire_adc==4'd3)
                    state<=22;
                    else
                    state<=21;
                    end
                    
        22:         
                    begin
                    ad_conv<=1;
                    spi_sck=0;
                    kire_adc<=kire_adc+1'b1;
                    if(kire_adc==4'd7)
                    state<=23;
                    else
                    state<=22;
                    end
                    
        23: 
                    begin
                    kire_adc<=0;
                    ad_conv<=0;
                    state<=0;
                    end
        endcase
    
    end     
end
 
//////////////////program untuk led run dgn slow clock/////////////////////////////
always@(posedge sclk or posedge reset)
begin
if(reset)
led<=0;
else
led<=data_adc0[13:6];
 
end
 
endmodule

 
Last edited by a moderator:

i don't know whether the coding working properly
Have you tried simulating this code using Modelsim/Isim/Xsim/VCS/Incisive/icarus...etc? That's how most of us determine if our code is working properly.

i need to save the converted analog signal into text file inside my computer.
UART/Ethernet/USB

Some observations on your code.
1) You're mixing non-blocking (<=) and blocking assignments (=) in a edge sensitive procedural block (always @(posedge clk or posedge reset)) This is incorrect and will result in synthesis simulation mismatches. Change spi_sck=0; & spi_sck=1; to spi_sck<=0; & spi_sck<=1;
2) You have kire defined as 4-bits but are only using 4'd7 through 4'd0. I only needs to be 3-bits.
3) you're using kire as an index into data: data[kire]. A shift register would be more efficient and avoids all the multiplexing for mosi. e.g. {mosi, data[7:1]} <= data; // this replicates data[0] over all bits
4) you're also using kire_14bit as an index, you should just use a shift register for data_adc1.
5) counter_led requires only 27-bits.
6) you might what to consider using parameters for state names so the code is easier to understand and maintain (doesn't with simulation, not all simulation and backend tools can handle enum types yet)
7) Every tool I know of can use Verilog 2001 module port C-style declarations, it's cleaner and easier to maintain and avoids having to replicated the port names.
8) generating clocks from internal logic should be avoided, the preferred method is to use one clock and an enable, so that the design stays synchronous.

Regards
 

hai there,
Thanks for your reply..i manage to debug the code and it ran nicely on the board..but the problem i facing now is..i cannot display/import the digital data which i obtained after i convert the analog signal inside my pc. i tried to use system generator but its not working as well cause i need to purchase the toolbox for the simulink..
 

Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…