How do we control step motor that have only 4 input wire??

Status
Not open for further replies.
Re: How do we control step motor that have only 4 input wire

https://www.stepperworld.com/Tutorials/pgBipolarTutorial.htm


Regards,
IanP
 

    samnang39

    Points: 2
    Helpful Answer Positive Rating
Re: How do we control step motor that have only 4 input wire

Thank so much. it is very good website
 

Re: How do we control step motor that have only 4 input wire

PIC Code is designed for a 16F877a. Output is PortD. Connect PortD to the EDE1220 as Follows in directions below. This is tested on a easypic3 using RC6 and RC7 for the Tx and Rx.I also tested it with a USB to serial adapter.Select Comport First then Connect. Com port can be 1 - 5. Please Report Bugs or problems via PM at the ME forum.

**broken link removed**

**broken link removed**
 

4 wire stepper motor is a bipolar stepper motor
bipolar stepper interfacing with AVR
**broken link removed**
interfacing with parallel port
**broken link removed**
bibin john
www.bibinjohn.tk
 

/*********************************************
This program was produced by the
CodeWizardAVR V1.23.3 Standard
Automatic Program Generator
© Copyright 1998-2002 HP InfoTech s.r.l.
https://www.hpinfotech.ro
e-mailffice@hpinfotech.ro , hpinfotech@xmail.ro

Project : Stepper motor control using the ULN2003
Version : 1
Date : 5/30/2002
Author : Thomas Lui
Company : Thomtronics Technology Company
Comments:
Connection:

letATworkII ULN2003
PORTB.0 <---- PIN 1 PIN 16 ---->|------------------|
PORTB.1 <---- PIN 2 PIN 15 ---->| Stepping Motor |
PORTB.2 <---- PIN 3 PIN 14 ---->| |
PORTB.3 <---- PIN 4 PIN 13 ---->|------------------|
GND <---- PIN 8 | |-----------|
|-----------|
|
PIN 9 --|--> 9V-12V (Depend on Stepping Motor)

Chip type : ATmega128
Program type : Application
Clock frequency : 16.000000 MHz
Memory model : Small
Internal SRAM size : 4096
External SRAM size : 0
Data Stack size : 1024
*********************************************/

#include <mega128.h>
#include <delay.h>

// Declare your global variables here

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func0=Out Func1=Out Func2=Out Func3=Out Func4=In Func5=In Func6=In Func7=In
// State0=0 State1=0 State2=0 State3=0 State4=T State5=T State6=T State7=T
PORTB=0x00;
DDRB=0x0F;

// Port C initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTD=0x00;
DDRD=0x00;

// Port E initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTE=0x00;
DDRE=0x00;

// Port F initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=In Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=T State7=T
PORTF=0x00;
DDRF=0x00;

// Port G initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In
// State0=T State1=T State2=T State3=T State4=T
PORTG=0x00;
DDRG=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
ASSR=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// OC1C output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
OCR1CH=0x00;
OCR1CL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
TCCR2=0x00;
ASSR=0x00;
TCNT2=0x00;
OCR2=0x00;

// Timer/Counter 3 initialization
// Clock source: System Clock
// Clock value: Timer 3 Stopped
// Mode: Normal top=FFFFh
// OC3A output: Discon.
// OC3B output: Discon.
// OC3C output: Discon.
TCCR3A=0x00;
TCCR3B=0x00;
TCNT3H=0x00;
TCNT3L=0x00;
OCR3AH=0x00;
OCR3AL=0x00;
OCR3BH=0x00;
OCR3BL=0x00;
OCR3CH=0x00;
OCR3CL=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
// INT3: Off
// INT4: Off
// INT5: Off
// INT6: Off
// INT7: Off
EICRA=0x00;
EICRB=0x00;
EIMSK=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
ETIMSK=0x00;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
// Analog Comparator Output: Off
ACSR=0x80;
SFIOR=0x00;

while (1)
{
// Place your code here
PORTB=0x01;
delay_ms(5);
PORTB=0x02;
delay_ms(5);
PORTB=0x04;
delay_ms(5);
PORTB=0x08;
delay_ms(5);
};
}
 

Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…