how to implement qpsk in mimo system, and increase receive and transmit antennas

Status
Not open for further replies.

tajwar6

Newbie level 2
Joined
Feb 15, 2014
Messages
2
Helped
0
Reputation
0
Reaction score
0
Trophy points
1
Visit site
Activity points
9
1) how can i alter this code in order to plot it in QPSK ber modulation?
2) how can i alter this code if i wanted to do 3x3?

Code:
% Script for computing the BER for BPSK modulation in a
% Rayleigh fading channel with 2 Tx, 2Rx MIMO channel 
% Zero Forcing equalization
 
clear
N = 10^5; % number of bits or symbols
Eb_N0_dB = [0:25]; % multiple Eb/N0 values
nTx = 2;
nRx = 2;
for ii = 1:length(Eb_N0_dB)
 
    % Transmitter
    ip = rand(1,N)>0.5; % generating 0,1 with equal probability
    s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0
 
    sMod = kron(s,ones(nRx,1)); % 
    sMod = reshape(sMod,[nRx,nTx,N/nTx]); % grouping in [nRx,nTx,N/NTx ] matrix
 
    h = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; % Rayleigh channel
    n = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; % white gaussian noise, 0dB variance
 
    % Channel and noise Noise addition
    y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n;
 
    % Receiver
 
    % Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H
    % H^H*H is of dimension [nTx x nTx]. In this case [2 x 2] 
    % Inverse of a [2x2] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
    hCof = zeros(2,2,N/nTx)  ; 
    hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term
    hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term
    hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
    hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
    hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:))); % ad-bc term
    hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);  % formatting for division
    hInv = hCof./hDen; % inv(H^H*H)
 
    hMod =  reshape(conj(h),nRx,N); % H^H operation
    
    yMod = kron(y,ones(1,2)); % formatting the received symbol for equalization
    yMod = sum(hMod.*yMod,1); % H^H * y 
    yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting
    yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
   
    % receiver - hard decision decoding
    ipHat = real(yHat)>0;
 

    % counting the errors
    nErr(ii) = size(find([ip- ipHat]),2);
 
end
 
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10); 
 
close all; figure
semilogy(Eb_N0_dB,EbN0Lin,'bs-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,simBer,'mx-','LineWidth',2);



axis([0 25 10^-5 0.2])
grid on
legend('sim (nTx=2, nRx=2, ZF)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title('BER for BPSK modulation with 2x2 MIMO and ZF equalizer (Rayleigh channel)');
hold on
 
Last edited by a moderator:

Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…