AugustineLeudar
Newbie level 4
- Joined
- May 3, 2013
- Messages
- 5
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1,281
- Activity points
- 1,337
the reason for such high input impedance is to match the input impedance of the plant (yes we're measuring electrical signals in plants) - apparently it shoud be as high as possible - I dont really get that - surely the high input impedance would block the tiny signal we're trying to measure
Since I found out we all share plant DNA in our makeup, and that some static plant-like life is actually animal, I would not be too concerned about that.
Regarding the high impedance. Do not confuse that with "having to fight its way through a resistance". You cannot get any information from anything without also changing it a bit, but if you can take so little that you do not substantially load the thing to collapse the voltage significantly, then your sample is of a representative accuracy.
Nerve cells are not power stations! The voltage they have can only source a tiny current without collapse.
Connecting into an amplifier that will accept and amplify that tiny current without the amplifier input itself being an unacceptable load, means that the input appears as if it presents a very high impedance to the plant. The voltage available divided by the current gives a value in Giga-Ohms.
I would not be too eagar to use "as high as possible" as a design philsopy. I would go for "as high as needed, and not more". The advantages of finding the effective tradeoff are many. 500Meg-Ohm or 1 Giga-Ohm may still be high enough for the plant sample, and much easier to design with and find devices for, and cope with noise. at 10Giga-Ohm, you have to build it on glass or PTFE, and worry about surface contamination leakage. It gets harder to tell what is circuit and what is substrate.
If everything is computer based, why don't you control the LED through LabView or a similar tool?
I was in fact referring to good old electrophysiology where signal processing has been performd by racks of slide-in modules. In this technique, there's no problem to tap an amplified signal using a T-connector, connect a trigger unit and light (or shut-off) a LED.
In the present case, we need to know about available auxilary signal outputs of your amplifier front end, and your options to assemble some electronic components.
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?