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Designing Static CMOSDesigning Static CMOS
Logic CircuitsLogic Circuits
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Static CMOS CircuitsStatic CMOS Circuits

At every point in time (except during the switching 
transients) each gate output is connected to either 

VDD or Vss via a low-resistive path. 

The outputs of the gates assume at all times the value 
of the Boolean function, implemented by the circuit 
(ignoring, once again, the transient effects during 
switching periods). 
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Static Complementary CMOSStatic Complementary CMOS

VDD

F(In1,In2,…InN)

In1
In2

InN

In1
In2

InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are logically dual logic networks
…

…
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NMOS Transistors NMOS Transistors 
in Series/Parallel Connectionin Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1
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PMOS Transistors PMOS Transistors 
in Series/Parallel Connectionin Series/Parallel Connection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low
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Threshold DropsThreshold Drops
VDD

VDD → 0PDN

0 → VDD

CL

CL

PUN

VDD

0 → VDD - VTn

CL

VDD

VDD

VDD → |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS
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Complementary CMOS Logic StyleComplementary CMOS Logic Style
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Example Gate: NANDExample Gate: NAND
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Example Gate: NORExample Gate: NOR
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Complex CMOS GateComplex CMOS Gate

OUT = D + A • (B + C)

D

A

B C

D

A

B

C
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Constructing a Complex GateConstructing a Complex Gate

 Logic Dual need not be Series/Parallel Dual
 In general, many logical dual exist, need to 

choose one with best characteristics
 Use Karnaugh-Map to find good duals

 Goal: find 0-cover and 1-cover with best parasitic 
or layout properties

 Maximize connections to power/ground
 Place critical transistors closest to output node
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Example: Carry GateExample: Carry Gate

 F = (ab+bc+ac)’
 Carry ‘c’ is critical
 Factor c out:
 F=(ab+c(a+b))’
 0-cover is n-pd
 1-cover is p-pu

C C’

AB 0 0

AB’ 0 1

A’B’ 1 1

A’B 0 1
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Example: Carry Gate (2)Example: Carry Gate (2)

 Pull Down is easy
 Order by maximizing 

connections to 
ground and critical 
transistors

 For pull up – Might 
guess series dual– 
would guess wrong

a

b

c

a b

f'
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Example: Carry Gate (3)Example: Carry Gate (3)

 Series/Parallel Dual
 3-series transistors
 2 connections to Vdd
 7 floating capacitors

a b

c a

b

f'



EE141 15© Forrest Brewer and © Digital Integrated Circuits2nd
Combinational Circuits

Example: Carry Gate (4)Example: Carry Gate (4)

 Pull Up from 1 cover 
of Kmap
 Get a’b’+a’c’+b’c’
 Factor c’ out

 3 connections to Vdd
 2 series transistors
 Co-Euler path layout
 Moral: Use Kmap!

c

a ba

b

f'
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Cell DesignCell Design

 Standard Cells
 General purpose logic
 Can be synthesized
 Same height, varying width

 Datapath Cells
 For regular, structured designs (arithmetic)
 Includes some wiring in the cell
 Fixed height and width
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Standard Cell Layout Methodology Standard Cell Layout Methodology 
– 1980s– 1980s

signals

Routing
channel

VDD

GND
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Standard Cell Layout Methodology Standard Cell Layout Methodology 
– 1990s– 1990s

M2

No Routing
channels

VDD

GND
M3

VDD

GND

Mirrored Cell

Mirrored Cell
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Standard CellsStandard Cells

Cell boundary

N Well

Cell height 12 metal tracks
Metal track is approx. 3λ + 3λ
Pitch = 
repetitive distance between objects

Cell height is “12 pitch”

2λ

Rails ~10λ 

In
Out

VDD

GND
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Standard CellsStandard Cells

In
Out

VDD

GND

In Out

VDD

GND

With silicided 
diffusion

With minimal
diffusion
routing

OutIn

VDD

M2

M1
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Standard CellsStandard Cells

A

Out

VDD

GND

B

2-input NAND gate

B

VDD

A
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Stick DiagramsStick Diagrams

Contains no dimensions
Represents relative positions of transistors

In

Out

VDD

GND

Inverter

A

Out

VDD

GND
B

NAND2
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Stick DiagramsStick Diagrams

C

A B

X = C • (A + B)

B

A
C

i

j

j

VDDX

X

i

GND

AB

C

PUN

PDN
A
B
C

Logic Graph
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Two Versions of C Two Versions of C •• (A + B) (A + B)

X

CA B A B C

X

VDD

GND

VDD

GND
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Consistent Euler PathConsistent Euler Path

j

VDDX

X

i

GND

AB

C

A B C
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OAI22 Logic GraphOAI22 Logic Graph

C

A B

X = (A+B)•(C+D)

B

A

D

VDDX

X

GND

AB

C

PUN

PDN

C

D

D

A
B
C
D
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Example: x = ab+cdExample: x = ab+cd

GND

x

a

b c

d

VDDx

GND

x

a

b c

d

VDDx

(a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

a c d

x

VDD

GND

(c) stick diagram for ordering {a b c d}

b
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Properties of Complementary CMOS Properties of Complementary CMOS 
Gates SnapshotGates Snapshot

High noise margins: 

VOH and VOL  are at VDD  and GND , respectively. 

No static power consumption:

There never exists a direct path between VDD  and 

VSS (GND ) in steady-state mode. 

Comparable rise and fall times:

(under appropriate sizing conditions) 
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CMOS PropertiesCMOS Properties

 Full rail-to-rail swing; high noise margins
 Logic levels not dependent upon the relative 

device sizes; ratioless
 Always a path to Vdd or Gnd in steady state; 

low output impedance
 Extremely high input resistance; nearly zero 

steady-state input current
 No direct path steady state between power 

and ground; no static power dissipation
 Propagation delay function of load capacitance 

and resistance of transistors
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Switch Delay ModelSwitch Delay Model

A

Req

A

Rp

A

Rp

A

Rn CL

A

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NAND2 INV
NOR2
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Input Pattern Effects on DelayInput Pattern Effects on Delay

 Delay is dependent on 
the pattern of inputs

 Low to high transition
 both inputs go low

– delay is 0.69 Rp/2 CL

 one input goes low
– delay is 0.69 Rp CL

 High to low transition
 both inputs go high

– delay is 0.69 2Rn CL

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint
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Delay Dependence on Input PatternsDelay Dependence on Input Patterns
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NMOS = 0.5µm/0.25 µm
PMOS = 0.75µm/0.25 µm
CL = 100 fF
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Transistor SizingTransistor Sizing
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Multi-Fingered TransistorsMulti-Fingered Transistors

One finger Two fingers (folded)

Less diffusion capacitance
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Transistor Sizing a Complex Transistor Sizing a Complex 
CMOS GateCMOS Gate

OUT = D + A • (B + C)

D

A

B C

D

A

B

C
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Fan-In ConsiderationsFan-In Considerations

DCBA

D

C

B

A CL

C3

C2

C1

         Distributed RC model
             (Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deteriorates 
rapidly as a function of fan-in – 
quadratically in the worst case.
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ttpp as a Function of Fan-In as a Function of Fan-In

tpLH
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Gates with a 
fan-in 
greater than 
4 should be 
avoided.
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ttpp as a Function of Fan-Out as a Function of Fan-Out

2 4 6 8 10 12 14 16

tpNOR2

t p
 (

p
se

c)

eff. fan-out

All gates 
have the 
same drive 
current.

tpNAND2

tpINV

Slope is a 
function of 
“driving 
strength”
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ttpp as a Function of Fan-In and Fan- as a Function of Fan-In and Fan-

OutOut

 Fan-in: quadratic due to increasing 
resistance and capacitance

 Fan-out: each additional fan-out gate 
adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO
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Practical OptimizationPractical Optimization

 The previous arguments regarding tp raise the 
question – why build nor at all?
 Criticality is not a path– but a transition so it is usually only 

on rising or falling (but not both)
 NOR forms have bad pull-up but good pull down
 NAND forms have bad pull-down but good pull up
 Determine the critical transition(s) and design for them– 

using Elmore or Simulation on the appropriate edge only!
 Logical Effort presupposes uniform rise and fall times, so 

good in general, but can be beat

 Static Timing Analyzers nearly always get this wrong!
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Fast Complex Gates:Fast Complex Gates:
Design Technique 1Design Technique 1

 Transistor sizing
 as long as fan-out capacitance dominates

 Progressive sizing

InN CL

C3

C2

C1
In1

In2

In3

M1

M2

M3

MN
Distributed RC line

M1 > M2 > M3 > … > MN
  (the fet closest to the
   output is the smallest)

Can reduce delay by more than 
20%; decreasing gains as 
technology shrinks
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Fast Complex Gates:Fast Complex Gates:
Design Technique 2Design Technique 2

 Transistor ordering

C2

C1
In1

In2

In3

M1

M2

M3 CL

C2

C1
In3

In2

In1

M1

M2

M3 CL

critical path critical path

charged
1

0→1
charged

charged1

delay determined by time to 
discharge CL, C1 and C2

delay determined by time to 
discharge CL

1

1

0→1 charged

discharged

discharged
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Fast Complex Gates:Fast Complex Gates:
Design Technique 3Design Technique 3

 Alternative logic structures

F = ABCDEFGH



EE141 44© Forrest Brewer and © Digital Integrated Circuits2nd
Combinational Circuits

Fast Complex Gates:Fast Complex Gates:
Design Technique 4Design Technique 4

 Isolating fan-in from fan-out using buffer 
insertion

CL
CL
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Fast Complex Gates:Fast Complex Gates:
Design Technique 5Design Technique 5

 Reducing the voltage swing

 linear reduction in delay
 also reduces power consumption

 But the following gate may be much slower!
 Large fan-in/fan-out requires use of “sense 

amplifiers” to restore the signal (memory)

tpHL = 0.69 (3/4 (CL VDD)/ IDSATn )

       = 0.69 (3/4 (CL Vswing)/ IDSATn )
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Sizing Logic Paths for SpeedSizing Logic Paths for Speed

 Frequently, input capacitance of a logic path is 
constrained

 Logic also has to drive some capacitance
 Example: ALU load in an Intel’s 

microprocessor is 0.5pF
 How do we size the ALU datapath to achieve 

maximum speed?
 We have already solved this for the inverter 

chain – can we generalize it for any type of 
logic?
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Buffer ExampleBuffer Example

( )∑
=

⋅+=
N

i
iii fgpDelay

1

For given N: Ci+1/Ci = Ci/Ci-1

To find N: Ci+1/Ci ~ 4
How to generalize this to any logic path?

CL

In Out

1 2 N

(in units of τinv)
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Logical EffortLogical Effort

( )fgp

C

C
CRkDelay

in

L
unitunit

⋅+=







+⋅=

τ
γ

1

p – intrinsic delay (3kRunitCunitγ ) - gate parameter ≠  f(W)
g – logical effort (kRunitCunit) – gate parameter ≠  f(W)
f – effective fanout

Normalize everything to an inverter:
ginv =1, pinv = 1

Divide everything by τinv

(everything is measured in unit delays τinv)
Assume  γ  = 1.
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Delay in a Logic GateDelay in a Logic Gate

Gate delay:

d = h + p

effort delay intrinsic delay

Effort delay:

h = g f

logical 
effort

effective fanout  = 
Cout/Cin

Logical effort is a function of topology, independent of sizing
Effective fanout (electrical effort) is a function of load/gate size
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Logical EffortLogical Effort

 Inverter has the smallest logical effort and 
intrinsic delay of all static CMOS gates

 Logical effort of a gate presents the ratio of its 
input capacitance to the inverter capacitance 
when sized to deliver the same current

 Logical effort increases with the gate 
complexity
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Logical EffortLogical Effort
Logical effort is the ratio of input capacitance of a gate to the input
capacitance of an inverter with the same output current

g = 1 g = 4/3 g = 5/3

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

2

1 1

4

4

Inverter 2-input NAND 2-input NOR
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Logical Effort of GatesLogical Effort of Gates

Fan-out (h)
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Logical Effort of GatesLogical Effort of Gates

Fan-out (h)
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g = 1
p = 1
d = h+1

g = 4/3
p = 2
d = (4/3)h+2
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Add Branching EffortAdd Branching Effort

Branching effort: 

pathon

pathoffpathon

C

CC
b

−

−− +
=
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Multistage NetworksMultistage Networks

Stage effort: hi = gifi

Path electrical effort: F = Cout/Cin

Path logical effort: G = g1g2…gN

Branching effort: B = b1b2…bN

Path effort: H = GFB

Path delay D = Σdi = Σpi + Σhi

( )∑
=

⋅+=
N

i
iii fgpDelay

1
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Optimum Effort per StageOptimum Effort per Stage

HhN =
When each stage bears the same effort:

N Hh =

( ) PNHpfgD N
iii +=+= ∑ /1ˆ

Minimum path delay

Effective fanout of each stage: ii ghf =

Stage efforts: g1f1 = g2f2 = …  = gNfN
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Optimal Number of StagesOptimal Number of Stages

For a given load, 
and given input capacitance of the first gate
Find optimal number of stages and optimal sizing

inv
N NpNHD += /1

( ) 0ln /1/1/1 =++−=
∂
∂

inv
NNN pHHH

N

D

NHh
ˆ/1=Substitute ‘best stage effort’
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Logical EffortLogical Effort

From Sutherland, Sproull



EE141 59© Forrest Brewer and © Digital Integrated Circuits2nd
Combinational Circuits

Method of Logical EffortMethod of Logical Effort

 Compute the path effort: F = GBH
 Find the best number of stages N ~ log4F

 Compute the stage effort f = F1/N

 Sketch the path with this number of stages
 Work either from either end, find sizes: 

Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.
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Example: Optimize PathExample: Optimize Path

Effective fanout, F =
G = 
H =
h =
a =
b =  

g = 1
f = a

g = 5/3
f = b/a

g = 5/3
f = c/b

g = 1
f = 5/c

 
1 

a 
b c 

5 
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Example: Optimize PathExample: Optimize Path

g = 1
f = a

g = 5/3
f = b/a

g = 5/3
f = c/b

g = 1
f = 5/c

Effective fanout, F = 5
G = 25/9
H = 125/9 = 13.9
h = 1.93
a = 1.93
b = ha/g2 = 2.23
c = hb/g3 = 5g4/f = 2.59

 
1 

a 
b c 

5 
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Example: Optimize PathExample: Optimize Path

 
1 

a 
b c 

5 

Effective fanout, H = 5
G = 25/9
F = 125/9 = 13.9
f = 1.93
a = 1.93
b = fa/g2 = 2.23
c = fb/g3 = 5g4/f = 2.59

g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1
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Example – 8-input ANDExample – 8-input AND
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SummarySummary

Sutherland,
Sproull
Harris
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Homework 5Homework 5
1. Using the Carry cell design from earlier homework, optimally size the 

carry propagate chain for a 16-bit adder to minimize worst case 
delay where Cin is driven by a 1u/0.6u inverter and Cout drives a 
fanout of 4 such loads. (use logic effort, show your work!)

2. For the problems below, use parameters from class for 0.5um and 
use 2x voltages as applicable. Chap 5: problems: 4, 7, 8, 15

3. Chap 6, problems: 2, 4, 5, 7

4. Design the parity tree: c = a xor b xor c xor d in Complementary 
Pass Transistor Logic, insert inverters to restore the output swing – 
Given input drive from an inverter stage, and an inverter every 2 
stages of logic, and inverter output restore, estimate the propagation 
time for devices using  the AMI 0.5um model.

New (digital) AMI model (for minimum length only!):

n-channel: VT=0.77, λ=0.03, Vsat=1.56V, k=32µA/V2

p-channel: VT=-0.95, λ=0.03 Vsat=2.8V, k=-16µA/V2
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