tmaxuser
Newbie level 4
I have small sequential circuit with two primary inputs(line1,line2). I want to generate test vectors for critical path. So I used DFT compiler to insert and stich scan chain and Primetime to get critical path. spf and synthesized verilog ouput files from DFT compiler and timing report from PT is used in TetraMax to generate following STIL file.
I have some questions regarding it.
1. why my clk,reset,test_si and test_se are in _pi? shold not just line1 and line2 are PI
2. is the sequence of test_si=10011 corresponds scan cells respectievely like b01.outp_reg.SI"=1, "b01.overflw_reg.SI"=0, "b01.\stato_reg[0] .SI"=0 !
"b01.\stato_reg[1] .SI"=1, "b01.\stato_reg[2] .SI" !=1 ;
3. If I want to observe the the transitions on critical path as indicated in PT in functional mode, should I keep my FFs in test_si(10011) state and then apply 00 on PIs for launch and capture clock ?
Thanks.
I have some questions regarding it.
1. why my clk,reset,test_si and test_se are in _pi? shold not just line1 and line2 are PI
2. is the sequence of test_si=10011 corresponds scan cells respectievely like b01.outp_reg.SI"=1, "b01.overflw_reg.SI"=0, "b01.\stato_reg[0] .SI"=0 !
"b01.\stato_reg[1] .SI"=1, "b01.\stato_reg[2] .SI" !=1 ;
3. If I want to observe the the transitions on critical path as indicated in PT in functional mode, should I keep my FFs in test_si(10011) state and then apply 00 on PIs for launch and capture clock ?
Thanks.
Code C - [expand] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 Signals { "line1" In; "line2" In; "reset" In; "clock" In; "test_si" In { ScanIn; } "test_se" In; "outp" Out; "overflw" Out; "test_so" Out { ScanOut; } } SignalGroups { "_pi" = '"clock" + "line1" + "line2" + "reset" + "test_si" + "test_se"'; // #signals=6 "_in" = '"line1" + "line2" + "reset" + "clock" + "test_si" + "test_se"'; // #signals=6 "all_inputs" = '"clock" + "line1" + "line2" + "reset" + "test_si" + "test_se"'; // #signals=6 "_po" = '"outp" + "overflw" + "test_so"'; // #signals=3 "_si" = '"test_si"' { ScanIn; } // #signals=1 "all_outputs" = '"outp" + "overflw" + "test_so"'; // #signals=3 "all_ports" = '"all_inputs" + "all_outputs"'; // #signals=9 "_clk" = '"clock" + "reset"'; // #signals=2 "_so" = '"test_so"' { ScanOut; } // #signals=1 "_out" = '"outp" + "overflw" + "test_so"'; // #signals=3 } Timing { WaveformTable "_allclock_launch_capture_WFT_" { Period '100ns'; Waveforms { "all_inputs" { 0 { '0ns' D; } } "all_inputs" { 1 { '0ns' U; } } "all_inputs" { Z { '0ns' Z; } } "all_inputs" { N { '0ns' N; } } "all_outputs" { X { '0ns' X; '40ns' X; } } "all_outputs" { H { '0ns' X; '40ns' H; } } "all_outputs" { L { '0ns' X; '40ns' L; } } "all_outputs" { T { '0ns' X; '40ns' T; } } "clock" { P { '0ns' D; '45ns' U; '55ns' D; } } "reset" { P { '0ns' D; '45ns' U; '55ns' D; } } } } WaveformTable "_multiclock_capture_WFT_" { Period '100ns'; Waveforms { "all_inputs" { 0 { '0ns' D; } } "all_inputs" { 1 { '0ns' U; } } "all_inputs" { Z { '0ns' Z; } } "all_inputs" { N { '0ns' N; } } "all_outputs" { X { '0ns' X; '40ns' X; } } "all_outputs" { H { '0ns' X; '40ns' H; } } "all_outputs" { L { '0ns' X; '40ns' L; } } "all_outputs" { T { '0ns' X; '40ns' T; } } "clock" { P { '0ns' D; '45ns' U; '55ns' D; } } "reset" { P { '0ns' D; '45ns' U; '55ns' D; } } } } WaveformTable "_allclock_launch_WFT_" { Period '100ns'; Waveforms { "all_inputs" { 0 { '0ns' D; } } "all_inputs" { 1 { '0ns' U; } } "all_inputs" { Z { '0ns' Z; } } "all_inputs" { N { '0ns' N; } } "all_outputs" { X { '0ns' X; '40ns' X; } } "all_outputs" { H { '0ns' X; '40ns' H; } } "all_outputs" { L { '0ns' X; '40ns' L; } } "all_outputs" { T { '0ns' X; '40ns' T; } } "clock" { P { '0ns' D; '45ns' U; '55ns' D; } } "reset" { P { '0ns' D; '45ns' U; '55ns' D; } } } } WaveformTable "_allclock_capture_WFT_" { Period '100ns'; Waveforms { "all_inputs" { 0 { '0ns' D; } } "all_inputs" { 1 { '0ns' U; } } "all_inputs" { Z { '0ns' Z; } } "all_inputs" { N { '0ns' N; } } "all_outputs" { X { '0ns' X; '40ns' X; } } "all_outputs" { H { '0ns' X; '40ns' H; } } "all_outputs" { L { '0ns' X; '40ns' L; } } "all_outputs" { T { '0ns' X; '40ns' T; } } "clock" { P { '0ns' D; '45ns' U; '55ns' D; } } "reset" { P { '0ns' D; '45ns' U; '55ns' D; } } } } WaveformTable "_default_WFT_" { Period '100ns'; Waveforms { "all_inputs" { 0 { '0ns' D; } } "all_inputs" { 1 { '0ns' U; } } "all_inputs" { Z { '0ns' Z; } } "all_inputs" { N { '0ns' N; } } "all_outputs" { X { '0ns' X; '40ns' X; } } "all_outputs" { H { '0ns' X; '40ns' H; } } "all_outputs" { L { '0ns' X; '40ns' L; } } "all_outputs" { T { '0ns' X; '40ns' T; } } "clock" { P { '0ns' D; '45ns' U; '55ns' D; } } "reset" { P { '0ns' D; '45ns' U; '55ns' D; } } } } } ScanStructures { ScanChain "1" { ScanLength 5; ScanIn "test_si"; ScanOut "test_so"; ScanInversion 0; ScanCells "b01.outp_reg.SI" "b01.overflw_reg.SI" "b01.\stato_reg[0] .SI" ! "b01.\stato_reg[1] .SI" "b01.\stato_reg[2] .SI" ! ; ScanMasterClock "clock" ; } } PatternBurst "_burst_" { PatList { "_pattern_" { } }} PatternExec { PatternBurst "_burst_"; } Procedures { "multiclock_capture" { W "_multiclock_capture_WFT_"; C { "all_inputs"=0NN0NN; "all_outputs"=XXX; } V { "_pi"=######; "_po"=###; } } "allclock_capture" { W "_allclock_capture_WFT_"; C { "all_inputs"=0NN0NN; "all_outputs"=XXX; } V { "_pi"=######; "_po"=###; } } "allclock_launch" { W "_allclock_launch_WFT_"; C { "all_inputs"=0NN0NN; "all_outputs"=XXX; } V { "_pi"=######; "_po"=###; } } "allclock_launch_capture" { W "_allclock_launch_capture_WFT_"; C { "all_inputs"=0NN0NN; "all_outputs"=XXX; } V { "_pi"=######; "_po"=###; } } "load_unload" { W "_default_WFT_"; C { "all_inputs"=0NN0NN; "all_outputs"=XXX; } "Internal_scan_pre_shift": V { "test_se"=1; } Shift { W "_default_WFT_"; V { "_clk"=P0; "_si"=#; "_so"=#; } } } } MacroDefs { "test_setup" { W "_default_WFT_"; C { "all_inputs"=NNNNNN; "all_outputs"=XXX; } V { "clock"=0; "reset"=0; } V { } } } Pattern "_pattern_" { W "_multiclock_capture_WFT_"; "precondition all Signals": C { "_pi"=000000; "_po"=XXX; } Macro "test_setup"; Ann {* full_sequential *} "pattern 0": Call "load_unload" { "test_si"=10011; } Call "allclock_launch" { "_pi"=P00001; } Call "allclock_capture" { "_pi"=P00000; } W "_multiclock_capture_WFT_"; Ann {* full_sequential *} "end 0 unload": Call "load_unload" { "test_so"=HHLLH; } }
Last edited by a moderator: