Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

structural 8x8 bit multiplier

Status
Not open for further replies.

dean07

Newbie level 4
Newbie level 4
Joined
Mar 15, 2011
Messages
6
Helped
0
Reputation
0
Reaction score
0
Trophy points
1,281
Activity points
1,328
does anyone have verilog code for 8x8 bit multiplier??? Please share...TQ
 

i'm sorry, but i'm looking for 'structural' design of multiplier or to be exact an '8*8 bit array multiplier'. another thing is that would it be possible for me to design 10*6bit array multiplier?? TQ

---------- Post added at 16:12 ---------- Previous post was at 16:09 ----------

i'm sorry, but i'm looking for 'structural' design type of 8*8bit multiplier such as 8*8bit array multiplier...TQ...oh another thing is that really possible for me to design 10*6bit array multiplier???? TQ

---------- Post added at 16:14 ---------- Previous post was at 16:12 ----------

i'm sorry but could u give 'structural' design of multiplier or to be exact is 8*8bit array multiplier?? Tq
 


8×8 bitwallace tree multiplier:
add submodules with same module name adder_full and adder_half in same folder.

module multiplier_wallace(
output reg [15:0] product,
input [7:0] multiplicand, multiplier,
input clock, clear);

integer i, j ;
wire [63:0] s ,c ;
reg p [7:0][7:0];


always@(multiplier, multiplicand)
begin



for (i = 0; i <= 7; i = i + 1)
for (j = 0; j <= 7; j = j + 1)
p[j] <= multiplicand[j] & multiplier;

end
adder_half ha_11 ( .sum(s[0]), .carry(c[0]), .a(p[1][0]), .b( p[0][1]) );
adder_full fa_11 ( .sum(s[1]), .carry(c[1]), .a(p[2][0]), .b( p[1][1]), .cin( p[0][2]) );
adder_full fa_12 ( .sum(s[2]), .carry(c[2]), .a(p[3][0]), .b( p[2][1]), .cin( p[1][2]) );
adder_full fa_13 ( .sum(s[3]), .carry(c[3]), .a(p[4][0]), .b( p[3][1]), .cin( p[2][2]) );
adder_full fa_14 ( .sum(s[4]), .carry(c[4]), .a(p[5][0]), .b( p[4][1]), .cin( p[3][2]) );
adder_full fa_15 ( .sum(s[5]), .carry(c[5]), .a(p[6][0]), .b( p[5][1]), .cin( p[4][2]) );
adder_full fa_16 ( .sum(s[6]), .carry(c[6]), .a(p[7][0]), .b( p[6][1]), .cin( p[5][2]) );
adder_half ha_12 ( .sum(s[7]), .carry(c[7]), .a( p[7][1]), .b ( p[6][2]) );



adder_half ha_21 ( .sum( s[8] ), .carry( c[8 ]), .a( p[1][3]), .b( p[0][4]) );
adder_full fa_21 ( .sum( s[9] ), .carry( c[9 ]), .a( p[2][3]), .b( p[1][4]), .cin( p[0][5]) );
adder_full fa_22 ( .sum( s[10]), .carry( c[10]), .a( p[3][3]), .b( p[2][4]), .cin( p[1][5]) );
adder_full fa_23 ( .sum( s[11]), .carry( c[11]), .a( p[4][3]), .b( p[3][4]), .cin( p[2][5]) );
adder_full fa_24 ( .sum( s[12]), .carry( c[12]), .a( p[5][3]), .b( p[4][4]), .cin( p[3][5]) );
adder_full fa_25 ( .sum( s[13]), .carry( c[13]), .a( p[6][3]), .b( p[5][4]), .cin( p[4][5]) );
adder_full fa_26 ( .sum( s[14]), .carry( c[14]), .a( p[7][3]), .b( p[6][4]), .cin( p[5][5]) );
adder_half ha_22 ( .sum( s[15]), .carry( c[15]), .a( p[7][4]), .b ( p[6][5]) );



adder_half ha_31 ( .sum( s[16]), .carry( c[16]), .a( c[0]) , .b ( s[1]) );
adder_full fa_31 ( .sum( s[17]), .carry( c[17]), .a( c[1]) , .b ( s[2]) , .cin ( p[0][3]) );
adder_full fa_32 ( .sum( s[18]), .carry( c[18]), .a( c[2]) , .b ( s[3]) , .cin ( s[8] ) );
adder_full fa_33 ( .sum( s[19]), .carry( c[19]), .a( c[3]) , .b ( s[4]) , .cin ( s[9] ) );
adder_full fa_34 ( .sum( s[20]), .carry( c[20]), .a( c[4]) , .b ( s[5]) , .cin ( s[10]) );
adder_full fa_35 ( .sum( s[21]), .carry( c[21]), .a( c[5]) , .b ( s[6]) , .cin ( s[11]) );
adder_full fa_36 ( .sum( s[22]), .carry( c[22]), .a( c[6]) , .b ( s[7]) , .cin ( s[12]) );
adder_full fa_37 ( .sum( s[23]), .carry( c[23]), .a( c[7]) , .b ( p[7][2]), .cin ( s[13]) );




adder_half ha_41 ( .sum( s[24]), .carry( c[24]), .a( c[9] ) , .b( p[0][6]) );
adder_full fa_41 ( .sum( s[25]), .carry( c[25]), .a( c[10]) , .b( p[1][6]), .cin( p[0][7]) );
adder_full fa_42 ( .sum( s[26]), .carry( c[26]), .a( c[11]) , .b( p[2][6]), .cin( p[1][7]) );
adder_full fa_43 ( .sum( s[27]), .carry( c[27]), .a( c[12]) , .b( p[3][6]), .cin( p[2][7]) );
adder_full fa_44 ( .sum( s[28]), .carry( c[28]), .a( c[13]) , .b( p[4][6]), .cin( p[3][7]) );
adder_full fa_45 ( .sum( s[29]), .carry( c[29]), .a( c[14]) , .b( p[5][6]), .cin( p[4][7]) );
adder_full fa_46 ( .sum( s[30]), .carry( c[30]), .a( c[15]) , .b( p[6][6]), .cin( p[5][7]) );
adder_half fa_47 ( .sum( s[31]), .carry( c[31]), .a( p[7][6]), .b ( p[6][7]) );



adder_half ha_51 ( .sum( s[32]), .carry( c[32]), .a( s[17]) , .b( c[16]) );
adder_half fa_51 ( .sum( s[33]), .carry( c[33]), .a( s[18]) , .b( c[17]) );
adder_full fa_52 ( .sum( s[34]), .carry( c[34]), .a( s[19]) , .b( c[18]), .cin( c[8] ) );
adder_full fa_53 ( .sum( s[35]), .carry( c[35]), .a( s[20]) , .b( c[19]), .cin( s[24]) );
adder_full fa_54 ( .sum( s[36]), .carry( c[36]), .a( s[21]) , .b( c[20]), .cin( s[25]) );
adder_full fa_55 ( .sum( s[37]), .carry( c[37]), .a( s[22]) , .b( c[21]), .cin( s[26]) );
adder_full fa_56 ( .sum( s[38]), .carry( c[38]), .a( s[23]) , .b( c[22]), .cin( s[27]) );
adder_full fa_57 ( .sum( s[39]), .carry( c[39]), .a( s[14]) , .b( c[23]), .cin( s[28]) );
adder_half ha_52 ( .sum( s[40]), .carry( c[40]), .a( s[15]) , .b ( s[29]) );
adder_half ha_53 ( .sum( s[41]), .carry( c[41]), .a( p[7][5]), .b ( s[30]) );


adder_half ha_61 ( .sum( s[42]), .carry( c[42]), .a( s[33]) , .b( c[32]) );
adder_half ha_62 ( .sum( s[43]), .carry( c[43]), .a( s[34]) , .b( c[33]) );
adder_half ha_63 ( .sum( s[44]), .carry( c[44]), .a( s[35]) , .b( c[34]) );
adder_full fa_61 ( .sum( s[45]), .carry( c[45]), .a( s[36]) , .b( c[35]), .cin( c[24]) );
adder_full fa_62 ( .sum( s[46]), .carry( c[46]), .a( s[37]) , .b( c[36]), .cin( c[25]) );
adder_full fa_63 ( .sum( s[47]), .carry( c[47]), .a( s[38]) , .b( c[37]), .cin( c[26]) );
adder_full fa_64 ( .sum( s[48]), .carry( c[48]), .a( s[39]) , .b( c[38]), .cin( c[27]) );
adder_full fa_65 ( .sum( s[49]), .carry( c[49]), .a( s[40]) , .b( c[39]), .cin( c[28]) );
adder_full fa_66 ( .sum( s[50]), .carry( c[50]), .a( s[41]) , .b( c[40]), .cin( c[29]) );
adder_full fa_67 ( .sum( s[51]), .carry( c[51]), .a( s[31]) , .b( c[41]), .cin( c[30]) );
adder_half ha_64 ( .sum( s[52]), .carry( c[52]), .a( p[7][7]), .b ( c[31]) );



adder_half ha_71 ( .sum( s[53]), .carry( c[53]), .a( s[43]) , .b( c[42]) );
adder_full fa_71 ( .sum( s[54]), .carry( c[54]), .a( s[44]) , .b( c[43]), .cin ( c[53]) );
adder_full fa_72 ( .sum( s[55]), .carry( c[55]), .a( s[45]) , .b( c[44]), .cin ( c[54]) );
adder_full fa_73 ( .sum( s[56]), .carry( c[56]), .a( s[46]) , .b( c[45]), .cin ( c[55]) );
adder_full fa_74 ( .sum( s[57]), .carry( c[57]), .a( s[47]) , .b( c[46]), .cin ( c[56]) );
adder_full fa_75 ( .sum( s[58]), .carry( c[58]), .a( s[48]) , .b( c[47]), .cin ( c[57]) );
adder_full fa_76 ( .sum( s[59]), .carry( c[59]), .a( s[49]) , .b( c[48]), .cin ( c[58]) );
adder_full fa_77 ( .sum( s[60]), .carry( c[60]), .a( s[50]) , .b( c[49]), .cin ( c[59]) );
adder_full fa_78 ( .sum( s[61]), .carry( c[61]), .a( s[51]) , .b( c[50]), .cin ( c[60]) );
adder_full fa_79 ( .sum( s[62]), .carry( c[62]), .a( s[52]) , .b( c[51]), .cin ( c[61]) );
adder_half ha_72 ( .sum( s[63]), .carry( c[63]), .a( c[52]), .b ( c[62]) );

always@(posedge clock, negedge clear)
if(!clear) product <= 16'b0;
else product <= {s[63 : 53],s[42],s[32],s[16],s[0],p[0][0]};

endmodule
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top