mbroell
Newbie level 3
cst 500thz
Dear users,
using transient solver in CST Microwave Studio I have the following problem:
I would like to calculate S-Parameters through a metallic periodic structure in the visible/near infrared. I use two ports in a waveguide to excite the signal and to detect the reflected/transmitted intensity. Unfortunately S-parameters change when I set the lower frequency in "frequency range" to 0THz. If the lower frequency is finite (i.e. 1 or 250THz) no change in S-Parameters is visible. On the other hand I have heard, that simulations run faster and more accurately when setting the lower frequency limit to 0 THz.
So my question is: Which results can I trust more?
Attached to this post you can find the simulated S-parameters for a lower frequency of 0Thz and 1THz respectively. The upper frequency was 500THz. Especially in the region of 300THz which is of special interest in my case, large differences in the S-parameters appear.
Thanks a lot for your support,
Markus.
Dear users,
using transient solver in CST Microwave Studio I have the following problem:
I would like to calculate S-Parameters through a metallic periodic structure in the visible/near infrared. I use two ports in a waveguide to excite the signal and to detect the reflected/transmitted intensity. Unfortunately S-parameters change when I set the lower frequency in "frequency range" to 0THz. If the lower frequency is finite (i.e. 1 or 250THz) no change in S-Parameters is visible. On the other hand I have heard, that simulations run faster and more accurately when setting the lower frequency limit to 0 THz.
So my question is: Which results can I trust more?
Attached to this post you can find the simulated S-parameters for a lower frequency of 0Thz and 1THz respectively. The upper frequency was 500THz. Especially in the region of 300THz which is of special interest in my case, large differences in the S-parameters appear.
Thanks a lot for your support,
Markus.