
RTOSRTOSRTOSRTOS
Real Time Operating System ConceptsReal Time Operating System Concepts

Part 2

Real time System Pitfalls - 4: The Ariane 5 satelite launch rocket

Rocket self destructed in 4 June -1996.
Exactly after 40 second of lift off at an attitude of 3700 meters, the
launcher exploded and became a ball of fire.p
Cost: $500 Million USD
Reason:
Bad floating-point exception handling.g g
A 64 bit floating no is converted into 16 bit signed value.
During one calculation the converted value was more then of 16 bit.

This error is know as “500 million dollar software error”

http://www.embeddedcraft.org2

Real Time System Pitfalls- 4 The Ariane 5

http://www.embeddedcraft.org3

Real time System Pitfalls - 5: NASA Mars path finder

NASA mission Pathfinder landed on the mars on 4 july 1997.
The mission was successful , a perfect launch and pathfinder also start sending important
data.
But after few days it start resetting itself.

http://www.embeddedcraft.org4

OS overview

KERNEL

User Interface | File Management | IO Management | Middleware

OS KERNEL

Device Driver | Board Support Package

OS

http://www.embeddedcraft.org5

OS overview: what kernel is doing…
Kernel:
the smallest portion of the operating system that provides

task scheduling,task scheduling,
dispatching,
and intertask communication.

http://www.embeddedcraft.org

KERNEL
6

OS overview: what kernel is doing…

The one program running at all times on the computer” is the kernel. Everything else is
either a system program (ships with the operating system) or an application program

The kernel is the first part of the operating system to load into memory during booting,
and it remains there for the entire duration of the session because its services are
required continuously. q y

Thus it is important for it to be as small as possible while still providing all the essential
services needed by the other parts of the operating system and by the various
application programs.

http://www.embeddedcraft.org

KERNEL
7

Kernel: System Calls
System calls are the similar to the function calls as in C language programs excepts that they are
used to access the services provide by kernel to the system

System call also know as API (Application Programming Interface) or Kernel Calls

Ex:-
pthread_create() system call to create task in Linux

CreateTask () system call used to create task in INTEGRITY RTOS

There are also system calls to close the task.

A dAnd so on.

http://www.embeddedcraft.org

KERNEL
8

Kernel: Kernel Types
Kernel types

Nanokernel - the dispatcher
Microkernel - a nanokernel with task schedulingc o e e a a o e e t tas sc edu g
Kernel - a microkernel with intertask synchronization
Executive - a kernel that includes privatized memory blocks, I/O services, and other
complex issues. Most commercial real-time kernels are in this category.p g y
Operating system - an executive that also provides generalized user interface,
security, file management system, etc

OS
Executive Kernel Mirco

Kernel
Nano

Kernel

http://www.embeddedcraft.org9

Kernel: Scheduling of Task

• Most RTOSs do their scheduling of tasks using a scheme called "priority-based preemptive
scheduling

• Each task in a software application must be assigned a priority, with higher priority values pp g p y, g p y
representing the need for quicker responsiveness.

• "Preemptive" means that the scheduler is allowed to stop any task at any point in its
execution, if it determines that another task needs to run immediatelyexecution, if it determines that another task needs to run immediately

• Such a type of kernel which support preemptiveness are known as preemptive kernel

http://www.embeddedcraft.org

KERNEL
10

Kernel: Synchronization among tasks
-Different tasks may need to share resource and at a particular task it may possible that two task
may try to access the same resource.

-If they do so this will result in ambiguous stage.Resource may be any thing like memory or I/O
device.

-To avoid this problem it is necessary to lock that resource untill particular task
is using that resource, (mutual exclusion should present there)

- solution is Semaphore

http://www.embeddedcraft.org

KERNEL
11

Kernel: Semaphore
-A semaphore is a variable which is used to access to shared resources in a multitasking
environment.

-Semaphore restricts the number of simultaneous users of a shared resource up to a maximum
number. Threads can request access to the resource (decrementing the semaphore), and can signal
that they have finished using the resource (incrementing the semaphore)

- semaphore are of two types mainly
- Binary Semaphore or Mutex
- Counting Semaphore

Binary Semaphore or Mutex Counting SemaphoreBinary Semaphore or Mutex
-This is used to create the share the one
resource.
- when a task access this Semaphore then

Counting Semaphore
-This is used to create the share the more
then one of same type of resource.

priority method is same as Mutex- when a task access this Semaphore, then
priority of semaphore became same as
priority of that task

- priority method is same as Mutex

http://www.embeddedcraft.org

KERNEL
12

Kernel: Intertask Communication
-RTOS offer a variety of mechanisms for communication and synchronization between tasks.
These mechanisms are necessary in a preemptive environment of many tasks, because without
them the tasks might well communicate corrupted information or otherwise interfere with each

thother.

-Information may be communicated between tasks in two ways: through global data or by
sending messages

-Message Sending is the main mechanism which is used for that purpose.

http://www.embeddedcraft.org

KERNEL
13

Kernel: Message Sending Methods
-Two methods are there

-Message Mailbox

-Message Queues

http://www.embeddedcraft.org

KERNEL
14

Kernel :Message Mailbox
-Messages can be sent to a task through kernel services.

-A Message Mailbox, also called a message exchange, is typically a pointer size variable.
Th h i id d b th k l t k ISR d it (th i t)Through a service provided by the kernel, a task or an ISR can deposit a message (the pointer)
into this mailbox.

Similarly one or more tasks can receive messages through a service provided by the kernel-Similarly, one or more tasks can receive messages through a service provided by the kernel.
Both the sending task and receiving task will agree as to what the pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one task desires to receive-A waiting list is associated with each mailbox in case more than one task desires to receive
messages through the mailbox.

http://www.embeddedcraft.org

KERNEL
15

Kernel: Message Queues
-A message queue is used to send one or more messages to a task.

-A message queue is basically an array of mailboxes. Through a service provided by the kernel, a
t k ISR d it (th i t) i ttask or an ISR can deposit a message (the pointer) into a message queue.

- Similarly, one or more tasks can receive messages through a service provided by the kernel. Both
the sending task and receiving task will agree as to what the pointer is actually pointing tothe sending task and receiving task will agree as to what the pointer is actually pointing to.

- Generally, the first message inserted in the queue will be the first message extracted from the queue
(FIFO)(FIFO).

http://www.embeddedcraft.org

KERNEL
16

OS overview

KERNEL

User Interface | File Management | IO Management | Middleware

OS KERNEL

Device Driver | Board Support Package

OS

http://www.embeddedcraft.org17

OS Add on: User interface
Two type of interface is possible

1. Graphical User interface
2. Command Line (through shell)(g)

http://www.embeddedcraft.org

User Interface | File Management | IO Management | Middleware
18

OS Add on: File Management
Different type of file managements are possible

1. FAT 32
2. Wear Leveling file system (for Flash memory)g y (y)

Next few slides will give show some commercial file systems provided by companies

http://www.embeddedcraft.org

User Interface | File Management | IO Management | Middleware
19

http://www.embeddedcraft.org

User Interface | File Management | IO Management | Middleware
20

http://www.embeddedcraft.org21

OS Add on: TCP/IP and USB Stack
TCP/IP stacks are also used in RTOS. These stacks are available commercially by
software vendors.

Most of the vendors who provide, RTOS also gives TCP/IP

These are various utilities stacks which are added into kernel.

Like

Communication Protocol Stack

USB Protocol Stack

File Servers and various file system

Bl t th P t l St kBluetooth Protocol Stack

Graphics library

http://www.embeddedcraft.org

User Interface | File Management | IO Management | Middleware
22

http://www.embeddedcraft.org

User Interface | File Management | IO Management | Middleware
23

OS overview

KERNEL

User Interface | File Management | IO Management | Middleware

OS KERNEL

Device Driver | Board Support Package

OS

http://www.embeddedcraft.org24

OS Add on: Device Driver
-A device driver, or software driver is any system that allows other programs to interact
with a hardware or peripheral.

-Driver is an interface for communicating with the device, or emulates a device. A driver
typically communicates with the device through the bus or communications subsystem that
the hardware is connected to.

- When a program invokes a routine in the driver, the driver issues commands to the device,
and when the device sends data, the driver invokes routines in the program.

- Drivers are hardware dependent and Operating system specific.

http://www.embeddedcraft.org
Device Driver | Board Support Package

25

OS Add on: Board Support Package
-BPS is board support package.

-A “Board Support Package” (BSP) is a set of software that enables a particular operating system to pp g () p p g y
run on a logical board. The operating system features able to be used with the board is directly
proportional to the enabling code provided in the BSP

-A BSP typically has to support these CPU, RAM & Flash at a minimum in order for the operating
system to function

- For a particular board there is BSP for particular OS.

- For Example for EP8260 board there will be different BSPs for Threadx and different BSP for
LiLinux.

http://www.embeddedcraft.org
Device Driver | Board Support Package

26

Why Should I Use an RTOS?

• True that many or most applications can be written without the support of an RTOS.
A few reasons to consider using an RTOS :

• The job of writing application software is generally easier using an RTOS because the use• The job of writing application software is generally easier using an RTOS, because the use
of a kernel enforces certain disciplines in how your code is structured.

• While the illusion of concurrency can be created without the use of an RTOS (though not
always), it almost always results in a much more complex piece of software.always), it almost always results in a much more complex piece of software.

http://www.embeddedcraft.org27

But story is not end here….

• In addition to basic scheduling and context switching, a real-time kernel
typically provides other valuable services to applications such as:

• Time Delays
• System Time

I t P C i ti (IPC)• Inter-Process Communication (IPC)
• Synchronization

http://www.embeddedcraft.org28

Disadvantages of Real-Time Kernels

• Extra cost of the kernel at Software
• More ROM/RAM

http://www.embeddedcraft.org29

http://www.embeddedcraft.org

EmbeddedCraft is the information portal for everyone. This site is useful for those who are
working in embedded system domain or start new career in this field.g y

