Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
Check
VHDL samples
and
VHDL coding tips and tricks: A VHDL Function for finding SQUARE ROOT
Also this may help
https://www.edaboard.com/threads/47326/#post215114
Alex
----------------------------------------------------------------------------------
-- Company: Instituto Superior Técnico
-- Prof: Paulo Alexandre Crisóstomo Lopes
-- [email]paulo.lopes@inesc-id.pt[/email]
--
-- Create Date: 15:23:57 01/31/2012
-- Design Name:
-- Module Name: sqrt - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description: VHDL implementation of a 32 bit floating point square root.
-- Float format: sign | 8 bits exponent + 127 | 23 bits normalized mantissa.
-- Uses IEEE 754-1985, with the following exceptions.
-- NaN is not implemented. Operations that would result in NaN
-- have a non definied result.
-- An exponent of all zeros will always mean zero, and an
-- exponent of all ones will always mean infinity.
-- Rounding is round nearest ties away from zero.
-- Non normalized numbers are not implemented.
--
-- Dependencies:
--
-- Revision: 1.0
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- use STD.textio.all; -- basic I/O
-- use IEEE.std_logic_textio.all; -- I/O for logic types
entity sqrt is
Port ( x : in STD_LOGIC_VECTOR (31 downto 0);
y : out STD_LOGIC_VECTOR (31 downto 0));
end sqrt;
architecture Behavioral of sqrt is
function bit2bit_sq(x: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
variable y : STD_LOGIC_VECTOR(2*x'left+1 downto 0);
-- Returns x^2 by intercalating zeros in the argument,
-- were x has only one bit different from zero.
begin
for i in x'left downto 0 loop
-- x'right must be zero
y(2*i):=x(i);
y(2*i+1):='0';
end loop;
return y;
end;
begin
process(x)
variable x_mantissa : STD_LOGIC_VECTOR (22 downto 0);
variable x_exponent : STD_LOGIC_VECTOR (7 downto 0);
variable x_sign : STD_LOGIC;
variable y_mantissa : STD_LOGIC_VECTOR (22 downto 0);
variable y_exponent : STD_LOGIC_VECTOR (7 downto 0);
variable y_sign : STD_LOGIC;
variable ix: STD_LOGIC_VECTOR (25 downto 0);
variable a : STD_LOGIC_VECTOR (51 downto 0);
variable biti : STD_LOGIC_VECTOR (25 downto 0);
variable r : STD_LOGIC_VECTOR (51 downto 0);
variable rt : STD_LOGIC_VECTOR (52 downto 0);
-- variable my_line : line; -- type 'line' comes from textio
begin
x_mantissa := x(22 downto 0);
x_exponent := x(30 downto 23);
x_sign := x(31);
y_sign := '0';
if (x_exponent="00000000") then -- zero
y_exponent := (others=>'0');
y_mantissa := (others=>'0');
elsif (x_exponent="11111111") then -- infinity
y_exponent := (others=>'1');
y_mantissa := (others=>'0');
else
if (x_exponent(0)='1') then -- exponent-127 is even
y_exponent := '0' & x_exponent(7 downto 1) + 64;
ix := "01" & x_mantissa & '0';
else -- exponent-127 is odd
-- shit mantissa one to the left and subtract one from x_exponent
y_exponent := '0' & x_exponent(7 downto 1) + 63;
ix := '1' & x_mantissa & "00";
end if;
-- mantissa is m=ix/2^24
-- (one zero was added to the right to make the power even)
-- let the result of the integer square root algorithm be iy (26 bits)
-- iy = sqtr(ix)*2^13
-- resulting that sqrt(m)=iy/2^25
-- Integer input N bits square root algorithm:
-- r is be the reminder, r=ix-z^2, and z(N+1) the result,
-- with bit(N)=1/2^(N/2), and bit(n)=2^(N/2-n)
-- Test each bit in the result, from the most significative to the least
-- significative: n goes from zero no N.
-- if bit is one: r(n+1) = ix - (z(n)+bit(n))^2 =
-- r(n) - 2z(n)bit(n) - bit(n)^2
-- else r(n+1) = r(n)
-- bit will be one if the resulting remainder is positive.
-- making a(n) = 2z(n)bit(n), one has,
-- if bit is one: a(n+1) = 2(z(n)+bit(n))bit(n)/2 =
-- a(n)/2+bit(n)^2
-- else a(n+1) = a(n)/2
-- and a(N+1) = 2z(N+1)/2^(N/2+1) = z(N+1)/2^(N/2)
-- VHDL Implementation
a := (others=>'0');
biti := "10" & x"000000"; -- 2^(25)
-- biti has the bit being evaluated equal to one
r(51 downto 26):= ix; -- r is in Q26
r(25 downto 0):=(others=>'0');
for i in 25 downto 0 loop
rt := ('0' & r) - ('0' & (a or bit2bit_sq(biti)));
-- trial for the new value for the reminder
a := '0' & a(51 downto 1); -- srl
if (rt(52)='0') then -- rt>=0
r := rt(51 downto 0);
a := a or bit2bit_sq(biti); -- the adder is safelly replaced by an or
end if;
biti := '0' & biti(25 downto 1); -- srl 1
end loop;
a(24 downto 2) := a(24 downto 2)+a(1); -- round
-- even for ix = all '1' a will not oveflow
-- a is the result
y_mantissa := a(24 downto 2);
end if;
y(22 downto 0) <= y_mantissa;
y(30 downto 23) <= y_exponent;
y(31) <= y_sign;
end process;
end Behavioral;