For example, y(t) = A cos(w_n * t)
Hilbert( y(t) ) => applying -90 degree phase shift (exp(-j*pi/2)) to the positive frequency components and +90 degree phase shift (exp(j*pi/2)) to the negative frequency components.
y(t) can be rewritten as, y(t) = A cos(w_n * t)
= (A/2) [exp( j * w_n * t ) + exp ( -j * w_n * t )]
Hilbert
=> (A/2) [exp( j * w_n * t ) exp( -j*pi/2 ) + exp( -j * w_n * t ) exp( +j*pi/2 ) ]
= (A/2) [-j * exp( j * w_n * t ) + j * exp(- j * w_n * t )]
= (A/2) [2 sin(w_n * t )]
= A sin( w_n * t )
Now, y(t) + j Hilbert(y(t)) = A cos( w_n * t ) + j A sin( w_n * t )
= A [cos( w_n * t ) + j sin( w_n * t )]
= A exp( j * w_n * t)
If you take the absolute value of the above expression => A since absolute value of exp is 1.
=> A can be a constant or time varying
=> Envelope is detected.
Hope this helps.