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Weak inversion

• Behaviour and model of MOS transistors in weak inversion [1,2,3].

• Examples of analog circuits.

• Exploratory analysis of weak inversion logic [4,5]. 
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W,L width, length of the channel

Cox gate capacitance per unit area

UT  = kT/q  ( = 26 mV at 300°K)
V = local non-equilibrium voltage in channel : channel voltage

(quasi-Fermi potential of electrons)
• at source end of channel:  V = VS
• at drain end  of  channel: V = VD

Qi local mobile inversion charge in channel (electrons)

VT0 gate threshold voltage for V=0.
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(µ=mobility)with    β = µCox
W
L

slope -n

- Qi /Cox

VS VD

ID
β

VG const.

V

ID =  β      -        dV∫
VS

VD
Qi

Cox
• Given by:

DRAIN CURRENT

• Weak inversion already possible for VS=0 if VG<VT0 ("subthreshold")

VG-VT0

0

Pinch-off voltage  VP ≅ 
VG - VT0

n

strong inversion,

VP -V
UT

weak inversion:         = 2nUT exp
-Qi
Cox

exponential

slope factor  n =1.2 to 1.6
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-Qi /Cox

V
VP<0

0

slope -n ID/β

VD
VS

-Qi /Cox

V

VG-VT0>0

VP>0

0

slope -n ID/β

VDVS

DRAIN CURRENT IN WEAK INVERSION

(vertical axis magnified)

VG-VT0<0
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VVD

IR

reverse
current IR

-Qiβ/Cox

VVS

IF

forward
current IF

-Qiβ/Cox

V

ID

=
Drain current ID

VS VD

FORWARD AND REVERSE CURRENTS

-Qiβ/Cox

ID(VG,VS,VD) = F(VG,VS) - F(VG,VD) = IF - IR

• Drain current is the superposition of independent and symmetrical
effects of source and drain voltages.

• basic  property of long-channel transistors, independent of current [6].

• Transistor saturated if IR«IF, then ID=IF.
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DRAIN CURRENTEXPRESSION IN WEAK INVERSION

VD
UT

-VS
UT

-
nUT

VG-VT0
ID = IS e             (e         - e        )

IF   IR

for IF and IR « IS 

thus:    IF,R = IS e
VP -VS,D

UT• -Qi/Cox = 2nUT e
VP-V
UT « 2nUT

 • Introducing  VP ≅ (VG-VT0)/n  and ID =IF - IR,  this yields: 

• Definition: specific current of the transistor:         IS = 2nβUT 2

(10 to 300 nA for W=L)
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ID~ e
VS
UT

-nUT

VG
ID ~  e ~ 1-e

VD-VS
UT

-ID

slo
pe 1

log
ID
ID0

VS
UT

-

log
ID
ID0

slope 1/n

VS, VD const.

VG
UT

• transfer from gate 

1

0

5%

VD-VS
UT

ID /IF

saturation

0   1   2   3   4   5   6

• output

FORWARD CHARACTERISTICS IN WEAK INVERSION

VD
UT

-
VS
UT

-nUT

VG
ID = ID0 e          ( e         - e          )         

• transfer from source
         

minimum VDSsat exponential, slope 1/n exponential, slope 1

where ID0=IS e
-
VT0
nUT

VG, VD const.VG,VS = const.
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CONTINUOUS MODELS WEAK-STRONG INVERSION

a. From charge analysis [7,8]:

VP -VS,D
UT

= 1 + 4          -1 
IF,R
IS

+ln
2

1 + 4          -1 
IF,R
IS

IF,R
IS

cannot be inverted to express IF,R(VP,VS,D) 

b. Interpolation formula: 
VP -VS,D

2UT
= ln2 (1 + e              )

Both converge asymptotically towards:

IF,R
IS

= e for VP -VS,D «UT  (weak inversion)
 

VP -VS,D
UT

VP -VS,D
2UT

IF,R
IS

= for VP -VS,D »UT  (strong inversion) 
2

• Only 3 parameters: VT0, n  (inside VP) and IS (or β) to model the current
from weak to strong inversion.

 
 

 
 

[9]
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• Definition: Inversion coefficient:  IC = the larger of  IF/IS and IR/IS  

 
 

 
 
2VDSsat

2UT
strong inversion: IC =                » 1

weak inversion: IC « 1 

moderate inversion: IC ≅ 1 

1

b

a

weak

strong102

10-2

10-4
-20 20 40 600

voltage

IF,R
IS

cu
rr

en
t

VP -VS,D
UT

CONTINUOUS MODELS WEAK-STRONG INVERSION

with:

VP =(VG-VT0)/n

ID = IF - IR
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strong inv.
0.01 0.1 1 10

0.2
0

0.4
0.6
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1.0

a

b

weak moderate

strong inv.asymptote:

TRANCONDUCTANCE FROM WEAK TO STRONG INVERSION

• Transonductance gm from gate in saturation    

gm
ID

nUT

model

model

IC=ID/IS

gm=  2βID/n

weak inversion asymptote: gm=ID/(nUT)

100

• gm/ID decreases with increasing inversion coefficient IC.
• gm/ID is maximum in weak inversion.
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+ exponential :

+ min. VDSsat

+ min. gate voltage

+ min. gate capacitance

+ max. gm/ID :

+ gm(ID) linear

+ gm independent of β

SUMMARY OF FEATURES OF WEAK INVERSION

µUT
2πL2

VD
UT

-
VS
UT

-
VG-VT0

nUTID = IS e             ( e         - e         )
• Large-signal DC model:

+ max. intrinsic voltage gain
+ min. input noise density for given ID
+ max. bandwidth for given kT/C and ID
+ min. input offset voltage
– max. output noise current for given ID
– max. current mismatch :

dominated by VT -mismatch:  

⇒

+ max. Ion/Ioff for given voltage swing
+ translinear circuits and log domain filters

– intermodulation in RF front ends
⇒

–

– Low speed: fT≅

∆ID
ID

∆VT0
nUT

=
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•  Weak inversion approached for constant temperature T.

VDSsat
2UT

 
 

2 
 IC =       decreased by k2

EVOLUTION OF IC WITH SCALED-DOWN PROCESSES

• Scaling-down of process:

• dimension scaling by factor k

• all voltages decreased by k, except UT:

- analog circuits: VDSsat must be decreased by k, thus  

- digital circuits: VB decreased by k, thus

VB -VT0
2nUT

 
 

2
ICon =                decreased by k2

•  Transition frequency: fT = increased by k
µVDSsat

2πL2

- weak inversion with L=100nm : fT >4 GHz
 

 
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T1

T2 T3 T4

T5

II

VRVDS1

VD2

VDS2

substrate

VDS1 = UT ln [ P (1+ 2M)]

for  P = M = 8 : VDS1=5UT, 

LOW-VOLTAGE CASCODE IN WEAK INVERSION

• Model in weak inversion yields:

VDSsat = 4 to 6UT per transistor

thus VD2 = 10UT sufficient to saturate T1 and T2

= P   and =M
β2
β3

β4
β5

All transistors in weak inversion with: 

[2]
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EXTRACTION OF UT AND CURRENT REFERENCE

VR = RI2 =UT lnK 

I2

I1Q (unstable)

P(stable)

mirror T1-T2

m
irr

or T
3

-T 4

sl
op

e 
K

T1

T2≡KT1
T5

T4≡T3

T3
T6

source

sink

I1 I2

R VR

V+

V-

• For T1 and T2 in weak inversion:

• Self-starting if leakage of T2 larger than that of T1.

[1]
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T4

V-

T1

T3

T5

T6
V+

T7

T9

I
I

I

T2

I

VR

T8

CURRENT GENERATION  WITHOUT RESISTOR

• Resistor replaced by transistor T8 in conduction [10]:

• T2 and T1 in weak inversion with
       β2 = Kβ1

• T6 =T3 =T4 =T7  and T5 = T1

• T8  and T9 in strong inversion with
       β8 =Aβ9 (A»1 to have T8 in conduction)

 I = 2nβ8UT.Aln2K = IS8.Aln2K2yields:

• Reference current I proportional to specific current IS8

• Useful to bias transistors at inversion coef.IC independently of process.

• If mobility ~ T -2, then compensation by UT : I ~ IS  independent of T 2
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MOS TRANSISTOR OPERATED AS A PSEUDO-RESISTOR

Consequence of basic property ID = F(VS) - F(VD):

• Networks of transistors with same gate voltage are

• linear with respect to currents
• thus equiv. for currents to a resistive prototype, with Gi=1/Ri~ISi
• ground in res. prototype correspond to saturated transistors.
• example of application: current-mode linear attenuator (e.g. R-2R).

• In weak inversion:
• linearity of currents even for different gate voltages

with Gi = 1/Ri ~ ISi exp 
VGi
nUT

[11,12,13,6]
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CALCULATION OF HARMONIC MEAN 

G1

GN

Gk

ground 0

V-
G1

Gk

GN
IkIN

I1
G

I

I

Ik
0*

V-

Gk*

G1*

IN

I1

0* 0*

0*
G1*

Gk*

GN*GN*

resistive prototype pseudo-resistive version
(0*=pseudo-ground)

• Series combination of Gi : G = 1
Σ1/Gi

• Same voltage across G and Gi, thus I =           = 1
Σ1/Ii

Ihm
N

harmonic mean

• Can be used as a fuzzy AND gate.

simple example of pseudo-R network in weak inversion: 

[14,13]
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Ii

VBEi

[15]

With bipolar transistors:

∑VBEi  =  ∑VBEi

with: VBEi= UT ln
Ii
Isi

+ and - directions of BEi

TRANSLINEAR CIRCUITS

∏Ii     ∏Isi

∏Ii     ∏Isi
= = λ

With MOS transistors in weak inversion:

Ii

VGi

VSi
Ii -1

common substrate

∑(VGi - VSi) = ∑(VGi - VSi) 

with:

• Otherwise: separate wells connected to
sources to impose VSi = 0

• Precision degraded by VT0 mismatch

• If + and - are alternated then: pairs of equal
VGi both sides of equation:

VGi ⇒ VGi /n for each pair,
and then 

[16,17]

+

+

+
+

+

       -VSi  = UT ln
Ii

ID0i

+

+

++

(any sequence)

VGi
n
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BASIC CONSIDERATIONS FOR WEAK INVERSION LOGIC

• Dynamic power consumption: Pdyn = f C ∆V VB

  • exponential in VGS, with maximum gm/ID, thus:
- minimum swing ∆V for given Ion/off, hence

- minimum Pdyn for given Ioff

• Assumptions on process:

1. Threshold VT0 close to 0 (VS cannot be too negative).

2. Triple well (true twin well): separate local p and n substrates

  - adjustment of I0 by VS for n- and p-channel.

supply voltage

logic swing
• Weak inversion model can be rewritten as

ID = I0 e           1 - e-
VGS
nUT

 
 

 
 

VDS
nUT

- with:  I0 = IS e
-    adjustable by VS. 
VT0+(n-1)VS

nUT

[5]
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Vi Vo

Ip

In
VB

V+

V-

inverter

STABLE STATES OF CMOS FLIP-FLOP

• Simplifying assumptions: nn=np=n, I0n=I0p=I0

0 2 4 6

8

2

4

6

8

stable

sta
ble

metastable

vL (low)

vH (high)
sw

in
gvB

hi
gh

 a
nd

 lo
w

 lo
gi

c 
st

at
es

n=1.6

normalized supply voltage vB

• Normalized voltages vk=Vk /UT

• bistable for VB > 1.91UT

• 95% swing for VB = 4UT

C
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STATIC CURRENT AT LOGIC STATES

• Since VL=VB-VH >0,  static current Istat at each state is larger than I0 

0.8

0.9

1.0

1.1

1.2

1 2 4 6 8

Istat
I0

normalized supply voltage  vB

n = 1.6

• Istat <4% above I0 for vB ≥ 4 : the difference can be neglected thus:

•  Static power :          Pstat ≅ I0VB 
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Vo2 Vo4 Vo6 Vo8VH
VL

0 1 2 3
0

1

2

3

4

normalized time t /T0

von=vin+1 n = 1.6
vB = 4

vo1

vo2

vo3

vo4

vo5

vo6

vo7

vo8

vH

vL

2Td/T0

• Characteristic time : T0=CUT/I0
• Transitions become standard after a few stages

• Normalized delay time Td/T0 only depends on VB and n. 

2Td• Chain of inverters

STANDARD TRANSITIONS IN HOMOGENEOUS SYSTEM
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DELAY TIME FOR STANDARD TRANSITIONS

3 4 5 6 7 8 9 10 11

1

0.1

0.01

n = 1.6

normalized supply voltage vB

• Approximation:

Td ≅         ≅  CVB
Ion

CVB
I0eVB/nUT

Td
T0

• Td decreases approximately exponentially with increasing VB.

or    I0 ≅         e-VB/nUT
CVB
Td

(for calcul. of Pstat)
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PROPORTION OF SHORT-CIRCUIT CHARGE
FOR STANDARD TRANSITIONS

3 10
0

10-2

4 5 6 7 8 9

Qsc
QC

n = 1.6

normalized supply voltage vB

• Short-circuit charge Qsc < 1.4% capacitor charge QC : negligible, thus:

• dynamic power Pdyn ≅ fQCVB ≅ fCVB

• with static power Pstat = IstatVB ≅ I0VB 

2
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0
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PTd
 CUT

2
α=1 0.5

0.2
0.1
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ct

n =1.6

normalized supply voltage vB

POWER-DELAY PRODUCT

• Definition: duty factor  α = 2f Td ≤ 1

• Then, total power P = Pdyn + Pstat ⇒   P =          vB(α/2 + e-vB/n)     CUT
Td

2

• Pdyn dominates for large α  ⇒ min. VB for min. PTd 

• Pstat dominates for small α ⇒ increase VB to increase Ion/Ioff

• proportion of time during which the gate is in transition.

2 
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2 4 6 8 10 12 14
1

10

100

1000

normalized supply/slope factor vB/n

no
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ed
 to

ta
l p

ow
er

 

1

10-2
10-3 10-4

10-4

10-3

10-2
e-3

e-3

Pdyn

Pstat

parameter α

Pdyn for VB=25nUT ≅1VP/f
C(nUT)2 

POWER/FREQUENCY RATIO

• By re-using α =2f Td :     P/f = C(nUT)2 (vB/n)2(1+     e-vB/n)   
α
2

• VBopt and Pmin increase for decreasing α
• At Pmin : Pdyn»Pstat

• Increasing I0 does not allow to reduce VB significantly for Td const.

1

• For α > 5%,  power reduction by >20 compared to Pdyn at 1V. 
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MAXIMUM SPEED 

• Since Td ≅             and Ionmax ≅ ICon IS  (inv. coeff* spec. current), thus:  
CVB
Ion

Tdmin ≅  C
IS

VB
ICon

Tdmin(weak) ≅ VB C
IS

process• Limit of weak inversion:  ICon ≅1, thus  

• Higher speed can only be obtained by entering moderate or strong inv.
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10
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10210110-1 1 1030
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40
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"on" inv. coeff. ICon

param.
Ion/Ioff

∆VGS
nUT  

V
G

S
 s

w
in

g

EFFECT OF ENTERING MODERATE AND STRONG INVERSION

•  More voltage swing needed
to obtain Ion/Ioff

• from continuous current model:

•  Degeneration of logic states: 

• reduction of logic swing
• large increase of static current Istat
• loss of bistability
• more supply voltage needed.

0 ICon

vH

2 4
0

1

3

4

3

vL

1

2
logic
swing

n=1.6
vB=4

Istat
IS

(using continuous model of ID)
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NUMERICAL RESULTS

• Simple inverter replaced by 3-input NAND-gate:
• approx. equivalent to inverter with

L = 3-time that of n-ch transistor

C = 6-time that of min. inverter
(includes Cinterconnect=C/2).

VBC

        parameter                    process A   process B  unit

min. channel  length Lmin 500 180 nm
equiv. spec. current IS 200 400 nA
equiv. load capac. C 20 4 fF
specific energy C(nUT)2 28 4.2 aJ
P/f for α=1 VB=4UT 228 44 aJ
(P/f)min for α=0.01 and VBopt=6nUT 1.46 0.22 fJ
Pdyn/f at VB=1V 20 4 fJ
fmax1 for α=1 and VB=4UT 50 500 MHz
fmax2 for α=0.01 and VB=VBopt 0.22 2.56 MHz
Pmin at fmax2 32.5 56.3 nW
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PRACTICAL CONSIDERATIONS AND LIMITATIONS

•  Low-voltage power source
• should  be proportional to UT (PTAT)
• need for power-efficient adapter from higher supply voltage.

•  Asymmetry
• p/n asymmetry may result in speed reduction.

•  Mismatch
• dominated by threshold mismatch δVT
• may result in speed reduction proportional to δVT /VB.

•  Short channel effects: should not drastically degrade the results.

•  Gate leakage current : should be alleviated by very low VB.

•  Adjustment  of I0  orTd to required value

• control by VS with charge pump in loop [18]; n>1 needed (no SOI!)

• corresponds to threshold adjustment unavoidable at very low VB.

•  System architectures and applications.



page 31

CSEM, E. Vittoz, 2003

Weak inversion

SYSTEM ARCHITECTURE AND APPLICATIONS

• Duty factor α must be maximized to reach minimum P/f,

(where f is the average transition frequency), thus

• avoid idling gates (contrary to traditional CMOS culture)

• new architectures needed:

- maximally active gates of minimum speed (max. delay time Td)

- particular problem with RAMs (short Td but sparse activity)

- how? new constraints should result in novel solutions.

• partition the system in blocks of comparable α and Td

- optimum VB and I0 for each block (separate I0 control).

• Maximum frequency much lower than for strong inversion:

• best applicable when no high local speed is required

• m-parallelize: mTd but same power if same α (m units with P/m)

- digital image processing ?  
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CONCLUSION

• Weak inversion permits very low supply voltage VB

• approached with scaled-down VB: IC ~ VB
• limit for scaled-down VB.

• Analog: • VB>10UT = 250 mV
• provides maximum gm/ID
• bipolar-like behaviour can be exploited in new schemes.

• Digital: • VB> 4UT = 100mV
• transistor not a switch but a current modulator (Ion/Ioff)
• new architectural approaches for max. duty factor α.
• ultimum (asymptotic) limit for low power*delay.

• Low speed, but  keeps increasing with 1/L2 in scaled down processes. 

2
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