Thanks for your answer, and the file is great, but did you physically rotate the antenna?
I'll try to rephrase. Let's eliminate antenna array to avoid possible confusion. Also remove any transmitter, we just have a perfect plane wave in space with a known electromagnetic field parameters in each point, for example Ex(t) Ey(t) Ez(t) . Consider we have single patch antenna and this plane wave is constantly coming and exciting currents at it's edges.
At some moment of time T1 we will observe received sinusoidal signal at feeding point with a certain phase φ.
Now, what if this patch was physically rotated by angle α around it's center, how would signal phase φ change depending on physical rotation angle α at moment of time T1? So there are two angles, one for signal, and one for physical rotation of patch around it's center. And I hope that φ is dependent on α, and how linear is it.
I've found some hints in circularly polarized antenna designs using sequential rotating feeding, but they deal with discrete rotation angles 0°, 90°, 180° and 270°, and polarization is circular.
I know for sure that for a simple linearly polarized patch antenna physical rotation α=180° will result in signal phase shift φ=180° (phase shift relative to the case when patch physical rotation α=0° )
Again, thanks for your attention.