go atlas
# Solar cell example number 7.
# This example is based on the reference:
#
# Korster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., and Blom, P.W.M.
# "Device model for the operation of polymer/fullerene bulk heterojunction
# solar cell", Physical Review B, Vol. 72, (2005) pp. 085205-1, 085205-9.
#
# Here we specify a mesh of one square meter ( 1um x 1e12 um).
# Since the structure is essentially one dimensional we ignore
# variations if x and z.
#
mesh width=1e11
x.mesh l= 0.0 spacing=0.01
x.mesh l=1.0 spacing=0.01
y.mesh l=0 spacing=0.005
y.mesh l=0.05 spacing=0.005
y.mesh l=0.15 spacing=0.005
y.mesh l=0.20 spacing=0.005
region num=1 material=organic x.min=0 x.max=1.0 y.min=0.05 y.max=0.15
elec num=1 name=anode x.min=0 x.max=1.0 y.min=0.0 \
y.max=0.05 material=ITO
elec num=2 name=cathode x.min=0 x.max=1.0 y.min=0.15 \
y.max=0.20 material=Aluminum
contact name=cathode workf=1.0
contact name=anode workf=2.34
material region=1 HOPN.GAMMA=5E7 HOPP.GAMMA=5E7 HOPP.BETA=1.5 HOPN.BETA=1.5
ODEFECTS ED=0.2 ND=1E20 SIGMAD=0.2 SIGAE=1E-16 SIGAH=1E-14 SIGDE=1E-14 SIGDH=1E-16
#We define the models. In this case we specify that we will solve for
# the singlet equation (singlet), accounting for Langevin recombination
# (langevin) and singlet exciton dissociation (s.dissoc).
#
model langevin singlet s.dissoc
#
# The parameter qe.exciton specifies the number of excitons generated for
# for each absorbed photon.
#
material qe.exciton=1.0
#
# This statement sets up some of the standard material parameters for the
# organic material (permittivity, affinity, band gap (difference between
# LUMO and HOMO) and densities of states.
#
material permi=3.4 affinity=1.0 eg300=1.34 nc300=2.5e19 nv300=2.5e19
#
# These statements set up parameters of the singlet exciton continuity
# equation in accordance with the reference.
#
material knrs.exciton=1.82694e6 lds.exciton=0.0 taus.exciton=1.0e20 rst.exciton=1.0
material a.singlet=1.32167 s.binding=0.28484
mobility mun0=2.5e-3 mup0=3.0e-4
#
# Here we use a C - interpreter function to define constant photogeneration
# rate throughout the device as suggested in the reference.
#
beam num=1 f.radiate=solarex07.lib
#
# This statement specifies that we want to examine the fundimental
# band parameters, conduction and valence band edges and electron
# and hole mobilities in the output structure files.
#
output band.par con.band val.band e.mob h.mob
#
# Parameters appearing on the method statement refer to numerical
# adjustments that are usually not required except to improve
# robustness or speed of solution.
# In this case we are specifying climit which controls the minimum
# resolvable carrier concentration and maxtrap which specifies the
# maximum number of cutbacks during any solve.
#
method climit=1e-4 maxtrap=0
#
# Next we obtain an initial static unbiassed solution
#
solve init
solve prev
#
# Here we turn on the optical source (sun). In this case the
# intensity has been calibrated to give the same results as were
# given in the reference.
#
solve b1=0.1
#
# Now we open a log file to capture the IV data.
# We then perform a voltage sweep to capture the IV characteristics
# of the device.
#
log outf=solarex_2.log
solve vanode=0 vstep=0.02 vfinal=1 name=Anode
#
# Finally we plot the results.
#
tonyplot solarex_1.log -overlay solarex_2.log -set solarex.set
#
quit
Error simulation:
[/B]ATLAS> beam num=1 f.radiate=solarex07.lib
Starting: C Interpreter module.
SCI System Error: [IO]:IFOpen(): Can't open file 'solarex07.lib'. System
diagnostic is: No such file or directory.
Error: Unable to compile C-Interpreter file: solarex07.lib.
Error on file IO