

 © 1998-2005 Maxtor Corporation

RDL - Register Description Language

Julian Gorfajn

Maxtor Corporation

Julian_Gorfajn@maxtor.com

ABSTRACT

In order to reuse designs between projects, we often need to modify hardware interfaces,
software interfaces, and documentation to meet the standards of the new project. One common
aspect of this is change to the processor interface of the design. This could include a change to
the bus interface, a change in language choice by firmware, or a different documentation style.

This paper presents a new language called the Register Description Language (RDL). The
language is designed to contain information necessary to automatically generate a RTL processor
interface, header files, documentation, and the possibility of other outputs. The paper will show
how changes in rules on these various generated outputs can be done without the need to modify
the design.

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

2

Table of Contents

1.0 Introduction – What is a Register Description Language? ... 4

1.1 Concept ... 4

1.2 History .. 4

2.0 RDL 2.0... 4

2.1 Elements.. 5

2.1.1 The map Element.. 5

2.1.2 The reg Element.. 6

2.1.3 Bitfield Elements .. 6

2.1.4 The array Element ... 6

2.2 Functions... 7

2.2.1 Bitfield Description Functions.. 7

2.2.2 Documentation Functions ... 9

2.2.3 RTL Output Functions .. 9

3.0 reggen – an RDL parser/generator.. 10

3.1 Phase I – Parsing the language ... 10

3.2 Phase II – Generating Output.. 11

3.2.1 Documentation Generators ... 11

3.2.2 RTL Generators .. 11

3.2.3 Software Generators ... 12

4.0 Issues with reggen, the RDL Language and future Enhancements 12

5.0 Acknowledgements... 13

6.0 More Information.. 13

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

3

Table of Figures

Figure 1 - RDL1.0... 4

Figure 2 - RDL2.0... 5

Figure 3 – Array Element ... 6

Figure 4 - Functions.. 7

Figure 5 - fwaccess() values ... 8

Figure 6 - value() .. 8

Figure 7 - Using ref() .. 9

Figure 8 - signalformat()... 9

Figure 9 - Structure ... 11

Figure 10 - HTML Output .. 11

Figure 11 - Bus Interface Block.. 12

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

4

1.0 Introduction – What is a Register Description Language?

1.1 Concept

With almost every design change, a firmware-accessible register change follows suit. This
register change not only causes an RTL change – typically there are specification changes and
firmware changes to match. Since all of these changes are done independently, there is a high
likelihood of error, which results in a schedule impact.

Imagine if you could describe registers in a language that facilitates automatic generation tools
for all these different outputs (specification, RTL, firmware headers files) — a Register
Description Language.

1.2 History

In 1997, in order to handle a design that supported two different processor interfaces, RDL1.0
was created.

SECTIONNAME=Section Name Here;
BASEADDR=0x10000;

reg1[15:0]@0x00:{0[1:0],bitf3[10:0],bitf2,bitf1[1:0]}=(my register
description);
bitf1[1:0]:{0,rw}=(This is bitfield 1);
bitf2:{1,ro}=(This is bitfield 2);
bitf3[10:0]:{0,punch}=(This is bitfield 3);

Figure 1 - RDL1.0

The RDL1.0 language consists of three types of lines:

• Global Directives: These (like SECTIONNAME and BASEADDR) are global to all
registers.

• Register Description: This shows the size, address, description, and bitfields contained in the
register. (The number 0 represents unimplemented bits.)

• Bitfield Description: This shows the reset state, type and description of the bitfield.

While RDL1.0 is functional, it isn’t extensible. For example, there is no way to implement
enumerations for bitfields. Also, type information (reset, etc) is located in a comma-delimited
field that is not very descriptive.

2.0 RDL 2.0
In 2000, the decision was made to develop a new language based on lessons learned from
RDL1.0. The key issue of RDL1.0 was lack of extensibility. RDL2.0 resolved this issue by
allowing an arbitrary number of attributes to be attached to any register or bitfield.

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

5

//this is a comment

/*this is also a comment*/

map top[31:0]@0x10000 {
 title("My Registers");
 reset(0);
 fwaccess(rw);
 hwaccess(ro);

 reg config[7:0]@0b0100 {
 title("Configuration");
 desc("This is a configuration register.");
 bit start@0 {
 hwaccess(rw);
 fwaccess(punch);
 }
 }

 reg address[15:0]@6 {
 desc("This is an address register.");
 unsigned addr[12:0]@0;
 }
}

Figure 2 - RDL2.0

2.1 Elements

Elements are the data type of RDL2.0. They separate address space into unused and used areas.
Currently there are four types of elements: maps, registers, bitfields, and arrays.
Elements look like C structs. Figure 2 shows the following elements: top, config, start,
address, and addr. Element definitions are either followed by braces that contain sub-
elements and functions, or terminated by a semicolon (e.g. addr). All elements have two
attributes: size and address. The size is represented by a low and high index similar to Verilog.
Size information is element specific (e.g. reg elements have size in bits where map elements
have size in bytes), Again, as with Verilog, elements of size 1 do not need to specify their size
(e.g. start). The address is specified after an @ sign. Addresses can be listed as hex, decimal or
binary (e.g. 0b100).

2.1.1 The map Element

The map element is used to group a set of registers. In Figure 2, top is a map element. Top is a
32-byte map starting at address 0x10000. Map element sizes are always in bytes. Registers and
bitfields described inside maps inherit features of the map. All register addresses are relative to
the map address. Bitfield attributes such as reset, firmware access, and hardware access can be
defined in the map as defaults and overwritten later. Address regions in the map that are not
defined by registers are considered reserved. Generators can assume that these areas are not
accessed and optimize accordingly.

Maps can contain maps and registers. By placing maps inside other maps, you are able to group
registers and have a common set of defaults.

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

6

2.1.2 The reg Element

The reg element is used to define registers. In Figure 2, config is a reg element. Config is
an 8-bit register at address 4 relative to the map, top. Thus, config is at address 0x10004.
Reg element sizes are always in bits, and must have widths of the form 2n where n≥3 (e.g. 8, 16,
32, etc) and must have addresses that are aligned to their size. That is – an 8-bit register can be
anywhere, a 16-bit register must have an address that is divisible by 2 and a 32-bit register must
have an address that is divisible by 4. Bit addresses in a reg that are not defined by bitfield are
considered reserved. Generators can assume that these areas are not accessed and optimize
accordingly.

2.1.3 Bitfield Elements

There are currently four types of bitfields: bit, signed, unsigned and reserved. Bit is
the generic bit type (e.g. start in Figure 2). Use bit when nothing else applies. Signed and
unsigned are used to represent multi-bit numeric values (e.g. addr). Reserved is a special
bitfield where you wish to implement a bitfield (that is – there will be flops in the design)
however, you don’t have a defined function for them yet. RTL generators should treat
reserved bitfields as real registers and not optimized them away.

2.1.4 The array Element

The array element is used to create multiple registers with the same attributes.
array loop[127:0]@4 {
 reg entry[15:0]@0 {
 unsigned stuff[10:0]@0;
 }
}

Figure 3 – Array Element

In Figure 3, we have 128 registers. Each register (entry) is 16 bits wide, and the bitfield they
contain (stuff) is 11 bits wide. The size in the array element is based on the number of
elements it contains. In this case – there are 128 entries. All the other rules must still apply.
Since the contents of this array are 16-bit registers, the array must be 16-bit aligned.

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

7

2.2 Functions
map top[31:0]@0x10000 {
 title("My Registers");
 reset(0);
 fwaccess(rw);
 hwaccess(ro);

 reg config[7:0]@4 {
 title("Configuration");
 desc("This is a configuration register.");
 bit start@0 {
 hwaccess(rw);
 fwaccess(punch);
 }
 bit stop@1;
 /* more registers here */
}

 Figure 4 - Functions

While elements define which registers and bitfields exist, functions describe them. In Figure 4
we see a number of functions (all in italics). Some functions are used for documentation (e.g.
title()). Others describe the functionality of a bitfield (e.g. reset()). Some functions may be
defined and then overwritten. For example, reset(), fwaccess() and hwaccess() are all bitfield
functions. They are listed in the map, but then some are overwritten in the definition of the bit
– start. This means that by default, all bitfields in the map top inherit a reset(0),
fwaccess(rw) and hwaccess(ro). Start keeps the default reset(0) but overrides the other two.

2.2.1 Bitfield Description Functions

Five different functions may be used to describe the specifics of a bitfield.

reset(arg)

The reset() function describes the reset state of the bitfield. Any numerical argument is valid
(hex, decimal or binary) as well as X meaning unknown reset state. If the argument is larger than
the width of the bitfield, the lower bits of the argument will be used. If the argument is smaller
than the bitfield, then it is zero-extended. This is useful when a reset() value is set as a default.

resettype(arg)

The resettype() function allows for setting a range of reset causes. RTL generators will use this
argument as the reset source for the flop.

hwaccess(arg)

The hwaccess() function specifies what kind of access hardware will have to the bitfield. There
are two valid arguments: ro (read only) and rw (read/write).

fwaccess(arg)

The fwaccess() function specifies what kind of access firmware will have to the bitfield. There
are four valid arguments as described in Figure 5.

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

8

Value Name Description

ro Read only Firmware can only read the bitfield.
(This value requires hwaccess(rw).)

rw Read/Write Firmware can read and write the
bitfield.

w1tc Write one
to clear

Firmware can read the bitfield. The
bitfield is cleared when writing a 1
to it. (This value requires
hwaccess(rw).)

punch Punch Setting this bitfield holds state.
When hardware sees the bit is set, it
may start a machine and at some
point hardware will clear the bit.
(This value requires hwaccess(rw).)

wo Write only Firmware can write but not read the
bitfield.

Figure 5 - fwaccess() values

value((arg,arg,arg)…)
value(
 (SIGHUP, 1, “Hangup detected on controlling terminal or
death of controlling process”),
 (SIGINT, 2, “Interrupt from keyboard”),
 (SIGQUIT, 3, “Quit from keyboard”),
 (SIGILL, 4, “Illegal Instruction”),
 (SIGABRT, 6, “Abort signal from abort(3) ”),
 (SIGFPE, 8, “Floating point exception”),
 (SIGKILL, 9, “Kill signal”),
 (SIGSEGV,11, “Invalid memory reference”),
 (SIGPIPE,13, “Broken pipe: write to pipe with no readers”),
 (SIGALRM,14, “Timer signal from alarm(2)”),
 (SIGTERM,15, “Termination signal”)
);

Figure 6 - value()

The value() function is used to describe bitfields which are enumerated types. In Figure 6, an
enumerated type is defined.1 Value() takes a comma-delimited list of triplets. The first value is
the enumerated mnemonic. The second value is the numerical value of that mnemonic and the
third value is a description. The numerical value can be decimal, hexadecimal, or binary.
Unspecified numeric values are considered reserved. Generators can assume that these are not
accessed and optimize accordingly.

1 The enumerated type listed is standard POSIX names and values for signals.

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

9

2.2.2 Documentation Functions

Documentation functions provide more details about your registers and bitfields. Multiple
generators could use this information in comments to make the code clearer. Specification
generators make heavy use of these functions.

title(arg)

The title() function is used to give a name to the register or bitfield. If the element does not have
a title() function, then the instance name is used. This function should only be used if the name is
clearer.

desc(arg,…)

The desc() function is used to give a description of the register or bitfield. It can take a comma-
delimited list of strings, ref() functions, and para() functions.

ref(arg)
map map1[10:0]@0 {
 reg reg1[7:0]@0 {
 bit bit1@0;
 }
 reg reg2[7:0]@1 {
 bit bit1@0;
 bit bit2@1 {
 desc(“We can cross reference everywhere. There is the local
bit1 which is ”, ref(bit1), “ and the distant bit1 which is ”,
ref(reg1.bit1), “. We can also reference registers such as reg1
like this ”, ref(reg1));
 }
 }
}

Figure 7 - Using ref()

The ref() function is used to create a cross reference in desc(). The cross reference is a
hierarchical register or bitfield name done similar to Verilog hierarchical names.

para()

The para() function denotes the end of paragraphs in your desc(). Generators will be able to use
this to separate text into separate paragraphs.

2.2.3 RTL Output Functions

signalformat(arg)
reg reg1[7:0]@30 {
 signalformat(“my_bitfield__%s”);
 bit bit1@0;
 bit bit2@1 {
 signalformat(“%s”);
 }
}

Figure 8 - signalformat()

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

10

Most naming conventions prefix names with letters that define the signal. Signalformat() takes a
string with a %s placeholder for the bitfield name. Since a key benefit of RDL is that the bitfield
name in the specification matches the bitfield name in the RTL, the placeholder (%s) is required.
Just like reset(), the signalformat() function can be specified at one level (in this case reg1) and
then overwritten at another level (bit2). In Figure 8, bit1 will be called
my_bitfield_bit1 but bit2 will just be called bit2.

implement(arg)

In some cases, specific implementation details need to be provided. This is done using the
implement() function. There are currently two options: implement(atomic) and implement(ram).
Implement(atomic) is used to specify that the register must be accessed in its natural size. In the
event that the register bus is narrower than the register being accessed, tanking will be
implemented to read and write the register in its natural size. Tanking is a process where the
register is atomically manipulated. On reads, the register is captured upon reading the lower half.
When the upper half is then read, the captured upper half version is returned. On writes, when
the lower half is written, it is stored but the register is unmodified. When the upper half is written
both parts are written at the same time to the register.

Implement(ram) is used when an alternative solution for the registers will be used rather than
having the RTL generator handle it. This is typically used for RAM models. In these cases, the
RTL generators should not generate anything, and instead allow it to be added by the engineer.

3.0 reggen – an RDL parser/generator
Reggen is an internally-created tool that converts RDL input into various outputs, functioning in
two phases.

3.1 Phase I – Parsing the language

The first phase is parsing. This phase is common to all RDL generators. Besides simple syntax
checking, the source in evaluated to be valid registers. That is – tests such as register alignment
and, overlapping address space are checked. In the process of doing this, the source file can be
organized into a data structure to be parsed by output generators.

map

top
title() reset() fwaccess() hwaccess()

reg

config

title() desc()
bit

start

fwaccess() hwaccess()

bit

stop

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

11

Figure 9 - Structure

Figure 9 is a structural representation of Figure 4 showing how elements and functions are
grouped together in doubly linked lists. Tools can then scan this structure to produce the proper
output.

3.2 Phase II – Generating Output

Once the input has been validated, all generators should run without error. Generators can be
grouped into three types: documentation, RTL, and software.

3.2.1 Documentation Generators

The documentation generators follow a common format. That is, they walk the list of registers
and describe them and their bitfields. Two very useful formats are MIF and HTML. MIF format
is the Frame Maker Interchange Format. It is a text-based format that can completely describe
anything that can be placed in its native fm format. MIF is a very useful format for paper
documentation.

Figure 10 - HTML Output

HTML format is an ideal online format. HTML is not limited to specific width and height
limitations, and thus allows more freedom in representing registers. Figure 10 shows the html
output of Figure 2.

3.2.2 RTL Generators

There are two sets of generators that are very useful for RTL: Bus Interface & Simple Flops. The
Bus Interface block handles all write strobe generation and read muxes for the section. The
Simple Flops block addresses a set of flops that are hwaccess(ro) and fwaccess(rw).

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

12

Bus Interface Block

Figure 11 - Bus Interface Block

Register Buses change from design to design. Even registers themselves may change, with
bitfields relocated from one register to another. The Bus Interface Block allows you to abstract
that away. The RDL source is descriptive enough to know about everything in between. Issues
such as tanking registers and dealing with bus widths are all well defined.

Simple Flops Block

Many bitfields are hardware read-only and firmware read/write. These are typically
configuration registers and the sort. All that the hardware machines really need to see are wires
that contain the state of these flops. The flops themselves are trivial. Also – all the information
regarding these flops is well defined in the RDL source, and therefore can be easily generated.

3.2.3 Software Generators

In order to use your chip, you need to define registers in some form for firmware. This may be as
complex as a C++ object, or as simple as some #defines. All these forms need information about
registers such as their address, size, bitfields, etc, which is all available in the RDL source. Also,
since the same RDL source generates the RTL, the bitfield names are common between
hardware and firmware. This maintains consistent terminology between the engineers who
design the chips and those who use the chips.

4.0 Issues with reggen, the RDL Language and future Enhancements
While RDL2.0 is very descriptive, it suffers from being too verbose. One example is in
addressing. All elements need to have an address. This allows freedom of placement of the
elements in the source file. However, it also means that you need to manually calculate the

Bus

Interface

Block

R
eg

is
te

r B
us

bitfields

SNUG Boston 2005 RDL - Register Description Language
© 1998-2005 Maxtor Corporation

13

addresses. The language could allow location-based addressing. That is, the order of the registers
in the file is their address order. This would simplify entry.

Another example of the verbosity of RDL2.0 is when you have a 16-bit register with a 16-bit
bitfield in it. RDL2.0 requires that you list both the register and the bitfield. A combined
register/bitfield type might make sense in these cases.

RDL2.0 using Verilog range constructs (e.g. [4:0]) to specify sizes. While this might be
useful, most implementations only care about the total size and not the range. It may make more
sense to use the C/C++ method (e.g. [5]).

RDL2.0 does not support for macros. Often there could be similar yet not identical registers that
need to be defined twice.

The reggen tool tightly links parsing and generation. This does not allow people to define new
generators without recompiling the tool. Using some form of generator language or API could
avoid this issue.

5.0 Acknowledgements
A key help to creation and improvement of any language is to have it tested. I would like to
thank the Maxtor ASIC team for working though many of the issues necessary to make RDL2.0
a success. I would also like to thank Mark Johnson. Mark is the member of the SNUG Boston
Technical Committee assigned to work with me on this paper.

6.0 More Information
Reggen and other information may be available upon request. Please contact me at
julian_gorfajn@maxtor.com.

