leohart
Full Member level 4
Hi,when we consider a miller capcitance C connect between input and output,what we do is remove the capcitance and calculate the dc gain -A then the miller capcitance at the input is effectively (1+A)C.
Here comes my question,why should we use dc gain(so can we remove miller capcitance when calculating gain) here?If the frequency is high enough,the gain will change a lot if we remove the miller capcitance,so does it mean the effective miller capcitance equals (1+A)C seen at input only valids at low frequency?What should we do if we are dealing with very high F?
Here comes my question,why should we use dc gain(so can we remove miller capcitance when calculating gain) here?If the frequency is high enough,the gain will change a lot if we remove the miller capcitance,so does it mean the effective miller capcitance equals (1+A)C seen at input only valids at low frequency?What should we do if we are dealing with very high F?