how to calculate the serires i*(1/6)^i, i from 0 to infinite?

Status
Not open for further replies.
Hint: \[\dfrac{1}{1-x}=\displaystyle\sum_{i=0}^{\infty}{x^i}\;\;\longrightarrow\;\;\dfrac{d}{dx}\left(\dfrac{1}{1-x}\right)=\dfrac{1}{(1-x)^2}=\displaystyle\sum_{i=0}^{\infty}{i\;x^{i-1}=\dfrac{1}{x}\displaystyle\sum_{i=0}^{\infty}{i\;x^i}\]
 
Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…