
Power Compiler™

User Guide
Version E-2010.12-SP2, March 2011

Power Compiler User Guide, version E-2010.12-SP2 ii

Copyright Notice and Proprietary Information
Copyright © 2011 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, CODE V,
CoMET, Confirma, Design Compiler, DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global Synthesis,
HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda, LightTools, MAST, METeor, ModelTools, NanoSim,
NOVeA, OpenVera, ORA, PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet,
Sonic Focus, STAR Memory System, Syndicated, Synplicity, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, the Synplicity logo, UMRBus, VCS, Vera, and YIELDirector are registered trademarks of
Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance ASIC

Prototyping System, HSIM
plus

, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Intelli, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengineering, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT, Star-SimXT, StarRC, System
Compiler, System Designer, Taurus, TotalRecall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Contents

What’s New in This Release . xviii

About This User Guide . xix

Customer Support. xxi

1. Introduction to Power Compiler

Power Compiler Methodology . 1-2

Power Library Models . 1-3

Power Analysis Technology . 1-4

Power Optimization Technology . 1-5

Working With Power Compiler . 1-6

Library Requirements . 1-6

Command-Line Interface . 1-7

Graphical User Interface . 1-7

License Requirements . 1-7

Reading and Writing Designs . 1-8

Command Syntax . 1-9

Getting Help. 1-10
Help for a Command. 1-10
Help for a Topic. 1-11

2. Power Compiler Design Flow

Power in the Design Cycle . 2-2

Power Optimization and Analysis Flow . 2-3

iii

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Simulation . 2-5

Enable Power Optimization . 2-5

Synthesis and Power Optimization . 2-5

Power Analysis and Reporting. 2-5

Power Compiler and Other Synopsys Tools . 2-6

3. Power Modeling and Calculation

Power Types . 3-2

Static Power. 3-2

Dynamic Power . 3-2
Switching Power . 3-2
Internal Power. 3-3

Calculating Power . 3-4

Leakage Power Calculation . 3-4
Multithreshold Voltage Libraries . 3-6
Channel-Width Based Leakage Power Calculation 3-6

Internal Power Calculation . 3-8
NLDM Models . 3-9
State and Path Dependency. 3-11
Rise and Fall Power . 3-12
Switching Power Calculation. 3-12

Dynamic Power Calculation . 3-13
Dynamic Power Unit Derivation . 3-13

Power Calculation for Multirail Cells. 3-14

Using CCS Power Libraries . 3-16

4. Generating Switching Activity Interchange Format Files

About Switching Activity . 4-2

Introduction to SAIF Files . 4-2

Generating SAIF Files. 4-3

Generating SAIF Using VCD Output Files. 4-5
Converting a VCD file to a SAIF File . 4-5
Limited SystemVerilog Support in vcd2saif Utility. 4-6

Generating SAIF Files Directly From Simulation . 4-6

Generating SAIF Files From SystemVerilog or Verilog Simulations. 4-7
Generating SAIF Files From RTL Simulation . 4-7

Contents iv

Power Compiler User Guide Version E-2010.12-SP2
Generating SAIF Files From Gate-Level Simulation 4-8
Understanding the VCS MX Toggle Commands. 4-9

Generating SAIF Files From VHDL Simulation . 4-13
System Task List for SAIF File Generation From VHDL Simulation 4-14

Verilog Switching Activity Examples . 4-14

RTL Example . 4-14
Verilog Design Description . 4-15
RTL Testbench . 4-16
RTL SAIF File . 4-17

Gate-Level Example . 4-18
Gate-Level Verilog Module . 4-19
Verilog Testbench . 4-19
Gate-Level SAIF File. 4-20

VHDL Switching Activity Example . 4-22

VHDL Design Description . 4-22

RTL Testbench. 4-22

RTL SAIF File . 4-23

Analyzing a SAIF File . 4-24

5. Annotating Switching Activity

Switching Activity That You Can Annotate . 5-2

Annotating Switching Activity Using RTL SAIF Files . 5-2

Using the Name-Mapping Database . 5-3

Integrating the RTL Annotation With PrimeTime PX . 5-4

Annotating Switching Activity Using Gate-Level SAIF Files 5-4

Reading SAIF Files Using the read_saif Command . 5-4

Reading SAIF Files Using the merge_saif Command . 5-6

Annotating Switching Activity With the set_switching_activity Command. 5-7

Fully Annotating Versus Partially Annotating the Design . 5-10

Analyzing the Switching Activity Annotation . 5-11

Removing the Switching Activity Annotation. 5-12

Estimating the Nonannotated Switching Activity. 5-13

Annotating the Design Nets Using the Default Switching
Activity Values. 5-13
Chapter 1: Contents
1-v

Contents v

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Propagating the Switching Activity. 5-14

Deriving the State- and Path-Dependent Switching Activity 5-14

6. Performing Power Analysis

Overview. 6-2

Identifying Power and Accuracy . 6-2

Factors Affecting the Accuracy of Power Analysis . 6-3
Switching Activity Annotation . 6-3
Delay Model . 6-4
Correlation . 6-4
Clock Tree Buffers. 6-5
Complex Cells. 6-5

Performing Gate-Level Power Analysis . 6-5

Using the report_power Command . 6-6
Using the report_power_calculation Command . 6-8

Analyzing Power With Partially Annotated Designs . 6-8

Power Correlation . 6-9

Performing Power Correlation . 6-10

Power Correlation Script . 6-10

Design Exploration Using Power Compiler . 6-11

Power Optimization Settings for the Synopsys Physical Guidance Flow 6-12

Other dc_shell Commands for Power . 6-13

Characterizing a Design for Power . 6-14

Reporting the Power Attributes of Library Cells . 6-15

Using a Script File. 6-16

Power Reports . 6-16

Power Report Summary . 6-16

Net Power Report . 6-18

Cell Power Report . 6-19

Hierarchical Power Reports . 6-20

Power Report for Interface Logic Model. 6-21

7. Clock Gating

Introduction to Clock Gating . 7-3

Contents vi

Power Compiler User Guide Version E-2010.12-SP2
Using Clock-Gating Conditions . 7-6

Clock-Gating Conditions . 7-6
Enable Condition . 7-7
Setup Condition . 7-7

Enabling or Disabling Clock Gating on Design Objects 7-8

Inserting Clock Gates . 7-10

Using the compile_ultra -gate_clock Command . 7-10

Using the insert_clock_gating Command . 7-11

Clock-Gate Insertion in Multivoltage Designs . 7-11

Clock Gating Flows . 7-11

Inserting Clock Gates in the RTL Design. 7-11

Inserting Clock Gates in Gate-Level Design . 7-12
Power-Driven Clock Gating . 7-13

Specifying Clock-Gate Latency. 7-15

The set_clock_gate_latency Command. 7-16

The set_clock_latency Command . 7-18

Applying Clock-Gate Latency . 7-18

Resetting Clock-Gate Latency . 7-19

Comparison of the Clock-Gate Latency Specification Commands 7-19

Calculating the Clock Tree Delay From Clock-Gating Cell to Registers 7-20

Specifying Setup and Hold . 7-21

Predicting the Impact of Clock Tree Synthesis. 7-24

Choosing a Value for Setup . 7-25

Choosing a Value for Hold . 7-26

Choosing Gating Logic . 7-26

Choosing a Configuration for Gating Logic . 7-26

Choosing a Simple Gating Cell by Name . 7-31

Choosing a Simple Gating Cell and Library by Name . 7-31

Choosing an Integrated Clock-Gating Cell. 7-32
Choosing an Integrated Cell by Functionality . 7-32
Choosing an Integrated Cell by Name . 7-32
Specifying a Subset of Integrated Clock Gates . 7-33
Using Setup and Hold for Integrated Cells . 7-33

Designating Simple Cells Exclusively for Clock Gating 7-34

Selecting Clock-Gating Style . 7-35
Chapter 1: Contents
1-vii

Contents vii

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Choosing a Specific Latch and Library . 7-36

Choosing a Latch-Free Style . 7-37

Improving Testability . 7-38
Inserting a Control Point for Testability . 7-39
Improving Observability With test_mode . 7-41
Choosing a Depth for Observability Logic . 7-43

Connecting the Test Ports Throughout the Hierarchy . 7-43
Using the insert_dft Command . 7-44

Using the Instance-Specific Clock-Gating Styles. 7-44
Specifying Clock-Gating Styles on Design Objects 7-45
Removing Instance-Specific Clock-Gating Styles. 7-45
Instance-Specific Clock-Gating Style Example. 7-46

Using the Default Clock-Gating Style. 7-46

Modifying the Clock-Gating Structure . 7-48

Changing a Clock-Gated Register to Another
Clock-Gating Cell . 7-48

Removing Clock Gating From the Design . 7-49

Rewiring Clock Gating After Retiming . 7-49

Integrated Clock-Gating Cells . 7-50

Integrated Clock-Gating Cell Attributes . 7-50

Pin Attributes . 7-52

Timing Considerations . 7-53

Propagating Clock Constraints . 7-53

Ensuring Accuracy When Using Ideal Clocks. 7-53

Sample Clock-Gating Script . 7-54

Clock-Gating Naming Conventions . 7-55

Sample Script for Naming Style. 7-57

Sample Script Output Netlist . 7-58

Keeping Clock-Gating Information in a Structural Netlist . 7-59

Automatic Identification of Clock-Gating Cells . 7-59

Explicit Identification of Clock-Gating Cells . 7-60
Usage Flow With the write_script Command . 7-61
Usage Flow With the identify_clock_gating Command. 7-62

Replacing Clock-Gating Cells . 7-63

Clock-Gate Optimization Performed During Compilation . 7-67

Contents viii

Power Compiler User Guide Version E-2010.12-SP2
Multistage Clock Gating. 7-67

Hierarchical Clock Gating . 7-70

Enhanced Register-Based Clock Gating . 7-72

Performing Clock-Gating on DesignWare Components . 7-74

Reporting Command for Clock Gates and Clock Tree Power 7-74

The report_clock_gating Command. 7-75

8. XOR Self Gating

Understanding XOR Self Gating. 8-2

Using XOR Self Gating in Power Compiler . 8-3

Sharing XOR Self Gates. 8-3

Registers Excluded From XOR Self Gating . 8-4

Performing XOR Self Gating. 8-4

Querying the XOR Self Gates. 8-4

Reporting the XOR Self Gates . 8-5

9. Operand Isolation

Operand Isolation Overview . 9-2

Observable Don’t Care Conditions . 9-3
Power Compiler Operand Isolation Approach. 9-4
Automatic Versus User-Driven Operand Isolation Insertion 9-4
Automatic Versus Manual Operand Isolation Rollback 9-4

Operand Isolation Methodology Flows . 9-4

Two-Pass Approach (Recommended) . 9-5

One-Pass Approach . 9-6

Sample Scripts. 9-8

Commands and Variables Related to Operand Isolation . 9-10

Using Operand Isolation . 9-11

Specifying Operand Isolation Style and Selecting Insertion Mode 9-11

Controlling the Scope for Operand Isolation . 9-12

Defining User Directives . 9-13

Operand Isolation Rollback . 9-14
Automatic Rollback Mechanism . 9-14
Chapter 1: Contents
1-ix

Contents ix

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Manual Rollback Mechanism . 9-15
Sample Scripts for Operand Isolation Rollback . 9-15

Operand Isolation Reporting . 9-17

Interoperability . 9-18

Operand Isolation and Clock Gating . 9-18

Operand Isolation and Testability. 9-19

Debugging Tips. 9-20

Examples . 9-21

Verilog RTL With Observable Don’t Care Conditions . 9-21

Report Operand Isolation Progress . 9-22

Examples of Using the Operand Isolation Commands 9-24

Operand Isolation Summary Report . 9-26

10. Gate-Level Power Optimization

Overview. 10-2

Input and Output of Power Optimization . 10-2

Power Optimization in Synthesis Flow. 10-3

General Gate-Level Power Optimization. 10-5

Power Optimization Commands . 10-5

Power Constraints . 10-5

Scope of Power Constraints. 10-6

Design Rule Constraints and Optimization Constraints 10-6

Cost Priority . 10-6

Positive Timing Slack . 10-7

Unmet Constraints . 10-8

Design Rule Fixing. 10-8

Incremental Optimization . 10-8

Synthesizable Logic. 10-9

Leakage Power Optimization . 10-9

Enabling Leakage Optimization . 10-9

Using Multithreshold Voltage Libraries . 10-10
Library Threshold Voltage Attributes . 10-10
Choosing the Leakage Power Calculation Model . 10-12
Calculating Leakage Power . 10-13

Sample Scripts for Leakage Optimization . 10-13

Contents x

Power Compiler User Guide Version E-2010.12-SP2
Using the Default Usage Model . 10-13
Using the Channel-Width Model . 10-14

Power Critical Range . 10-15

Dynamic Power Optimization . 10-15

Running Dynamic Power Optimization . 10-15

Annotating Switching Activity. 10-16

Sample Scripts. 10-16

11. Multivoltage Design Concepts

Multivoltage and Multisupply Designs. 11-2

Library Requirements for Multivoltage Designs . 11-2

Liberty PG Pin Syntax . 11-3

Level-Shifter Cells . 11-3

Isolation Cells . 11-4

Requirements of Level-Shifter and Isolation cells . 11-4

Retention Register Cells . 11-4
Multithreshold-CMOS Retention Registers. 11-5

Power-Switch Cells . 11-6

Always-On Logic Cells . 11-7

Power Domains. 11-7

Shut-Down Blocks . 11-8
Marking Pass-Gate Library Pins . 11-9

Voltage Area . 11-9

12. IEEE 1801 Flow for Multivoltage Design Implementation

Synthesizing Multivoltage Designs Using UPF. 12-3

Multivoltage Design Flow Using UPF. 12-3

Basic Library Requirements for Multivoltage Designs . 12-6

Target Library Subsetting. 12-6

Fine-Grained Switch Cell Support . 12-7

Power and Ground Pin Syntax. 12-7

Converting Libraries to PG Pin Library Format . 12-8
Using FRAM View . 12-8
Using Tcl Commands . 12-9
Tcl Commands for Low-Power Library Specification 12-10
Chapter 1: Contents
1-xi

Contents xi

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Defining Power Domains and the Supply Network in UPF . 12-10

Hierarchy and Scope . 12-10

Creating Power Domains . 12-11

Creating Supply Sets . 12-12
Restricting Supply Sets to a Power Domain . 12-13
Updating a Supply Set . 12-14
Defining Supply Sets While Creating Power Domains 12-15

Creating Supply Ports . 12-15

Creating Supply Nets. 12-17

Connecting Supply Nets . 12-18

Specifying Primary Supply Nets for a Power Domain . 12-18

Creating Power Switch. 12-19

Adding Port State Information to Supply Ports . 12-20

Defining Multivoltage Design Strategies . 12-20

Defining the Level-Shifter Strategy . 12-21
Associating Specific Library Cells With the Level-Shifter Strategy 12-23
Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets 12-23

Defining the Isolation Strategy. 12-24
Mapping Isolation Strategies to Specific Library Cells 12-28
Setting Isolation Attributes on Ports . 12-28
Setting Isolation Attributes on Cells . 12-29
Isolation and Level-Shifter Cells Connected Back-to-Back. 12-29

Defining the Retention Strategy. 12-30
Mapping Retention Strategies to Specific Library Cells 12-32
Retention Strategy and Clock-Gating Cells . 12-32

Defining Power States for the Components of a Supply Set. 12-33

Defining Power State Tables . 12-34

Creating Power State Table . 12-34

Defining the States of Supply Nets . 12-35

Using State of the Supply Sets in Power State Tables. 12-35

Multivoltage Power Constraints. 12-35

Specifying the Operating Voltage. 12-36

Exceptions to the Mapping of the UPF Constraints . 12-36

Handling Always-On Logic . 12-37

Marking Pass-Gate Library Pins . 12-37

Marking Library Cells for Always-On Optimization. 12-37

Contents xii

Power Compiler User Guide Version E-2010.12-SP2
Automatic Always-On Optimization . 12-38

Performing Always-On Optimization on Top-Level Feedthrough Nets 12-38

Support for Disjoint Voltage Area and Always-On Synthesis. 12-39

Using Basic Gates as Isolation Cells . 12-40

Inserting the Power Management Cells . 12-41

Writing Out the Power Information . 12-42

Preserving the Command Order in the UPF’ File . 12-43

Additional Commands to Support Multivoltage Designs. 12-44

create_voltage_area . 12-44

hookup_retention_register . 12-45

Reporting Commands for the UPF Flow. 12-45

report_dont_touch . 12-45

report_power_domain . 12-46

report_level_shifter . 12-46

report_power_switch . 12-46

report_pst . 12-46

report_isolation_cell. 12-47

report_retention_cell . 12-47

report_supply_net . 12-47

report_supply_port. 12-47

report_target_library_subset . 12-47

report_mv_library_cells . 12-48

Debugging Commands for Multivoltage Designs . 12-48

check_mv_design . 12-48

analyze_mv_design . 12-50

 Methodology for UPF-Based Hierarchical Multivoltage Flow 12-51

Steps in the Hierarchical UPF Design Methodology . 12-51
Block-Level Implementation . 12-51
Top-Level Implementation. 12-54
Assembling Your Design. 12-55

Characterization of Supply Sets and Domain-Independent Supply Nets 12-55
Criteria for Characterization . 12-55
Characterization of Supply Sets . 12-56

Automatic Inference of Related Supply Net . 12-56

Top-Level Design Integration . 12-59
Chapter 1: Contents
1-xiii

Contents xiii

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Defining Power Intent Using Design Vision GUI . 12-60

Defining the Power Intent. 12-60

Reviewing the Power Intent . 12-62

Applying the Power Intent Changes. 12-66

UPF Diagram View . 12-66
Representation of Power Objects in the UPF Diagram. 12-68
Expanding and Collapsing Power Domains . 12-77

Debugging Power Intent Using Design Vision GUI . 12-78

13. Multicorner-Multimode Optimization

Basic Multicorner-Multimode Concepts . 13-2

Scenario Definition. 13-2

Multicorner-Multimode Optimization . 13-2
Supported Features . 13-2
Unsupported Features . 13-3
Concurrent Multicorner-Multimode Optimization and Timing Analysis 13-3

Basic Multicorner-Multimode Flow . 13-4

Setting Up the Design for a Multicorner-Multimode Flow . 13-5

Specifying TLUPlus Files. 13-5

Specifying Operating Conditions . 13-6

Specifying Constraints . 13-6

Handling Libraries in the Multicorner-Multimode Flow . 13-6

Link Libraries With Equal Nominal PVT Values . 13-7
Setting the dont_use Attribute on Library Cells . 13-9

Distinct PVT Requirements . 13-9

Unsupported k-factors . 13-10

Automatic Detection of Driving Cell Library . 13-11

Relating the Minimum Library to the Maximum Library 13-11

Unique Identification of Libraries Based on File Names 13-12

Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells 13-12

Scenario Management Commands . 13-15

Using ILMs in Multicorner-Multimode Designs . 13-16

ILM Checks for Scenario Management . 13-16

Power Optimization Techniques . 13-17

Contents xiv

Power Compiler User Guide Version E-2010.12-SP2
Optimizing for Leakage Power . 13-17

Optimizing for Dynamic Power. 13-19

Reporting Commands. 13-20

report_scenario Command . 13-20

Reporting Commands That Support the -scenario Option 13-21

Commands That Report the Current Scenario . 13-22

Reporting Examples . 13-23

Supported SDC Commands . 13-28

Multicorner-Multimode Script Example . 13-29

Appendix A. Integrated Clock-Gating Cell Example

Library Description . A-2

Sample Schematics . A-4

Rising-Edge Latch-Based Integrated Cells . A-5

Rising-Edge Latch-Free Integrated Cells. A-7

Falling Edge Latch-Based Integrated Cells . A-8

Falling-Edge Latch-Free Integrated Cells . A-10

Appendix B. Attributes for Querying and Filtering

Derived Attribute Lists. B-2

Usage Examples. B-4

Index
Chapter 1: Contents
1-xv

Contents xv

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2

Contents xvi

Preface

This preface includes the following sections:

• What’s New in This Release

• About This User Guide

• Customer Support

xvii

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
What’s New in This Release

Information about new features, enhancements, and changes, along with known problems
and limitations and resolved Synopsys Technical Action Requests (STARs), is available in
the Power Compiler Release Notes in SolvNet.

To see the Power Compiler Release Notes,

1. Go to the Download Center on SolvNet located at the following address:

 https://solvnet.synopsys.com/DownloadCenter

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to register with SolvNet.

2. Select Power Compiler, and then select a release in the list that appears.
Preface
What’s New in This Release xviii

https://solvnet.synopsys.com/DownloadCenter

Power Compiler User Guide Version E-2010.12-SP2
About This User Guide

This user guide describes the Power Compiler tool, its methodology, and its use. Power
Compiler is a comprehensive tool that assists you in analysis and optimization of your
design for power.

Audience

The Power Compiler User Guide builds on concepts introduced in Design Compiler
publications. It is assumed in this user guide that the user has some familiarity with Design
Compiler products.

Related Publications

For additional information about Power Compiler, see the documentation on SolvNet at the
following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to see the documentation for the following related Synopsys products:

• Design Compiler

• DFT Compiler

• Formality

• PrimeTime PX
Chapter 1: Preface
About This User Guide 1-xix
Preface
About This User Guide xix

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list.

Courier bold Indicates user input—text you type verbatim—in
examples, such as

prompt> write_file top

[] Denotes optional arguments in syntax, such as
write_file [-format fmt]

... Indicates that arguments can be repeated as many
times as needed, such as
pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as
low | medium | high

Control-c Indicates a keyboard combination, such as holding
down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Preface
About This User Guide xx

Power Compiler User Guide Version E-2010.12-SP2
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes a knowledge base of technical articles and answers to frequently asked
questions about Synopsys tools. SolvNet also gives you access to a wide range of Synopsys
online services including software downloads, documentation, and technical support.

To access SolvNet, go to the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a support case to your local support center online by signing in to SolvNet at
 https://solvnet.synopsys.com, clicking Support, and then clicking “Open A Support
Case.”

• Send an e-mail message to your local support center.

• E-mail support_center@synopsys.com from within North America.

• Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

• Call (800) 245-8005 from within North America.

• Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Chapter 1: Preface
Customer Support 1-xxi
Preface
Customer Support xxi

https://solvnet.synopsys.com
https://solvnet.synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Preface
Customer Support xxii

1
Introduction to Power Compiler 1

This chapter describes the Power Compiler methodology and describes power library
models and power analysis technology. In addition, it provides library and license
requirements.

Power Compiler is part of Synopsys's Design Compiler synthesis family. It performs both
RTL and gate-level power optimization and gate-level power analysis. By applying Power
Compiler's various power reduction techniques, including clock-gating, operand isolation,
multivoltage leakage power optimization, and gate-level power optimization, you can
achieve power savings, and area and timing optimization in the front-end synthesis domain.

This chapter contains the following sections:

• Power Compiler Methodology

• Power Library Models

• Power Analysis Technology

• Power Optimization Technology

• Working With Power Compiler

1-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Power Compiler Methodology

With the increasing popularity of portable-oriented applications, low-power designs have
become crucial elements for product success. Most especially, the static power (leakage
power) consumption concern is more pronounced when the technology is smaller than 90
nm in the ultra-deep sub-micron domain.

Power Compiler provides the following optimization features:

• Leakage power or static power optimization

• Multivoltage threshold power optimization

• Power gating

• Dynamic power optimization

• Clock-gating cell insertion techniques: discrete components, integrated clock gating,
generic integrated clock gating

• Operand isolation

• Gate-level power optimization

• Multivoltage and Multicorner-Multimode support

Power Compiler provides a complete methodology for low-power designs.

• Power optimization technology

The power optimization technology optimizes your design for power consumption. It
computes average power consumption based on the activity of the nets in your design.

You can perform the following types of power optimization of your design:

• Register transfer level using clock gating and operand isolation techniques.

• Gate level power optimization including leakage optimization using cell libraries with
multivoltage threshold voltages.

• Gate level dynamic power optimization, through simulation and back annotation of
switching activity.
Chapter 1: Introduction to Power Compiler
Power Compiler Methodology 1-2

Power Compiler User Guide Version E-2010.12-SP2
• Power analysis technology

The power analysis technology analyzes your design for power consumption. Working in
conjunction with Design Compiler, Power Compiler provides simultaneous optimization
for timing, power, and area.

You can perform power analysis of your design at the

• Register transfer level using RTL simulation

• Gate level using RTL or gate-level simulation

Power Library Models

The power library model analyzes leakage, switching, and internal power.

For more information about library modeling and characterization for power, see the Library
Compiler documentation.

The Power Compiler gate-level power model supports the following features:

• Composite Current Source (CCS) library support

• Lookup tables based on output pin capacitance and input transition time

• Cells with multiple output pins

• State-dependent and path-dependent internal power

• Leakage power, including state-dependent and path-dependent internal power

• Separate specification of rise and fall power in the internal power group

In addition, you can use the CCS power model. CCS models represent the physical circuit
properties more closely than other models to the simulated data obtained during
characterization with SPICE. It is a current-based power model that contains the following
features:

• One library format suitable for a wide range of applications, including power analysis and
optimization

• Power analysis with much higher time resolution compared to NLPM

• Dynamic power characterized by current waveforms stored in the library. The charge can
be derived from the current waveform
Chapter 1: Introduction to Power Compiler
Power Library Models 1-3
Chapter 1: Introduction to Power Compiler
Power Library Models 1-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Leakage power modeled as the actual leakage current. The leakage current does not
artificially depend on the reference voltage, as is the case with leakage power. This
facilitates voltage scaling

• Standard-cell and macro-cell modeling

Power Analysis Technology

Power Compiler analyzes your design for net switching power, cell internal power, and
leakage power. Power Compiler also enables you to perform power analysis of your
gate-level design using switching activity from RTL or gate-level simulation or
user-annotation

When analyzing a gate-level design, Power Compiler requires a gate-level netlist and
switching activity for the netlist. Using steps described in this book, Power Compiler enables
you to capture the switching activity of primary inputs, primary outputs, and outputs of
sequential elements during RTL simulation. After you annotate the captured activity on
design elements, Power Compiler propagates switching activity through the nonannotated
portions of your design.

Using power analysis by way of switching activity from RTL simulation provides a much
faster turnaround than analysis using switching activity by way of gate-level simulation.

If you require more accuracy during the later stages of design development, you can
annotate some or all of the nets of your design with switching activity from full-timing
gate-level simulation.

Power Compiler supports the following power analysis features:

• Performs gate-level power analysis.

• Analyzes net switching power, cell internal power, and leakage power.

• Accepts input as either user-defined switching activity, switching activity from RTL or
gate-level simulation, or a combination of both. The default is vector-free.

• Propagates switching activity during power analysis to nonannotated nets.

• Supports sequential, hierarchical, gated clock, and multiple-clock designs.

• Supports RAM and I/O modeling using a detailed state-dependent and path-dependent
power model.

• Performs power analysis in a single, integrated environment at multiple phases of the
design process.

• Reports power at any level of hierarchy to enable quick debugging.
Chapter 1: Introduction to Power Compiler
Power Analysis Technology 1-4

Power Compiler User Guide Version E-2010.12-SP2
• Reports capability to validate your testbench.

• Supports interfaces to NC-Sim, MTI, VCS-MX, Scirroco, and Verilog-XL simulators for
toggle data.

Synopsys also provides another gate level detail power analysis tool called PrimeTime PX.
PrimeTime PX can analyze peak power, glitch power and X-state power. It also has time
based power waveform and supports special modes of operation. For more information, see
the PrimeTime PX User Guide.

Power Optimization Technology

You can optimize your design for power using the following capabilities:

• RTL clock gating

• Operand isolation

• Gate-level multivoltage and dynamic power optimization

RTL clock gating is the most effective power optimization feature provided by Power
Compiler. This is a high-level optimization technique that can save a significant amount of
power by adding clock gates to registers that are not always enabled and with synchronous
load-enable or explicit feedback loops. This greatly reduces the power consumption of the
design by reducing switching activity on the clock inputs to registers and eliminating the
multiplexers. It also results in a lower area consumption for your design.

The operand isolation feature could significantly reduce the power dissipation of a datapath
intensive design at the cost of a slight increase in area and delay. With operand isolation, the
inputs of the datapath operators are held stable whenever the output is not used.

RTL clock gating and operand isolation optimize for dynamic power and can be applied
simultaneously on a design.

When a gate-level power optimization constraint is set in the design, by default, Power
Compiler performs optimization to meet the constraints for design rule checking, timing,
power and area in that order of priority.

The Power Compiler gate-level power optimization solution offers the following features:

• Push-button user interface to reduce power consumption

• Multivoltage libraries for leakage optimization with short turnaround time

• Simultaneous optimization for timing, power, and area

• Optimization based on circuit activity, capacitance, and transition times
Chapter 1: Introduction to Power Compiler
Power Optimization Technology 1-5
Chapter 1: Introduction to Power Compiler
Power Optimization Technology 1-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Power analysis capability; optimizes with the same detailed power library model used in
analysis

• Operates within Galaxy platform and is compatible with other Synopsys tools (Design
Compiler, Floorplan Manager, Module Compiler, DFT Compiler, and Formality)

Working With Power Compiler

This section provides information about the basic requirements to analyze and optimize for
power.

Library Requirements
Power Compiler uses technology libraries characterized for power. You can characterize
your library with the following power features:

Internal Power

To optimize for dynamic power, Power Compiler requires libraries characterized for
internal power. This is the minimum library requirement to characterize for power. This
characteristic accounts for short-circuit power consumed internal to gates.

Leakage Power

To optimize for static power, Power Compiler requires libraries characterized for leakage
power. This characteristic accounts for the power dissipated while the device is not in
use. Power Compiler also supports multivoltage libraries.

State and Path Dependency

To optimize for varying modes of operation, Power Compiler requires libraries
characterized for state-dependency. To optimize for varying power consumption based on
various input to output paths, Power Compiler requires libraries characterized for
path-dependency.

To capture state-dependent and path-dependent switching activity from simulation,
library cells must have state- and path- dependent information in the lookup tables for
internal power and pin capacitance. Synopsys Power Compiler uses state-dependent
and path-dependent switching activity to compute state-dependent and path-dependent
switching power.

If you are developing libraries to use with Synopsys power products, see the Library
Compiler documentation. Power Compiler supports non-linear power models, scalable
polynomial equation power models, and composite current source libraries.
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-6

Power Compiler User Guide Version E-2010.12-SP2
Command-Line Interface
Power Compiler is accessible from the Design Compiler command-line interface if you have
an appropriate license. See “License Requirements” on page 1-7.

Using the Design Compiler command-line interface, power optimization takes place during
your dc_shell optimization session. For more information about its command-line interface,
see the Design Compiler documentation.

Power Compiler also works within the Design Compiler topographical domain shell
(dc_shell-topo). Whereas dc_shell uses wide-load models for timing and area power
optimizations, dc_shell-topo uses placement timing values instead. For more information,
see the Design Compiler documentation.

Note:
Unless otherwise noted, all functionality described in this manual pertains to both
dc_shell and dc_shell-topo. Also unless otherwise noted, this manual uses "dc_shell" as
a generic term that applies to the Design Compiler topographical domain also.

Graphical User Interface
Power Compiler is accessible from Design Vision, the graphical user interface (GUI) for the
Synopsys logic synthesis environment. You must have Design Vision license and other
appropriate licenses to perform power analysis and optimizations. For more details, see
“License Requirements” on page 1-7.

Design Vision supports menu and dialog boxes for the commonly used synthesis features.
The Power menu in the GUI allows you to specify, modify, and review your power
architecture. For more details on specifying power intent using GUI, see “Defining Power
Intent Using Design Vision GUI” on page 12-60. For details on general usage of Design
Vision, see the Design Vision User Guide.

License Requirements
Power analysis and optimization are performed in the following manner:

• Power analysis using Power Compiler

• Power optimization using Power Compiler

Power Compiler License

Power Compiler analysis and optimization require either one of the following two
combinations of licenses:
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-7
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Power-Optimization

• Power-Analysis + Power-Optimization-Upgrade

Power Compiler is incorporated within Design Compiler. You need the license for Design
Compiler in addition to the power licenses mentioned above.

These licenses also allow you to perform multivoltage power optimization and analysis.

Design Vision License

Power analysis and power optimizations can be performed using the Design Vision GUI. To
use Design Vision, you need the Design-Vision license. To use Design Vision in
topographical mode, you need a Design-Vision license, a DesignWare licence and the DC
Ultra package.

How the Licenses Work

When you invoke dc_shell, no power license is checked out until you use a Power Compiler
feature. When the Power Compiler feature is completed, your power license is released.

Synopsys licensing software and the documentation describing it are separate from the
tools that use it. You install, configure, and use a single copy of Synopsys Common
Licensing (SCL) for all Synopsys tools. Because SCL provides a single, common licensing
base for all Synopsys tools, it reduces licensing administration complexity, minimizing the
effort you expend in installing, maintaining, and managing licensing software for Synopsys
tools.

For complete Synopsys licensing information, see the Synopsys Common Licensing
Administration Guide. This guide provides detailed information on SCL installation and
configuration, including examples of license key files and troubleshooting guidelines.

Reading and Writing Designs
When using dc_shell, you read designs from disk before working on them, make changes to
them, and write them back to the disk.
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-8

Power Compiler User Guide Version E-2010.12-SP2
Power Compiler can read or write a gate-level netlist in any of the formats shown in
Table 1-1.

Note:
NLPM and CCS are the supported power models in the .db technology library.

Command Syntax
Power Compiler provides the same shell language and links to external computer-aided
engineering tools as Design Compiler.

You can use dc_shell commands in the following two ways:

• Type single commands interactively in the appropriate shell.

Table 1-1 File Formats and Extensions

Format Default
extension

File type Special
license key
required?

db .db Synopsys internal database format No

ddc .ddc Synopsys Design Compiler database
format (the default)

No

EDIF .edif Electronic Design Interchange Format No

equation .eqn Synopsys equation format No

LSI .NET LSI Logic Corporation netlist format Yes

MENTOR .neted Mentor intermediate netlist format (see
Synopsys Mentor Interface Application
Note)

Yes

PLA .pla Berkeley (Espresso) PLA format No

ST .st Synopsys state table format No

TDL .tdl Tegas Design Language (TDL) netlist
format

Yes

Verilog .v Hardware Description Language Yes

VHDL .vhd VHSIC Hardware Description Yes
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-9
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Execute command scripts in the shell. Command scripts are text files of shell commands
and might not require your interaction to continue or complete a given process. A script
can start the shell, perform various processes on your design, save the changes by
writing them to a file, and exit the shell.

Getting Help
In the dc_shell command line, you can display information about your screen about
commands and topics.

Help for a Command
The syntax of any dc_shell command is displayed when you use the -help option after the
command name. The -help option displays the possible options for a command.

Example
dc_shell> read_saif -help
Usage: read_saif # read SAIF file
 -input <file_name> (the input SAIF file name)
 [-instance_name <string>]
 (the instance in the SAIF file
 containing the switching activity)
 [-target_instance <instance>]
 (the target instance that will be
 annotated with the SAIF information)
 [-names_file <file_name>]
 (the accumulated name changes file name)
 [-ignore <string>] (the relative instance name whose
 switching activity will be ignored)
 [-ignore_absolute <string>]
 (the absolute instance name whose
 switching activity will be ignored)
 [-exclude <file_name>] (the file name that contains one
 or more -ignore options)
 [-exclude_absolute <file_name>]
 (the file name that contains one
 or more -ignore_absolute options)
 ...

Use the man command to display the entire man page for a command.

Example
dc_shell> man report_rtl_power

The man page contains syntax and other detailed information.
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-10

Power Compiler User Guide Version E-2010.12-SP2
Help for a Topic
The help command displays information about a dc_shell command, variable, or variable
group.

The following syntax displays the help command:

help [topic]

Here, topic is the name of a command, variable, or variable group. If a topic is not named,
the help command displays its own man page.

The help command enables you to display the man pages interactively while you are
running the shell. The online help includes man pages for all commands, variables, and
variable groups.

The following example returns the man page for the system_variables variable group:

dc_shell> help system_variables

If you request help for a topic that cannot be found, Power Compiler displays the following
error message:

dc_shell> help xyz_topic
Error: No manual entry for ’xyz_topic’
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-11
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Chapter 1: Introduction to Power Compiler
Working With Power Compiler 1-12

2
Power Compiler Design Flow 2

As you create a design, it moves from a high level of abstraction to its final implementation
at the gate level. Power Compiler offers analysis and optimization throughout the design
cycle, from RTL to the gate level.

This chapter contains the following sections:

• Power in the Design Cycle

• Power Optimization and Analysis Flow

• Power Compiler and Other Synopsys Tools

2-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Power in the Design Cycle

At each level of abstraction, you use simulation, analysis, and optimization to refine your
design before moving to the next lower level of design abstraction. The relationship of these
three processes is shown in Figure 2-1.

Figure 2-1 Power Flow at Each Abstraction Level

Simulation, analysis, and optimization occur at each level of abstraction. Design refinement
loops occur within each level. Simulation and the resultant switching activity give analysis
and optimization the necessary information to refine the design before going to the next
lower level of abstraction. The entire flow is shown in Figure 2-2.

Switching
Activity

Design
Refinement
Loop

Simulation Analysis

Optimization

Switching
activity

Design
refinement
loop
Chapter 2: Power Compiler Design Flow
Power in the Design Cycle 2-2

Power Compiler User Guide Version E-2010.12-SP2
Figure 2-2 Power Flow From RTL to Gate-Level

Using Power Compiler, you can analyze and optimize at the RTL and gate levels. The higher
the level of design abstraction, the greater the power savings you can achieve.

Power Optimization and Analysis Flow

Figure 2-3 on page 2-4 shows a high-level power optimization and analysis flow.

 Register

 Transfer

Level

Optimization

Optimization

 Simulation

 Simulation

 Analysis

AnalysisGate-Level

Switching
Activity

Switching
Activity
Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-3
Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 2-3 Power Optimization and Analysis Flow

The power methodology starts with your RTL design and technology library and results in a
power-optimized gate-level netlist.

During analysis and optimization, Synopsys power tools use information in your technology
library. To optimize or analyze dynamic power and leakage power, your technology library
must be characterized for internal power. To optimize or analyze static power, your
technology library must be characterized for leakage power.

You can use Power Compiler to analyze the gate-level netlist produced by Design Compiler
or the power-optimized netlist produced by Power Compiler.

Simulation

Gate-Level
Simulation

Optional
 Back-Annotation

File
Capacitance

RTL
Design

SAIF File

Technology
Library

Enable
Power
Optimization

Synthesis and
Power
Optimization

Power
Analysis and
Reporting

Gate-Level
Power Optimized
Design

dc_shell
Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-4

Power Compiler User Guide Version E-2010.12-SP2
Simulation
Most of the steps in the flow occur within the Design Compiler environment, dc_shell.
However, Figure 2-3 on page 2-4 shows that the power flow requires a SAIF file, which is
generated by simulation.

Simulation generates information about the design’s switching activity and creates a
Switching Activity Information Format (SAIF) file, which is used for annotation purposes. For
information, see Chapter 4, “Generating Switching Activity Interchange Format Files”.

During power analysis, Power Compiler uses annotated switching activity to evaluate the
power consumption of your design. During power optimization, Power Compiler uses
annotated switching activity to make optimization decisions about your design. For
information, see Chapter 5, “Annotating Switching Activity”.

Enable Power Optimization
Power Compiler provides several techniques for optimizing power, such a clock gating and
operand isolation. Power optimization achieved at higher levels of abstraction has an
increasingly important impact on reduction of power in the final gate-level implementation.
You enable power optimizations with Power Compiler commands described in this manual.
For information, see Chapter 7, “Clock Gating” and Chapter 9, “Operand Isolation”.

Synthesis and Power Optimization
Design Compiler and Power Compiler work together within the dc_shell environment to
synthesize your design to a gate-level netlist optimized for power. Synthesis with power
optimization occurs during Design Compiler’s compile processing.

Power Analysis and Reporting
You can use Power Compiler for analysis of your gate-level design at several points in your
methodology flow. Figure 2-3 on page 2-4 shows power analysis after power optimization,
which results in a detailed report of your power-optimized netlist.

You can also analyze power prior to synthesis and power optimization. For example, after
annotating the switching activity from your SAIF file to verify that the annotation is correct.
Analysis prior to power optimization provides an optional reference point for comparison with
the power-optimized netlist.
Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-5
Chapter 2: Power Compiler Design Flow
Power Optimization and Analysis Flow 2-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Power Compiler and Other Synopsys Tools

Power Compiler enables you to use low-power methodology with the following Synopsys
tools in addition to Design Compiler:

• DFT Compiler

• Formality

• PrimeTime

• IC Compiler
Chapter 2: Power Compiler Design Flow
Power Compiler and Other Synopsys Tools 2-6

3
Power Modeling and Calculation 3

As you create a design, it moves from a high level of abstraction to its final implementation
at the gate level. Power Compiler offers analysis and optimization throughout the design
cycle, from RTL to the gate level.

This chapter contains the following sections:

• Power Types

• Calculating Power

• Using CCS Power Libraries

3-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Power Types

The power dissipated in a circuit falls into two broad categories:

• Static power

• Dynamic power

Static Power
Static power is the power dissipated by a gate when it is not switching, that is, when it is
inactive or static.

Static power is dissipated in several ways. The largest percentage of static power results
from source-to-drain subthreshold leakage, which is caused by reduced threshold voltages
that prevent the gate from completely turning off. Static power is also dissipated when
current leaks between the diffusion layers and the substrate. For this reason, static power is
often called leakage power.

Dynamic Power
Dynamic power is the power dissipated when the circuit is active. A circuit is active anytime
the voltage on a net changes due to some stimulus applied to the circuit. Because voltage
on an input net can change without necessarily resulting in a logic transition on the output,
dynamic power can be dissipated even when an output net does not change its logic state.

The dynamic power of a circuit is composed of two kinds of power:

• Switching power

• Internal power

Switching Power
The switching power of a driving cell is the power dissipated by the charging and discharging
of the load capacitance at the output of the cell. The total load capacitance at the output of
a driving cell is the sum of the net and gate capacitances on the driving output.

Because such charging and discharging are the result of the logic transitions at the output
of the cell, switching power increases as logic transitions increase. Therefore, the switching
power of a cell is a function of both the total load capacitance at the cell output and the rate
of logic transitions.
Chapter 3: Power Modeling and Calculation
Power Types 3-2

Power Compiler User Guide Version E-2010.12-SP2
Internal Power
Internal power is any power dissipated within the boundary of a cell. During switching, a
circuit dissipates internal power by the charging or discharging of any existing capacitances
internal to the cell. Internal power includes power dissipated by a momentary short circuit
between the P and N transistors of a gate, called short-circuit power.

To illustrate the cause of short-circuit power, consider the simple gate shown in Figure 3-1
on page 3-4. A rising signal is applied at IN. As the signal transitions from low to high, the N
type transistor turns on and the P type transistor turns off. However, for a short time during
signal transition, both the P and N type transistors can be on simultaneously. During this
time, current Isc flows from Vdd to GND, causing the dissipation of short-circuit power (Psc).

For circuits with fast transition times, short-circuit power can be small. However, for circuits
with slow transition times, short-circuit power can account for 30 percent of the total power
dissipated by the gate. Short-circuit power is affected by the dimensions of the transistors
and the load capacitance at the gate’s output.

In most simple library cells, internal power is due mostly to short-circuit power. For more
complex cells, the charging and discharging of internal capacitance may be the dominant
source of internal power.

Library developers can model internal power by using the internal power library group. For
more information about modeling internal power, see the Library Compiler documentation.

Figure 3-1 on page 3-4 shows a simple gate and illustrates where static and dynamic power
are dissipated.
Chapter 3: Power Modeling and Calculation
Power Types 3-3
Chapter 3: Power Modeling and Calculation
Power Types 3-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 3-1 Components of Power Dissipation

Calculating Power

Note:
The power calculations described in this section only apply to NLPM power calculations.

Power analysis calculates and reports power based on the equations that accompany this
chapter. Power Compiler uses these equations and the information modeled in your
technology library to evaluate the power of your design. This chapter includes information
about library modeling for power where equations for power types appear. For more
information about modeling power in your technology library, see the Library Compiler
documentation.

Leakage Power Calculation
Power Compiler analysis computes the total leakage power of a design by summing the
leakage power of the design’s library cells, as shown in the following equation:

Time

Voltage

GND

Vdd

Cload

Ilk Leakage current

Rising signal

Isc Short-circuit current

Ilk

Isw

Isw Switching current

IN OUT

N

P

Isc
Ilk

Time

Voltage

Falling signal

at OUTat IN

PLeakageTotal PCellLeakagei
cells i()∀

∑=
Chapter 3: Power Modeling and Calculation
Calculating Power 3-4

Power Compiler User Guide Version E-2010.12-SP2
Where:

PLeakageTotal = Total leakage power dissipation of the design

PCellLeakagei = Leakage power dissipation of each cell i

Library developers annotate the library cells with appropriate total leakage power dissipated
by each library cell. They can provide a single leakage power for all cells in the library by
using the default_cell_leakage_power attribute or provide leakage power per cell with
the cell_leakage_power attribute.

If the cell_leakage_power attribute is missing or negative, the tool assigns the value of the
default_cell_leakage_power attribute. If this is not available, Power Compiler assumes
the default value of 0.

To model state-dependent leakage, use the leakage_power attribute. You can also use
Boolean expressions to define the conditions for different cell leakage power values.

To calculate cell leakage, Power Compiler determines the units based on the
leakage_power_unit attribute. It checks for the leakage_power attribute first. The leakage
value for each state is multiplied by the percentage of the total simulation time at that state
and summed to provide the total leakage power per cell.

If the state is not defined in the leakage_power attribute, the value of the
cell_leakage_power attribute is used to obtain the contribution of the leakage power at the
undefined state.

Figure 3-2 on page 3-6 shows the leakage power calculation performed on a NAND gate
with state-dependent values.
Chapter 3: Power Modeling and Calculation
Calculating Power 3-5
Chapter 3: Power Modeling and Calculation
Calculating Power 3-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 3-2 Leakage Power Calculation for a NAND Gate With State Dependent Values

Multithreshold Voltage Libraries
Static power dissipation has an exponential dependence on the switching threshold of the
transistor’s voltage. In order to address low-power designs IC foundries offer technologies
that enable multiple threshold voltage libraries.

Each type of logic gate is available in two or more different threshold voltage (vth) groups.
The threshold voltage determines the speed and the leakage characteristics of the cell.
Cells with low-threshold transistors switch quickly but have higher leakage and consume
more power. Cells with high threshold transistors have lower leakage and consume less
power but switch more slowly.

For leakage power optimization Power Compiler supports multiple mechanisms for
appropriately swapping high and low-threshold voltage cells based on the power and timing
requirements.

Channel-Width Based Leakage Power Calculation
The leakage power of a library cell is directly proportional to the channel-width of the
transistors. In multithreshold libraries, cells with low-threshold voltage have faster timing and
therefore can be used on the timing critical paths. Leakage power on these timing critical
paths can be reduced by choosing lower voltage-threshold cells that have smaller
channel-widths. The total channel-width for a specific threshold voltage group is obtained by
summing the channel widths of all the transistors that belong to that threshold voltage group.
Figure 3-3 on page 3-7 shows a CMOS cell with transistors from two different threshold
voltage groups, vth1, vth2 and each threshold voltage group with different channel-widths,
Cvth1 and Cvth2.

A
B

Z

library
leakage_power_unit : 1nW ;
cell (NAND) ...
cell_leakage_power : .5 ;
leakage_power () {
 when : "A&B"
 value : .2

For a total power consumption
time of 600, the cell is at the
state defined by the condition
A&B for 33% of the time. For the
remaining 67% of the simulation
time, the default value is
assumed.

Hence, the total cell leakage
value is:

(.33 * .2nW) + (.67*.5nW)=.4nW
Chapter 3: Power Modeling and Calculation
Calculating Power 3-6

Power Compiler User Guide Version E-2010.12-SP2
Figure 3-3 CMOS Cell with Transistors From Two Threshold Voltage Groups

The cost function for the leakage power calculation is as follows:

Where:

vth1 and vth2 are the different threshold voltage groups

Cvth is the channel-width of the cell for the threshold voltage group vth

Wvth is the weight for the threshold voltage group vth.

This method of optimizing for leakage power is based only on the device dimension and is
independent of the operating condition. For the tool to use the channel-width based leakage
power optimization, the target library used must have the total channel widths of the
transistors for each threshold voltage group for each cell.

The target libraries should have the cell-level and library-level attributes to specify the
threshold voltage group and the corresponding channel-width values:

• The library level threshold_voltage_groups attribute and the corresponding
channel-width attribute, threshold_voltage_channel_width_factors, should be
mentioned in the library, as shown in the following example:

library (L1) {
...

Min ΣWvth1∗Cvth1 ΣWvth2∗Cvth2 …+ +()
Chapter 3: Power Modeling and Calculation
Calculating Power 3-7
Chapter 3: Power Modeling and Calculation
Calculating Power 3-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
threshold_voltage_groups(lvt, nvt, hvt);
threshold_voltage_channel_width_factors(100, 10, 1);
...
}

• The cell-level threshold_voltage_groups attribute and the corresponding
channel-width attribute, channel_widths, should be mentioned in the library, as shown
in the following example:

library (AN10) {
...
threshold_voltage_groups(lvt, nvt, hvt);
channel_widths(1.2, 12.5, 8.2);
...
}

• The lc_enable_channel_width_based_leakage variable must be set to true for the
Library Compiler to recognize the channel-width related attributes.

If the technology library is not characterized with the channel-width attribute, you can set
these attributes in the Design Compiler script, using the set_attribute command. For
more details on setting the attribute and an example script, see “Sample Scripts for Leakage
Optimization” on page 10-13.

Internal Power Calculation
When computing internal power, power analysis uses information characterized in the
technology library. The internal_power library group and its associated attributes and
groups define scaling factors and a default value for internal power. Library developers can
use the internal power table to model internal power on any pin of the library cell.

A cell’s internal power is the sum of the internal power of all of the cell’s inputs and outputs
as modeled in the technology library. Figure 3-4 on page 3-9 shows how Synopsys power
tools calculate the internal power for a simple combinational cell, U1 with path-dependent
internal power modeling.
Chapter 3: Power Modeling and Calculation
Calculating Power 3-8

Power Compiler User Guide Version E-2010.12-SP2
Figure 3-4 Internal Power Model (Combinational)

Power Compiler calculates the input path weights based on the input toggle rates, transition
times, and functionality of the cell. Power Compiler supports NLDM (table-based) models.

NLDM Models
To compute the internal power consumption of NLDM models, Power Compiler uses the
weighted average transition time as an index to the internal power associated with the output
pin. As an additional index to the power table, Power Compiler uses the output load
capacitance. The two indexes enable Power Compiler to access the two-dimensional lookup
table for the output, as shown in Figure 3-5 on page 3-10.

PInt Total internal power of the cellE

Ez Internal energy for output Z as a function of input transitions,
output load, and voltage

TRz Toggle rate of output pin Z, transitions per second

TRi Toggle rate of input pin i, transitions per second

Transi Transition time of input i

WeightAvg(Trans) Weighted average transition time for output Z

A

B

Z

Cell U1

PInt = Sum_{i=A,B} E_{i->Z} x PathWeighti x TRZ

E{i->Z} = f[C_Load, Transi]

Sum_{i = A,B} PathWeight_i =1
Chapter 3: Power Modeling and Calculation
Calculating Power 3-9
Chapter 3: Power Modeling and Calculation
Calculating Power 3-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 3-5 Two-Dimensional Lookup Table

For cells in which output pins have equal or opposite logic values, Power Compiler can use
a three-dimensional lookup table. Power Compiler indexes the three-dimensional table by
using input transition time and both output capacitances of the equal (or opposite) pins. The
three-dimensional table is well suited to describing the flip-flop, which has Q and Q-bar
outputs of opposite value.

The internal_power library group supports a one-, two-, or three-dimensional lookup
table. Table 3-1 shows the types of lookup tables, whether they are appropriate to inputs or
outputs, and how they are indexed.

Table 3-1 Lookup Tables

Lookup table Defined on Indexed by

One-dimensional Input Input transition

Output Output load capacitance

Two-dimensional Output Input transition and output load
capacitance

Three-dimensional Output Input transition and output load
capacitances of two outputs that
have equal or opposite logic
values

Weighted average
Output load

Energy/

0.20

0.56

0.72

1.23

10.2 30.8 58.7

99.9

151.6 capacitance

transition

input transition
time

x

y
0.34

110.1

z

Chapter 3: Power Modeling and Calculation
Calculating Power 3-10

Power Compiler User Guide Version E-2010.12-SP2
For more information about modeling internal power and library modeling syntax and
methodology, see the Library Compiler documentation.

For various operating conditions, the table model supports scaling factors for the internal
power calculation. These are listed below:

• k_process_internal_power

• k_temp_internal_power

• k_volt_internal_power

These factors however do not accurately model the non-linear effects of the operating
conditions, so most vendors generate separate table-based libraries for different operating
conditions.

State and Path Dependency
Cells often consume different amounts of internal power, depending on which input pin
transitions or depending on the state of the cell. These are state and path dependent.

To demonstrate path-dependent internal power, consider the following simple library cell,
which has several levels of logic and a number of input pins:

Input A and input D can each cause an output transition at Z. However, input D affects only
one level of logic, whereas input A affects all three. An output transition at Z consumes more
internal power when it results from an input transition at A than when it results from an input
transition at D. You can specify multiple lookup tables for outputs, depending on the input
transitions.

Power Compiler chooses the appropriate path dependent internal power table for an output
by checking the related_pin attribute in the library. Based on the percentage of toggles on
each input pin, the total power due to transitions on the output pin is calculated by accessing
the correct table or equation for each related pin and applying the percentage contribution
per input pin.

A
B

C

D Z
Chapter 3: Power Modeling and Calculation
Calculating Power 3-11
Chapter 3: Power Modeling and Calculation
Calculating Power 3-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
An example of a cell with state-dependent internal power is a RAM cell. It consumes a
different amount of internal power depending on whether it is in read or write model You can
specify separate tables or equations depending on the state or mode of the cell.

If the toggle rate information is provided for each state defined in the power model, Power
Compiler accesses the appropriate information. If only the input/output toggle information is
available, Power Compiler averages the tables for the different states to compute the internal
power of the cell. For more information about how the toggle information affects the internal
power analysis, see Chapter 6, “Performing Power Analysis.”

Rise and Fall Power
When a signal transitions, the internal power related to the rising transition is different from
the internal power related to the falling transition. Power Compiler supports a library model
that enables you to designate a separate rising and falling power value, depending on the
transition.

Switching Power Calculation
Power Compiler analysis calculates switching power (Pc) in the following way:

Where:

Pc Switching power of the design

TRi Toggle rate of net i, transitions per second

Vdd Supply voltage

CLoadi is the total capacitive load of net i, including parasitic capacitance, gate capacitance,
and drain capacitance of all the pins connected to net i.

Power Compiler software obtains CLoadi from the wire load model for the net and from the
technology library information for the gates connected to the net. You can also
back-annotate capacitance information after physical design.

Pc
Vdd
2

2
---------- CLoadi

TRi×⎝ ⎠
⎛ ⎞

nets i()∀
∑=
Chapter 3: Power Modeling and Calculation
Calculating Power 3-12

Power Compiler User Guide Version E-2010.12-SP2
Dynamic Power Calculation
Because dynamic power is the power dissipated when a circuit is active, the equations for
switching power and internal power provide the dynamic power of the design.

Dynamic power = Switching power + Internal power

For more information about the library models, see the Library Compiler documentation.

Dynamic Power Unit Derivation
The unit for switching power and the values in the internal_power table is a derived unit.
It is derived from the following function:

(capacitive_load_unit * voltage_unit2)/time_unit

The function’s parameters are defined in the technology library. The result is scaled to the
closest MKS unit: micro, nano, femto, or pico. This dynamic power unit scaling effect needs
to be taken into account by library developers when generating energy values for the internal
power table.

The following is an example of how Power Compiler derives dynamic power units (if the
technology library has the following attributes):

capacitive_load_unit (0.35, ff);
voltage_unit: "1V"
time_unit: "1ns";

To obtain the dynamic power unit, complete the following steps:

1. Find the starting value.

starting value = capacitive_load_unit*voltage_unit2/
time_unit
starting value = .35e-15*(1^2)/1e-9
starting value = 3.5e-7W

The starting value consists of a base unit (1e-7W) and a multiplier (3.5).

2. Select an MKS base unit that converts the multiplier of the starting value found in step 1
to an integer number. For example, select an MKS unit between the range of att [1e-18]
and giga [1e+12] watts, which converts the starting value’s multiplier into an integer
value.

The MKS base unit that meets this requirement in this example is nano [1e-9]. This is
because the starting value of 3.5e-7W expressed in nW becomes 350nW. The original
multiplier of 3.5 is converted to an integer value (350) by selecting the nW MKS base unit.

converted value = 350e-9W
Chapter 3: Power Modeling and Calculation
Calculating Power 3-13
Chapter 3: Power Modeling and Calculation
Calculating Power 3-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
converted value multiplier = 350
base unit = 1e9W = 1nW

3. Determine the base unit multiplier by selecting a power of 10 integer (for example, 1, 10,
100, ...) closest in magnitude to the converted value multiplier found in step 2.

converted value multiplier = 350 (from step 2)
base unit multiplier = 100

4. Combine the base unit multiplier obtained in step 3 and the base unit obtained in step 2
to obtain the dynamic power unit.

base unit = 1nW (from step 2)
base unit multiplier = 100 (from step 3)
dynamic power unit = (100) 1nW = 100nW

In this example, each cell’s dynamic power calculated by Power Compiler is multiplied by
100nW.

Power Calculation for Multirail Cells
Power Compiler supports the power analysis of libraries which contain cells with multiple
rails for which power values are defined per voltage rail.

For multivoltage cells which contain separate power tables for each power level, Power
Compiler correctly determines the internal and leakage power contribution for each power
rail and sums it to report the total power consumption.

Shown below are sample cells which contain power tables per rail. For more information
about defining per-rail power tables, see the Library Compiler documentation.

cell (AND2_1) {
 area : 1.0000;
 cell_footprint : MV12AND2;
 rail_connection (PV1, VDD1);
 rail_connection (PV2, VDD2);

 pin (a) {
 direction : input;
 capacitance : 0.1;
 input_signal_level : VDD1;
 internal_power () {
 power_level : VDD1;
 power (scalar) { values ("1.0"); }
 }
 }

 pin (b) {
 direction : input;
Chapter 3: Power Modeling and Calculation
Calculating Power 3-14

Power Compiler User Guide Version E-2010.12-SP2
 capacitance : 0.1;
 input_signal_level : VDD1;
 internal_power () {
 power_level : VDD1;
 power (scalar) { values ("1.0"); }
 }
 }

 pin (y) {
 direction : output;
 function : "a & b";
 output_signal_level : VDD2;

 timing () {
 related_pin : "a";
 timing_sense : positive_unate;
 cell_rise (scalar) { values ("1.0"); }
 rise_transition (scalar) { values ("1.0"); }
 cell_fall (scalar) { values ("1.0"); }
 fall_transition (scalar) { values ("1.0"); }
 }
 timing () {
 related_pin : "b";
 cell_rise (scalar) { values ("1.0"); }
 rise_transition (scalar) { values ("1.0"); }
 cell_fall (scalar) { values ("1.0"); }
 fall_transition (scalar) { values ("1.0"); }
 }
 internal_power () {
 power_level : VDD1;
 power (scalar) { values ("1.0"); }
 }
 internal_power () {
 power_level : VDD2;
 power (scalar) { values ("2.0"); }
 }
 }
 leakage_power () {
 power_level : VDD1;
 value : 1.0;
 }
 leakage_power () {
 power_level : VDD2;
 value : 2.0;
 }
 cell_leakage_power : 10;
 }
Chapter 3: Power Modeling and Calculation
Calculating Power 3-15
Chapter 3: Power Modeling and Calculation
Calculating Power 3-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Using CCS Power Libraries

CCS power libraries contain unified library data for power and rail analysis and optimization,
which ensures consistent analysis and simplification of the analysis flow. By capturing
current waveforms in the library, you can provide more accurate identification of potential
problem areas.

Both CCS and NLPM data can co-exist in a cell description in the .lib file. That is, a cell
description can have only NLPM data, only CCS data, or both NLPM and CCS data. Power
Compiler uses either NLPM data or CCS data for the power calculation.

Use the power_model_preference nlpm | ccs variable to specify your power model
preference when the library contains both NLPM and CCS in it. The default value is nlpm.
Using CCS or NLPM power libraries does not change the use model.

For more information about CCS power libraries and how to generate them, see the Library
Compiler documentation.
Chapter 3: Power Modeling and Calculation
Using CCS Power Libraries 3-16

4
Generating Switching Activity Interchange
Format Files 4

Power Compiler requires information about the switching activity of your design to perform
power analysis and power optimization. You can use simulation tools such as VCS to
generate switching activity information for your design, either in VCD format or Switching
Activity Interchange Format (SAIF). This chapter describes how to generate switching
activity in SAIF.

This chapter contains the following sections:

• About Switching Activity

• Introduction to SAIF Files

• Generating SAIF Files

• Verilog Switching Activity Examples

• VHDL Switching Activity Example

• Analyzing a SAIF File

4-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
About Switching Activity

The dynamic component usually accounts for a large percentage of the total power
consumption in a combinational circuit. Internal power of cells and transition from logic 1 to
logic 0 and vice versa, directly affect the dynamic power of a design. This toggling of logic
from one value to another is also known as switching activity.

Power Compiler models switching activity based on the following principles:

• Static Probability

Static probability is the probability that a signal is at a specific logic state; it is expressed
as a number between 0 and 1. SP1 is the static probability that a signal is at logic-1.
Similarly SP0 is that static probability that the signal is at logic-0.

You can calculate the static probability as a ratio of the time period for which the signal is
at a certain logic state relative to the total simulation time. For example, if SP1 = 0.70, the
signal is at logic 1 state 70 percent of the time. Synopsys power tools use SP1 when
modeling switching activity.

• Toggle Rate

The toggle rate is the number of logic-0-to-logic-1 and logic-1-to- logic-0 transitions of a
design object, such as a net, pin, or port, per unit of time. The toggle rate is denoted by
TR.

When the switching activity information is available, you must annotate this information
appropriately on the design objects, before you can use the switching activity information for
power optimization and analysis. For more details on annotating switching activity see,
Chapter 5, “Annotating Switching Activity.”

Introduction to SAIF Files

The accuracy of the power calculations used by Power Compiler depends on the accuracy
of the switching activity. Switching activity is calculated using RTL or gate-level simulation
and is stored in a SAIF file. You can use the SAIF file to annotate switching activity
information onto the design objects prior to power optimization and analysis.

SAIF is an ASCII format supported by Synopsys to facilitate the interchange of information
between various Synopsys tools. You use the read_saif command to read SAIF file and
the write_saif command to write out the SAIF file. For more information, see the man
pages.
Chapter 4: Generating Switching Activity Interchange Format Files
About Switching Activity 4-2

Power Compiler User Guide Version E-2010.12-SP2
Early in your design cycle you can use RTL simulation to explore your design and find out,

• Which RTL architecture consumes the least power?

• Which module consumes the most power?

• Where is power being consumed within a given block?

Later in your design cycle, you can use the gate-level simulation rather than RTL simulation
to annotate specific nets of your design or all the elements of your design for greater
accuracy. Table 4-1 summarizes the various methods of generating SAIF files and their
accuracies.

Generating SAIF Files

You can generate a SAIF file either from RTL simulation or gate-level simulation. This
section discusses both RTL and gate-level simulation using Synopsys VCS. VCS supports
Verilog, SystemVerilog, and VHDL formats.

Table 4-1 Comparing Methods of Capturing Switching Activity

Simulation Captured Not captured Trade-offs

RTL Synthesis-invariant
elements

1. Internal nodes
2. Correlation of non-
 synthesis-invariant
 elements
3. Glitching
4. State and path
 dependencies

Fast runtime
at expense of
some
accuracy

Zero-delay
and
unit-delay
gate-level

1. Synthesis-invariant
 elements
2. Internal nodes
3. Correlation
4. State dependencies
5. Some path
 dependencies

1. Some path
 dependencies
2. Glitching

More
accurate than
RTL
simulation,
but
significantly
higher
runtime

Full-timing
gate-level

1. All elements of
 design
2. Correlation
3. State and path
 dependencies

Highest accuracy, but
runtime can be very long

Correlation
between
primary
inputs
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-3
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
As shown in Figure 4-1 on page 4-4, you have two ways of generating a SAIF file:

• The SAIF file can be generated directly from VCS.

• Alternatively, the SAIF file can be generated by using the vcd2saif utility to convert the
VCD output file generated by VCS.

You can read the SAIF file into Power Compiler and generate a mapping file for all the name
changes of the nodes. You then read the name-mapping file and the synthesized gate-level
netlist in PrimeTime PX to perform averaged power analysis.

The solid lines indicate the recommended SAIF flow while the dotted lines indicate the
alternate method of SAIF flow using various Synopsys tools.

The following sections discuss the various ways of generating the SAIF file.

Figure 4-1 SAIF File Generation and Its Usage With Various Synopsys Tools

Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-4

Power Compiler User Guide Version E-2010.12-SP2
Generating SAIF Using VCD Output Files
Using the VCD output files generated by VCS is the simplest method of generating SAIF
files. The disadvantage is that VCD files can be very large, especially for gate-level
simulation, requiring more time for processing.

Follow these steps to generate the SAIF file and to annotate the switching activity:

1. Run the simulation to generate VCD output file.

2. Use the vcd2saif utility to convert the VCD output file to a SAIF file.

3. Annotate the switching activity within the SAIF file as described in Chapter 5, “Annotating
Switching Activity.”

Converting a VCD file to a SAIF File
The vcd2saif utility converts the RTL or gate-level VCD file generated by VCS into a SAIF
file. This utility has limited capability when the VCD is generated from the SystemVerilog
simulation as described in “Limited SystemVerilog Support in vcd2saif Utility” on page 4-6.

The vcd2saif utility is architecture-specific and is located in install_dir/$ARCH/syn/bin. The
$ARCH environment variable represents the specific platform (architecture) of your
Synopsys software installation, such as linux, AMD.

You can use compressed VCD files (.Z) and gzipped VCD files (.gz). In addition, for VPD
files, you can use the utility located at $VCS_HOME/bin/vpd2vcd, and for FSDB files, you
can use the utility located at $SYNOPSYS/bin/fsdb2vcd.

You can use the following syntax for the vcd2saif utility for RTL simulation and gate-level
simulation:

vcd2saif -i vcd_file -o bsaif
[-instance path ...]
[-format lang] [-testbench lang]
[-verilog_instance path] [-vhdl_instance path]
[-no_div] [-keep_leading_backslash] [-time]

The vcd2saif utility does not support state- and path- dependent switching activity. For
information about each option, use the vcd2saif -help.
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-5
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Limited SystemVerilog Support in vcd2saif Utility
The vcd2saif utility supports only a limited set of SystemVerilog constructs for VCD files
that are generated from SystemVerilog simulation.Table 4-2 shows the list of SystemVerilog
constructs that are supported by the vcd2saif utility.

Generating SAIF Files Directly From Simulation
VCS MX can generate SAIF file directly from simulation. This direct SAIF file is smaller in
size relative to the VCD files. Your input design for simulation can be a RTL or gate-level
design. Also the design can be in Verilog, SystemVerilog, VHDL, or mixed HDL formats.
When your design is in Verilog or SystemVerilog formats, you must specify system tasks to
VCS MX using the toggle commands. If your design is in VHDL format, use the power
command as described in “Generating SAIF Files From VHDL Simulation” on page 4-13.
For more details on the various supported formats and mixed language formats, see the
VCS MX/VCS MXi User Guide.

The steps to follow to generate SAIF files for your designs are discussed in the following
sections:

• Generating SAIF Files From SystemVerilog or Verilog Simulations

• Generating SAIF Files From VHDL Simulation

Table 4-2 SystemVerilog Constructs Supported by the vcd2saif Utility

System Verilog constructs supported by the vcd2saif utility

char int

shortint longint

bit byte

logic shortreal

void enum

typedef struct

union arrays (packed and unpacked)
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-6

Power Compiler User Guide Version E-2010.12-SP2
Generating SAIF Files From SystemVerilog or Verilog Simulations
Using VCS MX, you can generate SAIF files for your RTL as well as gate-level Verilog
designs. When your design is in Verilog format, you must specify system tasks to VCS MX.
These system tasks are also known as toggle commands. The system tasks specify the
module for which switching activity is to be recorded and reported in the SAIF file. They also
control the toggle monitoring during simulation.

Toggle commands are always preceded by the $ symbol. For more details on toggle
commands see, “Understanding the VCS MX Toggle Commands” on page 4-9”.

Generating SAIF Files From RTL Simulation
Figure 4-2 on page 4-7 presents the methodology that you use to capture switching activity
using RTL simulation. RTL simulation captures the switching activity of primary inputs,
primary outputs, and other synthesis-invariant elements.

Figure 4-2 RTL Simulation using VCS MX

You follow these steps to capture switching activity using RTL simulation when your design
is either in the Verilog or SystemVerilog format:

1. Specify the appropriate toggle commands in the testbench.

2. Run the simulation.

RTL Design

SAIF
File

Testbench

RTL Simulation

Using VCS MX
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-7
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The SAIF file contains the switching activity information of the synthesis-invariant elements
in your design. To use the SAIF file for synthesis using Power Compiler, annotate the
switching activity in the SAIF file, as described in Chapter 5, “Annotating Switching Activity.”

Generating SAIF Files From Gate-Level Simulation
Figure 4-3 on page 4-8 presents the methodology that you use to capture switching activity
using gate-level simulation. Gate-level simulation captures switching activities of pins, ports,
and nets in your design.

Figure 4-3 Gate-Level Simulation using VCS MX

The steps that you follow to capture switching activity using gate-level simulation are similar
to the steps that you follow for RTL simulation. These steps are to

1. Specify the appropriate toggle commands in the testbench.

2. Run the simulation.

The SAIF file contains information about the switching activity of the pins, ports, and nets in
your design. It can represent the pin-switching activity, based on rise and fall values, if your
technology library has separate rise and fall power tables.

To use the SAIF file for synthesis using Power Compiler, annotate the switching activity in
the SAIF file as described in Chapter 5, “Annotating Switching Activity”.

Technology
Library

Gate-Level
Simulation

SAIF
File

Gate-Level
Design

Testbench

Design
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-8

Power Compiler User Guide Version E-2010.12-SP2
Understanding the VCS MX Toggle Commands
When your design is in the Verilog or SystemVerilog format, to generate the SAIF file from
RTL or from a gate-level simulation, you use the toggle commands to specify system tasks
to VCS MX. The toggle commands start with the $ symbol. Using the toggle commands, you
can specify the subblock for toggle counting, defining specific periods for toggle counting
during simulation. You can also control the start and stop of toggle counting.

Figure 4-4 presents an overview of the $toggle commands in your testbench file. For
simplicity, the figure omits optional commands.

Figure 4-4 Toggle Command Flow

The system level tasks that you specify to VCS MX, using the toggle commands are

1. Define the toggle region.

Use the $set_toggle_region command to specify the toggle region. This command
specifies the module instance for which the simulator records the switching activity in the
generated SAIF file. The syntax of this command is as follows:

$set_toggle_region(instance [, instance]);

When you explicitly mention one or more module instance as the toggle region, simulator
registers these objects and monitors them during simulation.

Note:
For gate-level simulation, if the technology library cell pins have rise and fall power
values, their switching activity is monitored and reported for rise and fall separately.

2. Begin toggle monitoring.

$set_toggle_region

$toggle_start

$toggle_stop

$toggle_report

Start monitoring

Report toggle
information

Set the toggle
region

Stop monitoring
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-9
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Use the $toggle_start command to instruct the simulator to start monitoring the
switching activity. The syntax of this command is as follows:

$toggle_start();

During simulation, the tool starts monitoring the switching activities of the module
instances that are defined in the toggle region. Toggle counting ignores the simulation
activities that occur before the $toggle_start command.

Note:
The $toggle_start command does not take any parameters. You should define your
toggle region before you start the toggle monitoring. This command monitors only the
modules defined in the toggle region using the $set_toggle_region command.

3. End toggle monitoring.

Use the $toggle_stop command to instruct the simulator to stop monitoring the
switching activities.

During simulation, this command causes the simulation to stop monitoring the switching
activities of the modules or instances in the toggle region. Toggle counting and reporting
ignore any simulation activity after the $toggle_stop command and before the
$toggle_start command.

To use the $toggle_stop command, you must have already started the toggle counting
using the $toggle_start command.

Note:
The $toggle_stop command does not take any parameters. This command causes
the simulator to stop monitoring the switching activities for all the modules in the toggle
region.

4. Report toggle information in an output file.

Use the $toggle_report command to write monitored gate and net switching activity to
an output file. You can invoke $toggle_report any number of times using different
parameters. For more details and examples of SAIF files, see “RTL SAIF File” on
page 4-17.

The syntax for the $toggle_report command is as follows:

$toggle_report (file_name,
 [synthesis_time_unit],
 instance_name_string,
 [hazard_rate, hazard_time]);

The values that you specify for the various options and parameters are as follows:

• file_name

This is a required string parameter specifying the name you want for your switching
activity output file. You can use any valid UNIX file name.
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-10

Power Compiler User Guide Version E-2010.12-SP2
• synthesis_time_unit

This optional parameter is the time unit of your synthesis library. Mention this time unit
in seconds. For example, if the time unit in your synthesis library is 10 picoseconds,
specify this value as 1.0e-11 for this parameter.

The $toggle_report command uses the number you pass to this parameter to
convert simulation time units to synthesis time units. Power Compiler obtains the
simulation time unit from simulation. If you don’t specify the synthesis time unit
parameter, a default value of 1 ns (1.0e-9) is used as the synthesis time unit.

• instance_name_string

This required parameter is the full instance path name of the block from the top of your
simulation environment down to the block or instance name that has the switching
information you want in the output file. This parameter determines the hierarchy of the
reported information in the output SAIF file.

Example
$toggle_report ("file.saif", 1.0e-11, "test.DUT");

In this example, the monitored design is DUT. The synthesis time unit is 1.0e-11. The
instance name string is test. DUT and the output file is in SAIF (the default). The
strip_name_string parameter is empty because SAIF accommodates the change in
hierarchy between the simulation environment and the synthesis environment. Because
hazard_rate is not passed, the software uses a default of 0.5. SAIF ignores the
hazard_time parameter.

The $toggle_report command requires that you list parameters in the order shown in the
syntax example.

Resetting the Toggle Counter
Use the $toggle_reset command to set the toggle counter to 0 for all the nets in the current
toggle region. This command enables you to create different toggle monitoring periods in a
simulation session.

For example, using $toggle_start, $toggle_stop or $toggle_reset with
$toggle_report, you can create SAIF output files for specific periods during simulation.
The syntax of this command is as follows:

$toggle_reset();

The $toggle_reset command has three requirements:

• You can invoke $toggle_reset only after you define a toggle region.

• You must invoke $toggle_start, $toggle_stop, and $toggle_report; otherwise, the
command returns an error.
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-11
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• You cannot pass parameters. This command sets the toggle count to 0 for all nets in the
toggle region.

Capturing State- and Path-Dependent Switching Activity
By default, Power Compiler estimates the state- and path-dependent power information that
is required for power calculations. However, if you want to obtain this information through
simulation, you can use the lib2saif command prior to simulation. In this case, given a
technology library, you can run the utility to obtain a library SAIF file that contains the state-
and path-dependent information. This file is called the library forward-SAIF file. This file
becomes the input to gate-level simulation.

The library forward-SAIF file contains information from the technology library about cells that
have state and path dependencies. It can have rise and fall information if the library has
separate rise and fall power tables.

To read the library forward-SAIF file into the simulator, use the $read_lib_saif command.
This command registers the state- and path-dependent information for monitoring during
simulation.

The syntax of the $read_lib_saif command is as follows:

$read_lib_saif(input_file);

For gate-level simulation, you must use the $read_lib_saif command to register state-
and path-dependent cells and, by default, all internal nets in the design. The command
registers state-dependent and path-dependent cells by reading the library forward-SAIF file.
In addition, you must also set the toggle region for monitoring. If you do not use the
$read_lib_saif command, the simulator registers all internal nets for monitoring by
default.

You can use the $read_lib_saif command as often as you require during simulation;
however, you must use this command before defining the toggle region using the
$set_toggle_region command. When you define the toggle region, the
$set_toggle_region command checks for the presence or absence of a $read_lib_saif
command and registers internal nets accordingly.

Overriding Default Registration of Internal Nets
When you have the read_lib_saif command in the testbench, to override the default net
monitoring behavior, use $set_gate_level_monitoring command to turn on or turn off
the registration of internal nets.

The syntax for $set_gate_level_monitoring command is as follows:

$set_gate_level_monitoring ("on" | "off" | "rtl_on");
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-12

Power Compiler User Guide Version E-2010.12-SP2
"on"

This string explicitly registers all internal nets for simulation. Thus, simulation monitors
any internal net that is in the region defined using the $set_toggle_region command.
Use double quotation marks as shown.

"off"

This string causes the simulator not to register any internal net. During simulation the tool
does not monitor any internal net. Use double quotation marks as shown.

"rtl_on"

The registers in the toggle region are monitored while the nets in the toggle region are not
monitored during simulation.

The $set_gate_level_monitoring command is optional. If you use it, you must do so
before invoking the $set_toggle_region. After invoking the $set_toggle_region
command, invoking the $set_gate_level_monitoring command causes an error, and
simulation stops.

Generating SAIF Files From VHDL Simulation
You can use VCS MX to generate SAIF files from RTL or the gate-level simulation of VHDL
designs. The methodology to generate the SAIF file is similar to the methodology used for
Verilog designs, shown in Figure 4-2 on page 4-7 and Figure 4-3 on page 4-8. However you
cannot use the toggle commands to specify the system tasks to the simulator.

For RTL-level VHDL files, variables are not supported by the simulator for monitoring.
However, VHDL constructs such as generates, enumerated types, records, arrays of arrays
are supported by VCS MX, for simulation.

The use model to generate a SAIF file from VHDL simulation consists of using the power
command at the VCS MX command line interface, simv. The syntax of the power command
is as follows:

power
 -enable
 -disable
 -reset
 -report file_name synthesis_time_unit scope
 -rtl_saif file_name
 [test_bench_path_name]
 -gate_level on| off | rtl_on
 region_signal_variable

• The -enable option enables the monitoring of the switching activity.

• The -disable option disables the monitoring of the switching activity.
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-13
Chapter 4: Generating Switching Activity Interchange Format Files
Generating SAIF Files 4-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• The -reset option resets the toggle counter

• The -report option reports the switching activity to an output file, SAIF file.

• The -rtl_saif option is used to read the RTL forward SAIF file.

• You can use on, off or rtl_on with the -gate_level option. Table 4-3 summarizes the
monitoring policy for VHDL simulation.

• You can specify either the toggle region and its children to be considered for monitoring,
or the hierarchical path to the signal name.

System Task List for SAIF File Generation From VHDL Simulation
The following example script shows a sample task list that you specify to the simulator to
generate a SAIF file. The design name is test. You can either specify each of these
commands at the VCS MX command prompt or run the file that contains these commands.

power test
power -enable
run 10000
power -disable
power -report vhdl.saif 1e-09 test
quit

Verilog Switching Activity Examples

The following examples demonstrate RTL and gate-level descriptions with
Verilog-generated switching activity data.

RTL Example
This Verilog RTL example includes the following elements:

• RTL design description

• RTL testbench

Table 4-3 Monitoring Policy for VHDL Simulation

Monitoring policy Ports Signals Variables

on Yes Yes No

off No No No

rtl_on Yes Yes No
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-14

Power Compiler User Guide Version E-2010.12-SP2
• SAIF output file from simulation

Verilog Design Description
Example 4-1 shows the description for a state machine called test.

Example 4-1 RTL Verilog Design Description

`timescale 1 ns / 1 ns

module test (data, clock, reset, dummy);

input [1:0] data;
input clock;
input reset;
output dummy;

wire dummy;

wire [1:0] NEXT_STATE;
reg [1:0] PRES_STATE;

parameter s0 = 2'b00;
parameter s5 = 2'b01;
parameter s10 = 2'b10;
parameter s15 = 2'b11;

function [2:0] fsm;
 input [1:0] fsm_data;
 input [1:0] fsm_PRES_STATE;

 reg fsm_dummy;
 reg [1:0] fsm_NEXT_STATE;

begin
 case (fsm_PRES_STATE)
 s0: //state = s0
 begin
 if (fsm_data == 2'b10)
 begin
 fsm_dummy = 1'b0;
 fsm_NEXT_STATE = s10;
 end
 else if (fsm_data == 2'b01)
 //....
 end

 s5: //state = s5
 begin
 // ...
 end
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-15
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 s10: //state = s10
 begin
 // ...
 end

 s15: //state 15
 begin
 // ...
 end
 endcase

 fsm = {fsm_dummy, fsm_NEXT_STATE};
end

endfunction

assign {dummy, NEXT_STATE} = fsm(data, PRES_STATE);

always @(posedge clock)
begin
 if (reset == 1'b1)
 begin
 PRES_STATE = s0;
 end
 else
 begin
 PRES_STATE= NEXT_STATE;
 end
end
endmodule

RTL Testbench
The Verilog testbench in Example 4-2 on page 4-17 simulates the design test described in
Example 4-1. The testbench instantiates the design test as U1.
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-16

Power Compiler User Guide Version E-2010.12-SP2
Example 4-2 RTL Testbench

`timescale 1 ns / 1 ns

module stimulus;

reg clock;
reg [1:0] data;
reg reset;
wire dummy;
test U1 (data,clock, reset, dummy);

always
 begin
 #10 clock = ~clock;
 end

initial
begin
$set_toggle_region(stimulus.U1);
$toggle_start();
// ...
clock = 0;
data = 0;
reset = 1;
#50 reset = 0;
#25 data = 3; #20 data = 0;
#20 data = 1; #20 data = 2;
// ...
$toggle_stop();
$toggle_report("my_rtl_saif", 1.0e-12, "stimulus");
#80 $finish;
end

RTL SAIF File
The RTL SAIF file is the output of RTL simulation and contains information about the
switching activity of synthesis-invariant elements. The $toggle_report command creates
this file.

Example 4-3 is a SAIF file for the RTL Verilog cell description that is also shown in
Example 4-1 on page 4-15.

Example 4-3 RTL SAIF File
(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN "test")
(DATE "Mon May 11 18:54:04 2009")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "Power Compiler")
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-17
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-17

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
(VERSION "3.0")
(DIVIDER /)
(TIMESCALE 1 ps)
(DURATION 1195000.00)
(INSTANCE stimulus
 (INSTANCE vendY
 (PORT
 (clock
 (T0 600000) (T1 595000) (TX 0)
 (TC 119) (IG 0)
)
 (reset
 (T0 1145000) (T1 50000) (TX 0)
 (TC 1) (IG 0)
)
 (dummy
 (T0 1085000) (T1 100000) (TX 10000)
 (TC 10) (IG 0)
)
)
 (VIRTUAL_INSTANCE "sequential" data_reg[1]
 (PORT
 (Q
 (T0 995000) (T1 200000) (TX 0)
 (TC 12) (IG 0)
)
)
)
 (VIRTUAL_INSATNCE "sequential" data_reg[0]
 (PORT
 (Q
 (T0 1035000) (T1 160000) (TX 0)
 (TC 7) (IG 0)
)
)
)
)
)
)

Gate-Level Example
This Verilog gate-level example illustrates the following elements:

• Verilog cell description and schematic

• Verilog testbench

• SAIF output file from simulation
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-18

Power Compiler User Guide Version E-2010.12-SP2
Gate-Level Verilog Module
Figure 4-5 shows the schematic for a simple multiplexer.

Figure 4-5 Schematic of Multiplexer Circuit: MUX21

Example 4-4 is the Verilog module that describes the MUX21 design.

Example 4-4 Verilog Module of Multiplexer Circuit: MUX21
/*‘timescale 10ps/ 1ps
*/
module MUX21(out,d1,d2,sel);
input d1, d2, sel;
output out;
 IV c1(.Z(sel_),.A(sel));
 AN2 c2(.Z(d1m),.A(d1),.B(sel_));
 AN2 c3(.Z(d2m),.A(d2),.B(sel));
 OR2 c4(.Z(out),.A(d1m),.B(d2m));
endmodule

Verilog Testbench
The Verilog testbench in Example 4-5 tests the MUX21 design by simulating it and
monitoring the various signals.

Example 4-5 Verilog Testbench for MUX21

/* Begin test.v */
‘timescale 1ns/ 10ps
module top;

reg in1, in2, sel;
parameter hazrate = 0.99;
parameter haztime = 0.23;

MUX21 m1(out,in1,in2,sel);

initial
begin

// start monitoring
$monitor($time,,,"in1=%b in2=%b sel=%b

c3
in2

in1

sel

out

c2
c1

c4
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-19
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-19

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 out=%b",in1,in2,sel,out);

// read SAIF file of state/path dependent info
$read_lib_saif (cell.saif);

// define the monitoring scope
$set_toggle_region (m1);

$toggle_start;

// test first data line passing 0
sel = 0;
in1 = 0;
in2 = 0;

// test first data line passing 1
#10 in1 = 1;

#10 sel = 1;

// test second data line passing 1
#10 in2 = 1;

$toggle_stop;
$toggle_report("my_1st", 1.0e-9,"top.m1", hazrate, haztime);

// exit simulation
$finish(2);

end
endmodule

The $set_toggle_region command sets the monitoring scope in module m1 (the
testbench instantiation of MUX21). All subsequent toggle commands affect only registered
design objects and designs instantiated in registered objects. Thus, under m1, simulation
monitors internal nets and state- and path-dependent cells (in this simple example, however,
there are no subdesigns in m1).

The testbench example invokes $toggle_report command before exiting the simulation.
Make sure that you declare any parameters you use for $toggle_report command in your
testbench. These parameters appear at the top of the testbench in Example 4-5 on
page 4-19.

Gate-Level SAIF File
Example 4-6 on page 4-21 is an example of a SAIF file that results from gate-level
simulation of MUX21.
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-20

Power Compiler User Guide Version E-2010.12-SP2
Example 4-6 $toggle_report Output File in SAIF

(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN)
(DATE "Fri Oct 6 18:58:58 2000")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "VCS-Scirocco-MX Power Compiler")
(VERSION "3.3")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 99999.00)
(INSTANCE tb
 (INSTANCE dut
 (NET
 (n12159
 (T0 99529) (T1 470) (TX 1)
 (TC 46) (IG 0)
)
 (n12480
 (T0 0) (T1 99998) (TX 0)
 (TC 0) (IG 0)
)
 (n12117
 (T0 61) (T1 99938) (TX 0)
 (TC 26) (IG 0)
)
)
 (INSTANCE U12053
 (PORT
 (Z
 (T0 10) (T1 99989) (TX 0)
 (COND A (RISE)
 (IOPATH B (TC 0) (IG 0)
)
 COND A (FALL)
 (IOPATH B (TC 0) (IG 0)
)
 COND B (RISE)
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-21
Chapter 4: Generating Switching Activity Interchange Format Files
Verilog Switching Activity Examples 4-21

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 (IOPATH A (TC 0) (IG 0)
)
 COND B (FALL)
 (IOPATH A (TC 1) (IG 0)
)
 COND_DEFAULT (TC 1) (IG 0)
)
)
)
)
)
)
)

VHDL Switching Activity Example

This VHDL RTL example includes the following elements:

• RTL design description

• RTL testbench

• SAIF output file from simulation

VHDL Design Description
Example 4-7 shows the description for a design called dummy.

Example 4-7 RTL VHDL Design Description
library ieee;
use ieee.std_logic_1164.all;
entity dummy is
architecture beh of dummy is
 signal clk: std_logic := '0';
begin
 clk <= not clk after 5 ns;
end beh;

RTL Testbench
The RTL testbench in Example 4-8 on page 4-23 simulates the design test described in
Example 4-7. The testbench instantiates the design dummy as dummy_ins.
Chapter 4: Generating Switching Activity Interchange Format Files
VHDL Switching Activity Example 4-22

Power Compiler User Guide Version E-2010.12-SP2
Example 4-8 RTL Testbench
library ieee;
use ieee.std_logic_1164.all;
entity test is
end entity
architecture testbench of test is
 component dummy is
 end component;
begin
 dummy_ins: dummy;
end testbench;

RTL SAIF File
This RTL SAIF file is the output of RTL simulation and contains information about the
switching activity of synthesis-invariant elements. The power -report command creates
this file.

Example 4-9 is a SAIF file for the RTL VHDL description that is shown in Example 4-7 on
page 4-22.

Example 4-9 RTL SAIF File
/** There is no explict set_gate_level_monitoring command, **/
/** and the default behavior is to monitor internal nets **/
(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN)
(DATE "Tue May 5 05:56:35 2009")
(VENDOR "Synopsys, Inc")
(PROGRAM_NAME "VCS-Scirocco-MX Power Compiler")
(VERSION "1.0")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 10000.00)
(INSTANCE TEST
 (INSTANCE DUMMY_INS
 (NET
 (CLK
 (T0 5000) (T1 5000) (TX 0)
 (TC 1999) (IG 0)
)
)
)
)
)

Chapter 4: Generating Switching Activity Interchange Format Files
VHDL Switching Activity Example 4-23
Chapter 4: Generating Switching Activity Interchange Format Files
VHDL Switching Activity Example 4-23

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Analyzing a SAIF File

This section describes the various elements of SAIF files. For a sample SAIF file see
Example 4-3 on page 4-17 and Example 4-6 on page 4-21. The definitions for various
terminologies in the SAIF file are summarized in Table 4-4.

Duration refers to the time span between $toggle_start and $toggle_stop in the
testbench during simulation. During this time span, ports, pins, and nets are monitored for
toggle activity. Use these definitions when analyzing a SAIF file.

Table 4-4 Definitions of Terminologies in the SAIF File

T0 Duration of time found in logic 0 state.

T1 Duration of time found in logic 1 state.

TX Duration of time found in unknown “X” state.

TC The sum of the rise (0Æ1) and fall (1Æ0) transitions that are captured
during monitoring.

IG Number of 0Æ X Æ0 and 1 Æ X Æ1 glitches captured during monitoring.

RISE Rise transitions in a given state.

FALL Fall transitions in a given state.
Chapter 4: Generating Switching Activity Interchange Format Files
Analyzing a SAIF File 4-24

5
Annotating Switching Activity 5

Switching activity is required for accurate power calculations. This chapter explains the
different types of switching activity information and illustrates how you can annotate
gate-level design objects with switching activity.

This chapter contains the following sections:

• Switching Activity That You Can Annotate

• Annotating Switching Activity Using RTL SAIF Files

• Annotating Switching Activity Using Gate-Level SAIF Files

• Annotating Switching Activity With the set_switching_activity Command

• Fully Annotating Versus Partially Annotating the Design

• Analyzing the Switching Activity Annotation

• Removing the Switching Activity Annotation

• Estimating the Nonannotated Switching Activity

5-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Switching Activity That You Can Annotate

The power of a design depends on the switching activity of the design nets and cell pins,
which must be annotated onto design objects like nets, ports, pins, and cells for use by the
report_power command during power calculation.

The following types of switching activity can be annotated on design objects:

• Simple switching activity on design nets, ports and cell pins. Simple switching activity
consists of the static probability and the toggle rate. The static probability is the
probability that the value of the design object has logic value 1. The toggle rate is the rate
at which the design object switches between logic values 0 and 1.

• State dependent toggle rates on input pins of leaf cells. As explained in Chapter 3, “Power
Modeling and Calculation,” the internal power characterization of an input pin of a library
cell can be state dependent. The input pins of instances of such cells can be annotated
with state dependent toggle rates.

• State-dependent and/or path-dependent toggle rates on output pins of leaf cells. As
explained in Chapter 3, “Power Modeling and Calculation,” the internal power
characterization of output pins can be state dependent and/or path dependent. Output
pins of cells with state- and path-dependent characterization can be annotated with state-
and path-dependent toggle rates.

• State dependent static probability on leaf cells. Cell leakage power can be characterized
using state dependent leakage power tables (see Chapter 3, “Power Modeling and
Calculation”). Such cells can be annotated with state-dependent static probability.

Annotating Switching Activity Using RTL SAIF Files

Optimal power analysis and optimization results occur when switching activities reported in
the RTL SAIF file are accurately associated with the correct design objects in the gate-level
netlist. For this to occur, the RTL names must map correctly to their gate-level counterparts.
During synthesis, however, mapping inaccuracies can occur that can affect your annotation.

To ensure proper name mapping and annotation for RTL SAIF files, do the following:

1. At the beginning of synthesis, specify the saif_map -start command.

This command causes Power Compiler to create a name-mapping database during
synthesis optimization that Power Compiler then uses for power analysis and
optimization.

2. After compile, specify read_saif -auto_map_name to perform RTL SAIF annotation
using the name-mapping database.
Chapter 5: Annotating Switching Activity
Switching Activity That You Can Annotate 5-2

Power Compiler User Guide Version E-2010.12-SP2
If you plan to perform power optimization techniques that depend on switching activity,
such as power-driven clock gating or operand isolation, specify the commands prior to
compile.

Using the Name-Mapping Database
You can access the name-mapping database on the rare occasion that the read_saif
-auto_map_name annotation requires adjustment. Various saif_map options allow you to
query, report, modify, save, clear, and load the database. You can read a regular,
uncompressed file or a compressed file in gzip format by using the -input option of the
saif_map command. The saif_map command has the following syntax:

saif_map
 [-start]
 [-end]
 [-reset]
 [-report]
 [-get_name]
 [-set_name name_list]
 [-add_name name_list]
 [-remove_name name_list]
 [-clear_name]
 [-get_object_names name_list]
 [-create_map]
 [-write_map file_name]
 [-read_map file_name]
 [-type type]
 [-inverted]
 [-instances objects]
 [-no_hierarchical]
 [-columns columns]
 [-sort columns]
 [-rtl_summary]
 [-missing_rtl]
 [-input SAIF_file]
 [-review]
 [-preview]
 [-source_instance SAIF_instance_name]
 [-target_instance target_instance_name]
 [-hsep character]
 [-nosplit]
 [object_list]

After you run the read_saif -auto_map_name command, if you want to review the
name-mapping database and manually add a mapping entry, use the following commands:

read_saif -auto_map_names -input ../sim/rtl.saif \
-instance tb/dut -verbose

report_saif -hier -rtl -missing

reset_switching_activity
Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using RTL SAIF Files 5-3
Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using RTL SAIF Files 5-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
saif_map -add_name “Ax_ins” [get_port AX_usr_ins]
read_saif -auto_map_names -input rtl.saif ../sim/rtl/rtl.saif \

-instance tb/dut

This example manually maps the RTL SAIF object “Ax_ins” and the design object
“AX_use_ins.” The read_saif -auto_map_names command tells Power Compiler to
perform annotation again with the modified database.

For information about the command options, see the man pages of the read_saif and
saif_map commands.

Integrating the RTL Annotation With PrimeTime PX
Similar to Power Compiler, PrimeTime PX requires accurate RTL-to-gate name-mapping
correspondence to perform accurate power analysis. Use Power Compiler to output the
name-mapping files that PrimeTime PX can use for RTL-to-gate name mapping.

After read_saif, specify the saif_map command as follows to generate a name-mapping
file that can be read directly into PrimeTime PX:

saif_map -type ptpx -write_map file_name

The name-mapping output file appears as follows:

set_rtl_to_gate_name -rtl{clk_sn} -gate clk_sn
set_rtl_to_gate_name -rtl{rx_top/data_i[9]} \

-gate rx_top_data_i_reg<9>
...

Annotating Switching Activity Using Gate-Level SAIF Files

You can use either the read_saif or the merge_saif command to annotate switching
activity. The read_saif command reads a SAIF file and annotates switching activity
information on the nets, pins, and ports of the design.

The merge_saif command reads a list of SAIF files, computes the toggle rates and static
probability, and annotates the switching activity information on the nets, pins, and ports of
the design. This command creates a merged output-SAIF file.

Reading SAIF Files Using the read_saif Command
To annotate gate-level switching activity onto the gate-level netlist, use the read_saif
command. For example,
Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-4

Power Compiler User Guide Version E-2010.12-SP2
dc_shell> read_saif -input file -instance TEST/DUT/U1

In this example, the read_saif command annotates the information in file onto the current
gate-level design, U1. The -instance option identifies the hierarchical location of the current
design in the simulation environment.

The input file specified using the -input option of the read_saif command can be a text
file or a compressed gzip file with a .gzip extension. For example,

dc_shell> read_saif -input file.gzip -instance TEST/DUT/U1

A SAIF file is usually generated using an HDL simulation flow, where a simulation testbench
instantiates the design being simulated and provides simulation vectors. The generated
SAIF file contains the switching activity information organized in a hierarchical fashion,
where the hierarchy of the SAIF file reflects the hierarchy of the simulation testbench. If a
design is instantiated in the testbench (tb) as the instance i, then the SAIF file contains the
switching activity information for the design under the hierarchy tb/i. In this case, the
instance name tb/i should be used as the option to the -instance option when reading the
SAIF file.

dc_shell> read_saif -input des.saif -instance tb/i

Specifying an invalid instance name results in having all or most of the switching activity
stored in the SAIF file not read properly. An error message is printed if none of the
information stored in the SAIF file is read by the read_saif command.

The SAIF file contains time duration values and specifies a time unit which is usually the
time unit used during simulation. When reading the SAIF file, the read_saif command
automatically converts the SAIF time units to the synthesis time units. The synthesis time
units are obtained from the time units of the target or link library. When the synthesis time
units cannot be obtained, the read_saif command prints a warning message and uses a
default time unit of 1 ns. In such cases, the -scale and -unit options can be used to specify
the intended synthesis time unit. For example, if a target technology library with the time
units 100 ps is used for synthesis and a SAIF file is being read before the technology library
is used (for linking or synthesis), you would use the options as follows:

dc_shell> read_saif -scale 100 -unit ps

When reading the SAIF file, the report_lib command gives the time units specified in a
technology library. The report_power command gives the synthesis library time units used
during power calculations.
Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-5
Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The read_saif command has the following syntax:

read_saif
 -input file_name
 [-instance_name string]
 [-target_instance instance]
 [-names_file file_name]
 [-ignore string]
 [-ignore_absolute string]
 [-exclude file_name]
 [-exclude_absolute file_name]
 [-scale scale_value]
 [-unit_base time_unit]
 [-khrate float]
 [-rtl_direct]
 [-verbose]

For information about the command options, see the man page of the read_saif command.

Reading SAIF Files Using the merge_saif Command
The merge_saif command can be used to read switching activity information from multiple
SAIF files. Input SAIF files are given individual weights, and a weighted sum of the switching
activities is annotated. This command can be used in flows where different SAIF files are
generated for different modes of the same design. The switching activity from all the different
modes can then be used for power calculations and optimization.

The following is an example of how merge_saif can be used. We assume that the design
has three modes: standby, slow and fast; and that the SAIF files, standby.bsaif, slow.bsaif
and fast.bsaif are generated for these modes. Depending on the expected usage of the
design, we give the following weighting to each SAIF file:

 standby.saif: 80%; slow.bsaif: 5%; fast.bsaif: 15%

The SAIF files can then be read using the following command:

dc_shell> merge_saif -input_list \
 {-input standby.saif -weight 80 \
 -input slow.bsaif -weight 5 \
 -input fast.bsaif -weight 15 } \
 -instance tb/i

When the output file specified, using the -output option, has a .gzip extension, the file
written out is in the compressed gzip format. A regular, uncompressed file can also be
written out using the -output option.

The -output option of the merge_saif command can be used to generate a SAIF file
containing the weighted sum of the switching activities.
Chapter 5: Annotating Switching Activity
Annotating Switching Activity Using Gate-Level SAIF Files 5-6

Power Compiler User Guide Version E-2010.12-SP2
After the merge_saif command reads each individual SAIF file, it uses a switching activity
propagation mechanism to estimate the switching activity of design nets that are not
included in the SAIF file. You can therefore use the following to generate a gate-level SAIF
file with estimated switching activity information from an RTL SAIF file:

dc_shell> merge_saif -input_list {-input rtl.bsaif -weight 100} \
 -intance tb/i -output estimate.bsaif

The -simple_merge option can be used to switch off the switching activity propagation
mechanism when the information in the SAIF files is being merged.

The syntax of the merge_saif command is the same as that of the read_saif command
with the following exceptions:

• A weighted input file list is specified instead of a single input file

• The -simple_merge and -output options can be used with the merge_saif command.

The merge_saif command has the following syntax:

 merge_saif
 -input_list weighted_filename_list
 [-simple_merge]
 [-output merged_saif_filename]
 [-instance_name string]
 [-scale scale_value]
 [-unit_base time_unit]
 [-ignore string]
 [-ignore_absolute string]
 [-exclude filename]
 [-exclude_absolute filename]
 [-map_names]
 [-khrate float]

For more information, see the merge_saif command man page.

Annotating Switching Activity With the set_switching_activity
Command

The set_switching_activity command allows you to annotate various types of switching
activities on design objects such as pins, ports, nets, and cells. The types of activities that
you can annotate include state- and path-dependent toggle rates and state-dependent static
probabilities.
Chapter 5: Annotating Switching Activity
Annotating Switching Activity With the set_switching_activity Command 5-7
Chapter 5: Annotating Switching Activity
Annotating Switching Activity With the set_switching_activity Command 5-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The set_switching_activity command has the following syntax:

set_switching_activity
 [-static_probability static_probability_value]
 [-toggle_rate toggle_rate]
 [-state_condition boolean_equation_of_pins]
 [-path_sources pins_of_the_source_of_this_path]
 [-rise_ratio rise_or_total_toggle_ratio]
 [-period period_value]
 [-base_clock clock]
 [-type list_of_object_type]
 [-hierarchy]
 [-verbose]
 [object_list]

Use the -static_probability option to specify the static probability value, which is a
floating point number between 0.0 and 1.0. Static probability is the percentage of time that
the signal is at logic 1.

Use the -toggle_rate option to specify the toggle rate value, which is a floating point
number. Toggle rate is the number of low-to-high or high-to-low transitions made by the
signal during one unit of time. The unit of time used is specified in the target library.

Note:
The -toggle_rate option differs from the toggle rate (TR) used for modeling switching
activity, which is the number of logic transitions per unit of time. The -toggle_rate
option expresses the sum of the rise and fall transitions that the signal makes during an
entire simulation, clock period, or other period you specify. Power Compiler uses the
-toggle_rate and -period (or -clock) options to determine the actual toggle rate of
design objects.

The following example specifies that the net net1 is at logic 1 for 20 percent of the time, and
that it transitions between logic values 0 and 1 an average of 10 times in 1000 time units.
The time unit used for the toggle rate is the time unit defined in the target library. The
-period option is optional and defaults to a value of 1, when it is not specified.

 dc_shell> set_switching_activity [get_net net1] \
 -static_probability 0.2 -toggle_rate 10 -period 1000

Use the -state_condition option to annotate state-dependent toggle rates on pins or
state-dependent static probabilities on cells. The state-dependent toggle rates can be
annotated only if the library is characterized with state-dependent power tables for internal
power, for the pins of the library cell. Similarly, state-dependent static probabilities can be
annotated only if the library is characterized with state-dependent power tables for leakage
power, for the library cells.
Chapter 5: Annotating Switching Activity
Annotating Switching Activity With the set_switching_activity Command 5-8

Power Compiler User Guide Version E-2010.12-SP2
The following example shows how to use the -state_condition option to annotate the
state-dependent toggle rates on pins. It specifies that the pin ff1/Q toggles 0.01 times when
the pin D is at logic 1, and 0.03 times when the pin D is at logic 0.

dc_shell> set_switching_activity [get_pin ff1/Q] -toggle_rate 0.01 \
 -state_condition "D"
dc_shell> set_switching_activity [get_pin ff1/Q] -toggle_rate 0.03 \
 -state_condition "!D"

Use the -rise_ratio option to specify the ratio of rise transitions to the total transitions for
the specified toggle rate. You can also use this option with state-dependent toggle rates to
specify the ratio of rise transitions to fall transitions for the specified state. The following
example specifies that the pin xor1/Y toggles 0.01 times when the cell is in state "A", and
that 90 percent of these toggles are rise toggles.

dc_shell> set_switching_activity [get_pin xor1/Y] -toggle_rate 0.01 \
 -state_condition "A" -rise_ratio 0.9

Use the -path_source option to specify the path-dependent toggle rates. The following
example specifies that the pin and1/Y toggles 0.02 times due to a toggle on the input pin A,
but never toggles due to a toggle on B. Toggle rates that are both state- and path-dependent
can be specified using the -state_condition and -path_sources options together.

dc_shell> set_switching_activity [get_pin and1/Y] -toggle_rate 0.02 \
 -path_sources "A"
dc_shell> set_switching_activity [get_pin and1/Y] -toggle_rate 0.00 \
 -path_sources "B"

The state-dependent static probabilities can be annotated using the -state_condition
option. The following example specifies that the cell AND1 is at state "A & B" for 10 percent
of the time, at state "A & !B" for 70 percent of the time, and at state "!A" for 20 percent of the
time.

dc_shell> set_switching_activity [get_cell AND1] -static 0.1 \
 -state_condition "A & B"
dc_shell> set_switching_activity [get_cell AND1] -static 0.7 \
 -state_condition "A & !B"
dc_shell> set_switching_activity [get_cell AND1] -static 0.2 \
 -state_condition "!A"

Use the -type option to specify a list of object types, to be implicitly selected for annotating
the switching activity. You can specify a list of the following types of objects with this option:

• Input, output, inout ports of design or input, output, inout pin of hierarchical cells

• Output of registers, output of sequential cells

• Output of black box cells
Chapter 5: Annotating Switching Activity
Annotating Switching Activity With the set_switching_activity Command 5-9
Chapter 5: Annotating Switching Activity
Annotating Switching Activity With the set_switching_activity Command 5-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Output of tristate cells

• Output of flip-flops clocked by the specified clocks

• Output of clock-gating cells

• Output of memory cells

• Nets

When you use the set_switching_activity command to annotate switching activity on all
inputs, this includes the clock inputs as well. This results in overriding the switching activity
on the clock inputs. To avoid overriding the switching activity on clock inputs, specify all
inputs except the clock inputs, as shown in the following example:

set_switching_activity [remove_from_collection [all_inputs] clk] \
 -static_probability sp_value -toggle_rate tr_value -period period_value

For more information, see the set_switching_activity command man page.

Fully Annotating Versus Partially Annotating the Design

For the highest accuracy of power analysis, annotate all the elements in your design. To
annotate all design elements, you must use gate-level simulation to monitor all the nodes of
the design.

Using gate-level simulation, you can perform the following activities:

• Capture state- and path-dependent switching activity

• Capture switching activity that considers glitching (full-timing gate-level simulation only)

After layout, you can increase accuracy further by annotating wire loads with more accurate
net capacitance values. However, if the design layout is performed at the foundry, you might
not have access to the post-layout information.

If you annotate some design elements, Power Compiler uses an internal zero-delay
simulation to propagate switching activity through nonannotated nets in your design. Power
Compiler uses internal simulation anytime it encounters nonannotated nets during power
analysis.

Power Compiler always uses the most accurate switching activity available. During switching
activity propagation, Power Compiler tracks which design elements are user-annotated with
the set_switching_activity command and which are not. In calculating power, Power
Compiler does not overwrite user-annotated switching activity with propagated switching
activity.
Chapter 5: Annotating Switching Activity
Fully Annotating Versus Partially Annotating the Design 5-10

Power Compiler User Guide Version E-2010.12-SP2
Power analysis and optimization require that you annotate at least the following:

• Primary inputs

• Outputs of synthesis-invariant elements such as black box cells

• Three-state devices

• Sequential elements

• Hierarchical ports

Note:
When performing power analysis on a partially annotated design, you should specify a
clock before running the report_power command. The internal zero-delay simulation
requires a real or virtual clock to properly compute and propagate switching activity
through your design. Use the create_clock command to create a clock.

Analyzing the Switching Activity Annotation

The report_saif command can be used to display information about the annotated
switching activity. The report generated by the report_saif command shows how much of
the design objects is annotated with user-annotated switching activity, default switching
activity, and propagated switching activity. The report_saif command considers
clock-gating cells as synthesis invariant because these cells can be deleted or inserted
during the optimization step.

dc_shell> report_saif

**
Report : saif
Design : des
Version: 2004.12
Date: February 28, 2011 10:35 am
**

 User Default Propagated
Object type Annotated (%) Annotated (%) Activity (%) Total

 Nets 251(99.21%) 1(0.40%) 1(0.40%) 253
 Ports 59(98.33%) 1(1.67%) 0(0.00%) 60
 Pins 251(99.60%) 0(0.00%) 1(0.40%) 252

Chapter 5: Annotating Switching Activity
Analyzing the Switching Activity Annotation 5-11
Chapter 5: Annotating Switching Activity
Analyzing the Switching Activity Annotation 5-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
If the -hier or -flat option is used, the switching activity information is generated for all
design objects in the design hierarchy starting from the current instance. If these options are
missing, then only design objects in the hierarchical level of the current instance are
considered.

If the -rtl_saif or -type RTL option is used, switching activity information about RTL
invariant objects is printed. Otherwise switching activity information about all design nets,
ports and pins are printed. You can use the -rtl_saif option after reading an RTL SAIF file.

The -missing option can be used to display the design objects that do not have
user-annotated switching activity information.

Removing the Switching Activity Annotation

Switching activity annotation can be removed from individual design objects using the
set_switching_activity command. The following example shows the usage of this
command:

dc_shell> set_switching_activity objects

Removes the simple and state- and path-dependent switching activity annotation from the
specified objects.

Switching activity annotation can be removed from all the current design objects using the
reset_switching_activity command. This command removes all the simple and state-
and path-dependent switching activity information.

It is recommended that switching activity information from previous switching activity
annotation is removed using the reset_switching_activity command before reading
new SAIF files. For example, this illustrates a flow where an RTL SAIF file is read before a
design is compiled with power constraints and then a more accurate gate-level SAIF file is
used to generate power reports:

 read_saif -input rtl.back.saif -instance tb_rtl/i
 set_max_leakage_power 0 mW
 set_max_dynamic_power 0 mW
 compile_ultra
 reset_switching_activity
 read_saif -input gate.back.saif -instance tb_gate/i
 report_power
Chapter 5: Annotating Switching Activity
Removing the Switching Activity Annotation 5-12

Power Compiler User Guide Version E-2010.12-SP2
Estimating the Nonannotated Switching Activity

Power Compiler needs switching activity information about all design nets and state- and
path-dependent information about all design cells and pins in order to calculate power.
Switching activity that is not user annotated is estimated automatically before power is
calculated. This is performed in three stages:

• Design nets whose switching activity can be calculated accurately or cannot be
propagated are set to some default values. We say that such nets are default annotated.

• The user-annotated and default annotated switching activities are then used to derive the
simple static probability and toggle rate information for the rest of the design nets.

• The simple switching activity information (user-annotated or estimated) is then used to
derive the non-annotated state- and path-dependent switching activity.

Annotating the Design Nets Using the Default Switching
Activity Values
Design nets are annotated with default switching activity values when the switching activity
can be accurately derived or when the switching activity cannot be estimated using the
propagation mechanism described below. The first type of nets include nets driven by clocks
since the switching activity information can be accurately derived from the clock waveform.
For the second type of nets, it should be noted that the propagation mechanism uses the
functionality of design cells to propagate the input switching activity to the cell outputs. Black
box cells have unknown functionality, and therefore the switching activity of block-box
outputs cannot be derived using the propagation mechanism. Outputs of the black box cells
that are not user annotated is annotated with a default value.

The following lists all the different types of design nets that are annotated by default values:

• Nets driven by constants: A default toggle rate value of 0.0 is used. A static probability
value of 0.0 is used for logic 0 constants, while a value of 1.0 is used for logic 1 constants.

• Nets driven by clocks: The default values for the toggle rate and static probability are
derived from the clock waveform.

• Nets driving or driven by buffers: If the buffer input or output net is user or default
annotated, then the nonannotated buffer output or input is default annotated with the
switching activity values on the annotated input or output.

• Nets driving or driven by inverters: If the inverter input or output net is user or default
annotated, then the nonannotated inverter output or input is default annotated with the
same toggle rate value, and with the inverted static probability value. If the annotated
static probability value is sp then the inverted static probability value is 1.0 - sp.
Chapter 5: Annotating Switching Activity
Estimating the Nonannotated Switching Activity 5-13
Chapter 5: Annotating Switching Activity
Estimating the Nonannotated Switching Activity 5-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Flip-flop outputs: If a flip-flop cell has both Q and QN output ports and only one of the
outputs is annotated, then the other output is default annotated with the same toggle rate
value and with the inverted static probability value.

• Primary inputs and outputs of black box cells: The switching activity of primary inputs and
outputs of the black box cells cannot be propagated. Default switching activity depending
on the value of the power_default_static_probability and
power_default_toggle_rate variables is used. The default static probability value is
the value of the power_default_static_probability variable. The default toggle rate
value is the value of the power_default_toggle_rate multiplied by the related clock
frequency. The related clock can be specified using the -clock option of the
set_switching_activity command. If no related clock is specified on the net, the clock
with the highest frequency is used. The default value of
power_default_static_probability variable is 0.5 and the default value of
power_default_toggle_rate variable is 0.1.

Propagating the Switching Activity
The switching activity of design nets that are not user or default annotated are then derived
using a propagation mechanism. This mechanism is basically a zero delay simulator.
Random simulation vectors are generated for the user and default annotated nets
depending on the annotated toggle rate and static probability values. The zero delay
simulator uses the functionality of the design cells and the random vectors to obtain the
switching activity on nonannotated cell outputs.

The number of simulation steps performed by this mechanism depends on the analysis
effort option applied to the report_power command. User and default annotated switching
activity values are never overwritten by values derived by the propagation mechanism.

However, if a design net is not annotated with both toggle rate and static probability values,
then the switching activity on this net cannot be used by the propagation mechanism. For
such nets, the nonannotated value is estimated by the propagation mechanism.

Deriving the State- and Path-Dependent Switching Activity
If an RTL SAIF file or a gate-level SAIF file without state- and path-dependent switching
information is used to annotate the design switching activity, Power Compiler needs to
estimate the required state- and path-dependent switching activity information. After
obtaining the simple switching activity (from user annotation, or by switching activity
propagation), Power Compiler estimates the state-dependent static probability information
for every cell, and the state- and path-dependent toggle rate information for every cell pin.
This information is obtained from the switching activities of each cell input and output pins.
Chapter 5: Annotating Switching Activity
Estimating the Nonannotated Switching Activity 5-14

Power Compiler User Guide Version E-2010.12-SP2
Although the state- and path-dependent estimation mechanism produces fairly accurate
power calculations, for the most accurate power results, use gate-level SAIF files with state-
and path-dependent information.
Chapter 5: Annotating Switching Activity
Estimating the Nonannotated Switching Activity 5-15
Chapter 5: Annotating Switching Activity
Estimating the Nonannotated Switching Activity 5-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Chapter 5: Annotating Switching Activity
Estimating the Nonannotated Switching Activity 5-16

6
Performing Power Analysis 6

The information in this chapter describes the Power Compiler power analysis engine and
how to perform power analysis.

This chapter contains the following sections:

• Overview

• Identifying Power and Accuracy

• Performing Gate-Level Power Analysis

• Analyzing Power With Partially Annotated Designs

• Power Correlation

• Design Exploration Using Power Compiler

• Power Optimization Settings for the Synopsys Physical Guidance Flow

• Other dc_shell Commands for Power

• Using a Script File

• Power Reports

6-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Overview

After capturing switching activity, mapping your design to gates, and annotating your design,
you can invoke power analysis by using the report_power command. This command
analyzes the power of your design.

By changing the current design or by using command options, Power Compiler can create
power reports for the following:

• Modules

• Individual nets

• Individual cells

• The total design

For a detailed explanation of the report_power command, see “Performing Gate-Level
Power Analysis” on page 6-5.

Identifying Power and Accuracy

Gate-level power analysis is always invoked with the report_power command. However,
Power Compiler can use different methods to compute the power of your design. Power
Compiler considers the type and amount of switching activity annotated on your design and
chooses the most accurate method to compute your design’s power. Which method Power
Compiler uses depends on whether you annotate some or all of the elements in your design.

To analyze your gate-level design, Power Compiler uses the following commands:

• Switching activity

• Technology library

• Gate-level netlist

Figure 6-1 on page 6-3 shows the inputs to Power Compiler.
Chapter 6: Performing Power Analysis
Overview 6-2

Power Compiler User Guide Version E-2010.12-SP2
Figure 6-1 Information Inputs to Power Compiler

When you invoke power analysis, Power Compiler uses switching activity annotated on your
design to compute power.

Your technology library should be characterized for power to show more accurate power
results. If your technology library has pin capacitance and voltage and your technology
library is not characterized for power, you can see power numbers using the report_power
command. The numbers correspond to the switching power in the net. You are able to see
power numbers because net switching power is a function of pin capacitance, voltage, and
toggle frequency. It is recommended that you characterize your library for power.

Factors Affecting the Accuracy of Power Analysis
The following factors can affect the accuracy of power analysis:

• Switching activity annotation

• Delay model

• Correlation

• Clock tree buffers

• Complex cells

Switching Activity Annotation
Annotating switching activity relies on the ability to map the names of the synthesis invariant
objects in the RTL source to the equivalent object names in the gate-level netlist. Mapping
inconsistencies can cause the SAIF file to be incorrectly or incompletely annotated, which

Switching Activity

RTLGate-Level

Technology

Gate-Level
Netlist

Power
Power Compiler

Library

 Peport

or
Simulationsimulation
Chapter 6: Performing Power Analysis
Identifying Power and Accuracy 6-3
Chapter 6: Performing Power Analysis
Identifying Power and Accuracy 6-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
can affect the power analysis results. In turn, the quality of these results affects the results
of power optimizations that rely on the annotation, such as power-driven clock gating and
operand isolation. For more information, see “Annotating Switching Activity Using RTL SAIF
Files” on page 5-2.

Delay Model
Power Compiler uses a zero-delay model for internal simulation and for propagation of
switching activity during power analysis. This zero-delay model assumes that the signal
propagates instantly through a gate with no elapsed time.

The zero-delay model has the advantage of enabling fast and relatively accurate estimation
of power dissipation. The zero-delay model does not include the power dissipated due to
glitching. If your power analysis must consider glitching, use power analysis after annotating
switching activity from full-timing gate-level simulation. As mentioned previously, the internal
simulation is used only for nodes that do not have user-annotated switching activity.

Correlation
While propagating switching activity through the design, Power Compiler makes certain
statistical assumptions. However, the logic states of gates’ inputs can have
interdependencies that affect the accuracy of any statistical model.

Such interdependency of inputs is called correlation. Correlation affects the accuracy of
Power Compiler propagation of toggle rates. Because accurate analysis depends on
accurate toggle rates, correlation also affects the accuracy of power analysis.

Power Compiler considers correlation within combinational and sequential logic, resulting in
more accurate analysis of switching activity for many types of designs. The types of circuits
that exhibit high internal correlation are designs with reconvergent fanouts, multipliers, and
parity trees. However, Power Compiler has no access to information about correlation
external to the design. If correlation exists between the primary inputs of the design, Power
Compiler does not recognize the correlation.

Power Compiler considers correlation only within certain memory and CPU thresholds,
beyond which correlation is ignored. As the design size increases, Power Compiler reaches
its memory limit and is not able to fully consider all internal correlation.

As an example of correlation, consider a 4-bit arithmetic logic unit (ALU) that performs five
instructions. The data bus is 4-bits wide, and the instruction opcode lines are 3-bits wide.
The assumption of uncorrelated inputs holds up well for the data bus lines inputs but fails for
the opcode inputs if some instructions are used more often.
Chapter 6: Performing Power Analysis
Identifying Power and Accuracy 6-4

Power Compiler User Guide Version E-2010.12-SP2
Clock Tree Buffers
The set_cell_internal_power command sets or removes the power_value attribute on
or from specified pins. power_value is the value with which to set the power_value
attribute, and represents the power consumption for a single toggle of the pin. If a cell has at
least one such annotated pin, its internal power is calculated by summing the annotated
power values times the pin toggle rates. If this command is issued without the power_value
option, any existing power_value attributes are removed from the specified pins. If the
power_value option is specified without unit, the power unit of the library is used. If the
library does not have a defined unit, an error message is generated.

Use this command to override a cell's library power characterization in situations where that
characterization does not apply; most commonly, when you manually replace an entire cloud
of logic with a single cell and want the single cell's power consumption to represent that of
the cloud of logic. For example, if you replace a clock tree by a single buffer cell, you can set
the power_value attribute on the output pin of the buffer cell with the value of the power
consumption for one clock toggle of the entire clock tree. Although the buffer cell might have
been power-characterized in the library, its power consumption is now calculated using the
value of the power_value attribute set by the set_cell_internal_power command. The
syntax is

set_cell_internal_power pin_names

 [power_value][unit]]

For more information, see the man page.

Complex Cells
If your design has black boxes, such as complex cells, RAM, ROM, or macrocells, annotate
switching activity at the outputs of these elements.

Annotate the outputs of sequential elements. Power Compiler cannot initialize sequential
elements in your design. Without annotation, Power Compiler cannot accurately propagate
switching activity through sequential elements.

Performing Gate-Level Power Analysis

After annotating your design with switching activity, use the report_power command to
analyze the power of your gate-level design.

From within dc_shell, the report_power command checks out a Power Compiler license
before analyzing the power of your design. If a license is not available, the command
terminates with an error message. At the completion of the analysis, the Power Compiler
license is released.
Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-5
Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
To keep the license at the completion of the report_power command, set the following:

power_keep_license_after_power_commands = "true"

This variable is valid only in dc_shell.

Note:
When performing power analysis on a partially annotated design, specify a clock before
invoking the report_power command. The Power Compiler internal zero-delay
simulation requires a real or virtual clock to properly compute switching activity. Use the
create_clock command in dc_shell to create a clock.

Using the report_power Command
The report_power command calculates and reports power for a design. Power Compiler
zero-delay simulation propagates switching activity for nets that are not user-annotated with
switching activity. During the propagation, report_power uses the switching activity for
startpoint nets (if available) when computing the switching activity for internal nets. The
switching activity of any nets that are annotated with the set_switching_activity
command is retained (it is not overwritten during the switching activity propagation).

If you annotate switching activity on all the elements of the design, Power Compiler does not
propagate any switching activity through the design. Instead, power analysis uses the
annotated gate-level switching activity.

Command options enable you to print with different sorting modes and with verbose and
cumulative options. The default operation is to print a power summary for the instance’s
subdesign (in the context of the higher-level design).

Power analysis uses any net loads during the power calculation. For nets that do not have
back-annotated capacitance, Power Compiler estimates the net load from the appropriate
wire load model from the technology library. If you have annotated any cluster information
about the design using Synopsys Floorplan Manager, Power Compiler uses the improved
capacitance estimates from the cluster’s wire loads.

In the topographical mode the report_power command reports the correlated power of the
design as a sum of estimated clock tree power and netlist power. For more details see
“Power Reports” on page 6-16.

The report_power command has the following syntax:

report_power
 [-net]
 [-cell]
 [-only cell_or_net_list]
 [-cumulative]
 [-flat]
Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-6

Power Compiler User Guide Version E-2010.12-SP2
 [-exclude_boundary_nets]
 [-include_input_nets]
 [-analysis_effort low | medium | high]
 [-verbose]
 [-nworst number]
 [-sort_mode mode]
 [-histogram]
 [-exclude_leq le_val]
 [-exclude_geq ge_val]
 [-nosplit]
 [-hier]
 [-hier_level level_value]
 [-scenario {scenario_name1 scenario_name_2 ...}]

The default sort mode for report_power -cell is cell_internal_power. If the technology
library does not have any internal power modeling for leaf cells, report_power -cell
-nworst 10, for example, retrieves only the first ten cells (alphabetically). To change the
sorting to something other than cell_internal_power sorting, use the -sort_mode option.
The default sort mode for report_power -net is net_switching_power. If both the -net
and -cell options are specified and a sort mode is explicitly specified, the selected sort
mode is used for both the cell and net reports. Therefore, the selected sort mode must be
one of the sort modes that applies to both options. If both the -net and -cell options are
specified, by default, the sort mode for report_power is total dynamic power.

-histogram [-exclude_leq le_val | -exclude_geq ge_val]

This option prints a histogram-style report with the number of nets in each power range.
Use the -exclude_leq and -exclude_geq options respectively to exclude data values
less than le_val or greater than ge_val. This option is useful for printing the range and
variation of power in the design and prints a histogram report only when used in
conjunction with -net or -cell options.

-nosplit

Most of the design information is listed in fixed-width columns. If the information for a field
exceeds its column width, the next field begins on a new line, starting in the correct
column. This option prevents line splitting and facilitates scripts to extract information
from the report output.

-hier

This option enables you to view internal, switching, and leakage power consumed in your
design hierarchy on a block-by-block basis. The hierarchical levels of the design are
indicated by indentations.

-hier_level level_value

Use this option only with the -hier option. This option enables you to limit the depth of
the hierarchy tree displayed in the report. The level_value setting should be an integral
number greater than or equal to 1. For example, to see the power results for all blocks up
to 2 levels from the top, enter

report_power -hier -hier_level 2
Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-7
Chapter 6: Performing Power Analysis
Performing Gate-Level Power Analysis 6-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
-scenario

This option reports the power details for the specified list of scenarios for a multimode
design. Inactive scenarios are not reported. When this option is not used, only the current
scenario is reported.

For more details, see the command man page.

Using the report_power_calculation Command
Power Compiler uses a complex mechanism to calculate dynamic and leakage power. The
dynamic power consists of internal power on pins and switching power on nets. Both internal
and leakage power could be state dependent.

Though the report_power command does provide a comprehensive report, it is often a
mystery how the numbers relate to the power tables in the library.

The report_power_calculation command shows how the reported power numbers are
derived from the various inputs such as library, simulation data, netlist, and parasitics.This
command does not work on the libraries that have built-in security to protect the power table
numbers. This restriction does not apply for switching power. For more information, see the
man page.

Analyzing Power With Partially Annotated Designs

If you invoke power analysis without annotating any switching activity, Power Compiler uses
the following defaults for the primary inputs of your design:

• P1 = 0.1 (the signal is in the 1 state 10 percent of the time)

P1 is the probability that input P is at logic state 1. For definitions of static probability, P1,
and toggle rate (TR), see “Switching Activity That You Can Annotate” on page 5-2.

• TR = 0.1 * fclk (the signal switches once every 10 clock cycles)

fclk is the frequency of the input’s related clock in the design, as defined by the
set_switching_activity command. You can specify the related clock explicitly with its
clock name or implicitly as “*”. In the latter case, Power Compiler infers a related clock
automatically. If the input port does not have a related clock, Power Compiler uses the
fastest clock in the design.

Using the defaults for static probability and toggle rate can be reasonable for data bus lines.
However, the defaults might be unacceptable for some signals, such as a reset or a
test-enable signal.
Chapter 6: Performing Power Analysis
Analyzing Power With Partially Annotated Designs 6-8

Power Compiler User Guide Version E-2010.12-SP2
If you neglect to annotate toggle information about primary inputs, these inputs assume the
default toggle value. If the input or logic connected to this input is heavily loaded, the results
could be significantly different from what you expect.

To change the default values for switching activity and static probability, set the following
variables to the values you want:

• power_default_static_probability

This variable sets the default value for static probability.

• power_default_toggle_rate

This variable sets the default value for toggle rate.

• power_default_toggle_rate_type

The default is fastest_clock, which causes Power Compiler to calculate the default
toggle rate by multiplying the fastest clock’s frequency with
power_default_toggle_rate. Set this variable to absolute to determine the behavior
when the design object does not have a specified related clock; Power Compiler simply
uses the value of the power_default_toggle_rate variable.

The variables remain in effect throughout the dc_shell session in which you set them.

The following example sets the default static probability to 0.3:

set power_default_static_probability 0.3

The following example sets the default toggle rate to 0.4 of the toggle rate of the
highest-frequency clock:

set power_default_toggle_rate 0.4

Power Correlation

Note:
This section pertains to Design Compiler topographical mode only.

Power correlation refers to the relationship between two power calculations: power after
logic synthesis and power after place and route. Power after place and route is the final
power, and you might want to know this number early in the process so you can take
corrective action if the number exceeds your limits.

In dc_shell, the power reported after logic synthesis is often significantly different from the
final power, and is, therefore, not a good predictor for final power. This differential is caused
by three factors:
Chapter 6: Performing Power Analysis
Power Correlation 6-9
Chapter 6: Performing Power Analysis
Power Correlation 6-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Logic synthesis uses wire load models.

• High fanout nets are not synthesized.

• Clock trees do not exist in the design at the time of synthesis.

Performing logic synthesis within the Design Compiler topographical domain shell
addresses the first two factors because this shell uses a virtual layout, not wire load models,
and high fanout nets are synthesized automatically.

You specify to perform clock-tree estimation within dc_shell-topo to eliminate the differential
caused by the third factor.

To improve correlation in cases with abnormal floor plans, you should use the physical
constraints extracted from the floor plan.

Performing Power Correlation
Correlated power refers to the design power that is added to the estimated clock-tree power
after logic synthesis in the Design Compiler topographical mode. Correlated power is also
referred as estimated total power.

To calculate the correlated power, enable the power prediction feature by using the
set_power_prediction command.

The syntax of the set_power_prediction command is:

set_power_prediction true | false
 [-ct_references list_of_buffers_and_inverters]

Specify the clock tree references by using the -ct_references option, to perform clock-tree
estimation which improves the correlation results.

When the power prediction feature is enabled, the report_power command reports the
correlated power after the design has been mapped to technology-specific cells. When the
power prediction feature is disabled, the report_power command reports only the total
power, static power, and dynamic power, without considering the estimated clock-tree
power.

The power prediction setting is also saved with the design, when the design is saved in the
.ddc (Synopsys logical database format) binary file format.

Power Correlation Script
The following sample script correlates power after you have setup your design environment
and applied synthesis constraints:
Chapter 6: Performing Power Analysis
Power Correlation 6-10

Power Compiler User Guide Version E-2010.12-SP2
read_verilog
set_power_prediction
compile_ultra
report_power
write -f ddc -o design.ddc

In dc_shell-topo, the report_power command reports estimated total power, which includes
the clock-tree contributions for internal, net-switching, and leakage power.

Design Exploration Using Power Compiler

To use Power Compiler for design exploration, follow these steps to get quick results from
gate-level power analysis:

1. Create a SAIF file.

This step requires RTL simulation. For information, see Chapter 4, “Generating Switching
Activity Interchange Format Files.”

2. Compile the design to gates, using your choice of compile options.

3. Annotate switching activity on primary inputs and other synthesis-invariant elements of
the gate-level design.

For information about using SAIF files from RTL simulation to annotate switching activity,
see Chapter 4, “Generating Switching Activity Interchange Format Files.”

4. Use the report_power command to analyze your design’s power.

Power Compiler uses an internal zero-delay simulation to propagate switching activity
through nonannotated elements of the design.

5. Repeat steps 1 through 4 for other architectures and coding styles.

Quick gate-level power analysis enables you to see the results of changes in your RTL
design.

Figure 6-2 on page 6-12 shows the steps that are followed in design exploration using Power
Compiler.
Chapter 6: Performing Power Analysis
Design Exploration Using Power Compiler 6-11
Chapter 6: Performing Power Analysis
Design Exploration Using Power Compiler 6-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 6-2 Design Exploration Using Power Compiler

After you refine your RTL design within the iterative loop of design exploration, your design
is ready for a higher-effort synthesis.

Power Optimization Settings for the Synopsys Physical Guidance
Flow

The Synopsys physical guidance feature enables Design Compiler Graphical to save the
physical guidance information and pass this information to IC Compiler. This section
discusses the settings required for the power optimization and prediction. For general details
of the Synopsys physical guidance flow, see the Design Compiler User Guide.

Synthesis

 RTL
Design

Analysis

Switching
Activity

No

Yes

Higher-Effort
Synthesis

Meet
Power
Target?
Chapter 6: Performing Power Analysis
Power Optimization Settings for the Synopsys Physical Guidance Flow 6-12

Power Compiler User Guide Version E-2010.12-SP2
The power optimization and prediction settings are used by the tool during the
compile_ultra -spg or compile_ultra -incremental -spg command to perform
accurate power estimation. The tool also uses these settings to get accurate post-synthesis
power numbers comparable with the place-and-route numbers. Design Compiler Graphical
supports IEEE 1801, also known as Unified Power Format (UPF), in the Synopsys physical
guidance flow. For more details on UPF, see Chapter 12, “IEEE 1801 Flow for Multivoltage
Design Implementation.”

Use the following commands to enable leakage power and dynamic power optimizations,
respectively:

• set_max_leakage_power

• set_max_dynamic_power

When you enable leakage power or dynamic power optimization, you must use multiple
threshold-voltage libraries. For the best power numbers, set the leakage power before
running the compile_ultra command.

To enable clock-gating optimization, use the -gate_clock option along with the -spg option
of the compile_ultra command. Then the tool can insert, modify or delete clock-gating
cell, except where you have set the dont_touch attribute on a clock-gating cell or its parent
hierarchical cell.

When the power prediction feature is enabled by using the set_power_prediction
command, Power Compiler performs clock tree estimation during the last phase of the
compile_ultra command. The report_power command reports the correlated power
when the design is mapped to technology-specific cells. When the power prediction feature
is disabled, the report_power command reports only the total power, static power, and
dynamic power used by the design without accounting for the estimated clock-tree power.

Other dc_shell Commands for Power

Synopsys power products support the following dc_shell commands:

• characterize

• report_lib

• write_script

The write_script command creates a script file of a synthesis or analysis session. For
more information about write_script, see the Design Compiler documentation and the
man pages.
Chapter 6: Performing Power Analysis
Other dc_shell Commands for Power 6-13
Chapter 6: Performing Power Analysis
Other dc_shell Commands for Power 6-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Characterizing a Design for Power
The characterize command has a particular option that is useful in power analysis and
optimization: the -power option.

The -power option command characterizes annotated or propagated switching activity from
the instance of a subdesign to the nets of the subdesign referenced by the instance. There
must be a one-to-one correspondence between the nets in the instance and the nets in the
referenced subdesign.

As shown in Figure 6-3, consider a design hierarchy in which A is a design instance of
SUB_DESIGN in TOP_DESIGN. Instance A references SUB_DESIGN. When you invoke
power analysis on TOP_DESIGN, the switching activity propagates throughout any nets that
are not already user-annotated.

dc_shell> report_power top_design

Figure 6-3 Switching Activity for TOP_DESIGN

The switching activity can be propagated from primary inputs and synthesis-invariant
elements. In this example, user-annotated on individual design elements using
set_switching_activity commands, or both.

As shown in Figure 6-4 on page 6-15, if you set the current instance to A and characterize
for power, characterize writes the switching activity of instance A onto SUB_DESIGN.

dc_shell> current_design TOP_DESIGN
dc_shell> characterize A -power

TOP_DESIGN
SUB_DESIGN

Switching activity

A

Chapter 6: Performing Power Analysis
Other dc_shell Commands for Power 6-14

Power Compiler User Guide Version E-2010.12-SP2
Figure 6-4 Switching Activity for SUB_DESIGN

After characterizing, you can report the power of SUB_DESIGN by using the newly
characterized switching activity. If you have Power Compiler, you can compile the
SUB_DESIGN by using the newly characterized switching activity.

The -power option of characterize relies on a one-to-one correspondence between the
nets of the referenced SUB_DESIGN and its instance A. If you compile the subdesign before
characterizing instance A or make any changes that alter the nets or names of nets, the
one-to-one net correspondence is lost and characterize fails.

After compiling a subdesign and before reanalyzing or compiling
TOP_DESIGN, be sure to relink the designs.

Before recompiling the subdesign, you might need to do some or all of the following steps:

• Relink the designs using link.

• Generate new switching activity for changed designs.

• Annotate or propagate new switching activity on designs.

• Characterize before reanalyzing or recompiling the subdesign.

For more information about the characterize command, see the Design Compiler
documentation and the online man pages.

Reporting the Power Attributes of Library Cells
Use the report_lib -power command to report which library cells have power
characterization and what type of characterization exists on each library cell. The
report_lib -power commands reports the following information for each cell:

• Leakage power attribute

• Internal power attribute

TOP_DESIGN

A

SUB_DESIGN

Switching activity
Chapter 6: Performing Power Analysis
Other dc_shell Commands for Power 6-15
Chapter 6: Performing Power Analysis
Other dc_shell Commands for Power 6-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Attribute for separate rise and fall power

• Attribute for average rise and fall power

• Toggling pin specified by the internal power table

• Any when conditions (for state-dependent power)

• The related_pin or related_input for path-dependent power

For more information about library commands, see the Library Compiler documentation or
the man pages for individual commands.

Using a Script File

You can enter power analysis commands directly at the dc_shell prompt. However, many
designers find it convenient to use a script file that contains commands for analysis or
optimization.

The dc_shell include command executes a script file of commands.

Example
dc_shell> include script_file.scr

You can use include at the dc_shell prompt or from within another script file.

The write_script command can help you generate scripts. For specific information about
write_script, see the Design Compiler documentation or man pages.

Power Reports

This section contains examples of reports generated with the report_power command and
various combinations of report options.

The report_power command in topographical mode is enhanced to report the correlated
power as a breakdown of estimated clock tree power and netlist power. If the tool cannot
perform clock tree estimation, Power Compiler reports a warning that the clock tree
estimation could not be performed.

Power Report Summary
Example 6-1 on page 6-17 shows a power report summary.
Chapter 6: Performing Power Analysis
Using a Script File 6-16

Power Compiler User Guide Version E-2010.12-SP2
Example 6-1 Summary Report of the report_power Command
dc_shell> report_power -analysis_effort high -verbose

**
Report : power
 -analysis_effort high
 -verbose
Design : DESIGN_1
Version: A-2007.12-SP2
Date : Fri Feb 22 01.46:34 2008
**

Library(s) Used:
 slow (File: slow.db)

Operating Conditions:
Wire Loading Model Mode: Inactive

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Unit = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

 Cell Internal Power Breakdown

 Combinational = 3.0975 mW (10%)
 Sequential = 22.3222 mW (72%)
 Other = 0.0000 mW (0%)

 Combinational Count = 13470
 Sequential Count = 2382
 Other Count = 0
Information: Reporting correlated power. (PWR-620)

 Cell Internal Power = 27.2572 mW (76%)
 Net Switching Power = 8.6208 mW (24%)

Total Dynamic Power = 35.8779 mW (100%)
Cell Leakage Power = 2.6586 uW

Power Breakdown

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power (mW) Leakage
Cell Power (mW) Power (mW) (% Cell/Tot) Power (pW)

 Netlist Power 25.4197 5.5186 3.094e+01 (82%) 2.649e+03
Estimated Clock Tree Power 1.8375 3.1021 4.9396 (37%) 9.9143

Chapter 6: Performing Power Analysis
Power Reports 6-17
Chapter 6: Performing Power Analysis
Power Reports 6-17

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Net Power Report
Example 6-2 shows a net power report sorted by net_switching_power and filtered to
display only the five nets that have the highest switching power.

Example 6-2 Net Power Report, Sorting and Display Options
dc_shell> report_power -net -flat -sort_mode
net_switching_power -nworst 5

**
Report: power

-net
-nworst 5
-flat
-sort_mode net_switching_power

Design: DESIGN_1
Version: A-2007.12-SP2
Date : Fri Feb 22 01:50:50 2008
**
Library(s) Used:

power_lib.db (File: /remote/libraries/power_lib.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

 Attributes

 a - Switching activity information annotated on net
 d - Default switching activity information on net

 Total Static Toggle Switching
Net Net Load Prob. Rate Power Attrs
--
U_TAP_DBG_U_DBG_net5051 0.463 0.374 0.1968 0.1195
U_CORE/U_CONTROL_U_A7S_pencadd_net5225
 0.248 0.374 0.1968 0.0641
U_CORE/U_CONTROL_U_A7S_dataio_net5298
 0.247 0.374 0.1968 0.0637
U_CORE/U_MUL8_net5450 0.232 0.374 0.1968 0.0599
U_CORE/U_AREG_net5593 0.194 0.374 0.1968 0.0501
--
Total (5 nets) 357.2614 uW
Chapter 6: Performing Power Analysis
Power Reports 6-18

Power Compiler User Guide Version E-2010.12-SP2
Cell Power Report
Example 6-3 displays a cell power report containing the cumulative cell power report. The
cells are sorted by cumulative fanout power values, and only the top five are reported.

Example 6-3 Cell Power Report Containing Cumulative Cell Power
dc_shell> report_power -cell -analysis_effort low
-sort_mode cell_internal_power
**
Report : power
 -cell
 -analysis_effort low
 -sort_mode cell_internal_power
Design : DESIGN_3
Version: B-2008.09
Date : Fri Aug 08 01:51:28 2008
**

Library(s) Used:

 slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

Information: Reporting correlated power. (PWR-620)

 Attributes

 h - Hierarchical cell

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power Leakage
Cell Power Power (% Cell/Tot) Power Attrs

CLOCK_TREE_EST 1.8375 3.1021 4.940 (37%) 9.9144
U_CORE 21.7118 N/A N/A (N/A) 2226.6487 h
U_TAP_DBG_U_DBG_clk_gate_int_en_d_reg
 0.0123 N/A N/A (N/A) 1.4392 h
0.0112 6.968e-04 1.19e-02 (94%) 0.1458
U_TAP_DBG_U_SCAN1_breakpt_in_d_reg
 0.0106 2.472e-04 1.09e-02 (98%) 0.1458
Chapter 6: Performing Power Analysis
Power Reports 6-19
Chapter 6: Performing Power Analysis
Power Reports 6-19

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
U_TAP_DBG_U_ID_REG_clk_gate_shift_reg

...

Totals (2474 cells) 27.368mW N/A N/A (N/A) 2.658uW

Hierarchical Power Reports
These examples show the results of the report_power command with the hierarchical
options. Example 6-4 shows the results of the report_power command using the -hier
option. This option shows the internal, switching, and leakage power consumed in your
design hierarchy on a block-by-block basis.

Example 6-4 Hierarchical report_power with -hier Option
dc_shell> report_power -hier

**
Report : power
 -hier
 -analysis_effort low
Design : DESIGN_4
Version: A-2007.12-SP2
Date : Fri Feb 22 01:51:42 2008
**

Library(s) Used:

 slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

Information: Reporting correlated power. (PWR-620)
--
 Switch Int Leak Total
Hierarchy Power Power Power Power %
--
A7S_top 8.683 27.368 2.66e+03 36.054 100.0
CLOCK_TREE_EST 3.102 1.837 9.914 4.940 13.7
 U_CORE (A7S_core) 4.318 21.712 2.23e+03 26.032 72.2

Example 6-5 on page 6-21 shows the results of the report_power command using the
-hier and -hier_level options. The -hier option shows the internal, switching, and
leakage power consumed in your design hierarchy on a block-by-block basis. The
-hier_level option limits the depth of the hierarchy level displayed in the report.
Chapter 6: Performing Power Analysis
Power Reports 6-20

Power Compiler User Guide Version E-2010.12-SP2
Example 6-5 Hierarchical report_power With -hier and -hier_level Options
dc_shell> report_power -hier -hier_level 1

**
Report : power
 -hier
 -analysis_effort low
Design : A7S_top
Version: A-2007.12-SP2
Date : Fri Feb 22 01:51:42 2008
**

Library(s) Used:

 slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

Information: Reporting correlated power. (PWR-620)

Switch Int Leak Total

Hierarchy Power Power Power Power %

A7S_top 8.683 27.368 2.66e+03 36.054 100.0
CLOCK_TREE_EST 3.102 1.837 9.914 4.940 13.7
 U_CORE (A7S_core) 4.318 21.712 2.23e+03 26.032 72.2

Power Report for Interface Logic Model
The report_power command can report the total power information for interface logic
models. The tool reports the power information of the ILM by default unless you set the
ilm_enable_power_calculation variable to false before creating the ILM. The default
value of this variable is true. For more details, see the Design Compiler User Guide.

No specific command line options are required to report the power information for Interface
Logic Model.
Chapter 6: Performing Power Analysis
Power Reports 6-21
Chapter 6: Performing Power Analysis
Power Reports 6-21

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The reporting for ILMs can be done for both multivoltage and non-multivoltage designs and
also for hierarchical flows. Example 6-6 shows a sample power report for ILM.

Example 6-6 report_power for Interface Logic Model
dc_shell> report_power

**
Report : power
 -hier
Design : top
Version: A-2008.09
Date : Fri Aug 22 01:51:42 2008
**

Library(s) Used:

 slow (File: slow.db)

Operating Conditions: slow Library: slow
Wire Load Model Mode: Inactive.

Global Operating Voltage = 1.62
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

 Information: Reporting correlated power. (PWR-620)
 Cell Internal Power = 52.6285 mW(90%)
 Net Switching Power = 5.9982 mW(10%)

 Total Dynamic Power = 58.6267 mW(100%)
 Cell Leakage Power = 706.2805 uW
 Power Breakdown

 Cell Net Total Dynamic Cell
 Internal Switching Power (mW) Leakage
Cell Power (mW) Power (mW) (% Cell/Tot) Power (pW)

Netlist Power 50.1131 4.9944 5.511e+01 (91%) 6.978e+08
Estimated Clock Tree Power 2.5155 1.0037 3.519e+00 (71%) 8.463e+06

Chapter 6: Performing Power Analysis
Power Reports 6-22

7
Clock Gating 7

Power optimization at high levels of abstraction has a significant impact on reduction of
power in the final gate-level design. Clock gating is an important high-level technique for
reducing the power consumption of a design.

This chapter includes the following sections:

• Introduction to Clock Gating

• Using Clock-Gating Conditions

• Inserting Clock Gates

• Clock Gating Flows

• Specifying Clock-Gate Latency

• Calculating the Clock Tree Delay From Clock-Gating Cell to Registers

• Specifying Setup and Hold

• Choosing Gating Logic

• Selecting Clock-Gating Style

• Modifying the Clock-Gating Structure

• Integrated Clock-Gating Cells

• Propagating Clock Constraints

7-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Ensuring Accuracy When Using Ideal Clocks

• Sample Clock-Gating Script

• Clock-Gating Naming Conventions

• Keeping Clock-Gating Information in a Structural Netlist

• Replacing Clock-Gating Cells

• Clock-Gate Optimization Performed During Compilation

• Performing Clock-Gating on DesignWare Components

• Reporting Command for Clock Gates and Clock Tree Power
Chapter 7: Clock Gating
7-2

Power Compiler User Guide Version E-2010.12-SP2
Introduction to Clock Gating

Clock gating applies to synchronous load-enable registers, which are groups of flip-flops that
share the same clock and synchronous control signals and that are inferred from the same
HDL variable. Synchronous control signals include synchronous load-enable, synchronous
set, synchronous reset, and synchronous toggle.

The registers are implemented by Design Compiler by use of feedback loops. However,
these registers maintain the same logic value through multiple cycles and unnecessarily use
power. Clock gating saves power by eliminating the unnecessary activity associated with
reloading register banks.

Designs that benefit most from clock gating are those with low-throughput datapaths.
Designs that benefit less from RTL clock gating include designs with finite state machines or
designs with throughput-of-one datapaths.

Power Compiler allows you to perform clock gating with the following techniques:

• RTL-based clock gate insertion on unmapped registers. Clock gating occurs when the
register bank size meets certain minimum width constraints.

• Gate-level clock gate insertion on both unmapped and previously mapped registers. In
this case, clock gating is also applied to objects such as IP cores that are already
mapped.

• Power-driven gate-level clock gate insertion, which allows for further power optimizations
because all aspects of power savings, such as switching activity and the flip-flop types to
which the registers are mapped, are considered.

You can choose the type of clock-gating circuit inserted. Following are some of the choices:

• Choose an integrated or nonintegrated cell with latch-based clock gating

• Choose an integrated or nonintegrated cell with latch-free clock gating

• Insert logic to increase testability

• Specify a minimum number of bits below which clock gating is not inserted

• Explicitly include signals in clock gating

• Explicitly exclude signals from clock gating

• Specify a maximum number for the fanouts of each clock-gating element

• Move a clock-gated register to another clock-gating cell

• Resize the clock-gating element
Chapter 7: Clock Gating
Introduction to Clock Gating 7-3
Chapter 7: Clock Gating
Introduction to Clock Gating 7-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Without clock gating, Design Compiler implements register banks by using a feedback loop
and a multiplexer. When such registers maintain the same value through multiple cycles,
they use power unnecessarily.

Figure 7-1 shows a simple register bank implementation using a multiplexer and a feedback
loop.

Figure 7-1 Synchronous Load-Enable Register With Multiplexer

When the synchronous load enable signal (EN) is at logic state 0, the register bank is
disabled. In this state, the circuit uses the multiplexer to feed the Q output of each storage
element in the register bank back to the D input. When the EN signal is at logic state 1, the
register is enabled, enabling new values to load at the D input.

Such feedback loops can unnecessarily use power. For example, if the same value is
reloaded in the register throughout multiple clock cycles (EN equals 0), the register bank
and its clock net consume power while values in the register bank do not change. The
multiplexer also consumes power.

Clock gating eliminates the feedback net and multiplexer shown in Figure 7-1 by inserting a
2-input gate in the clock net of the register. Clock gating can insert inverters or buffers to
satisfy timing or clock waveform polarity requirements.

The 2-input clock gate selectively prevents clock edges, thus preventing the gated-clock
signal from clocking the gated register.

Figure 7-2 on page 7-5 shows a latch-based clock-gating style using a 2-input AND gate;
however, depending on the type of register and the gating style, gating can use NAND, OR,
and NOR gates instead.

Flip-
Flop Register

Bank

QD

ENCLK

Multiplexer

DATA
OUT

0

1

Control
Logic

DATA IN
Chapter 7: Clock Gating
Introduction to Clock Gating 7-4

Power Compiler User Guide Version E-2010.12-SP2
Figure 7-2 Latch-Based Clock Gating

At the bottom of Figure 7-2, waveforms of the signals are shown with respect to the clock
signal, CLK.

The clock input to the register bank, ENCLK, is gated on or off by the AND gate. ENL is the
enabling signal that controls the gating; it derives from the EN signal on the multiplexer
shown in Figure 7-1 on page 7-4. The register bank is triggered by the rising edge of the
ENCLK signal.

The latch prevents glitches on the EN signal from propagating to the register’s clock pin.
When the CLK input of the 2-input AND gate is at logic state 1, any glitching of the EN signal
could, without the latch, propagate and corrupt the register clock signal. The latch eliminates
this possibility because it blocks signal changes when the clock is at logic state 1.

In latch-based clock gating, the AND gate blocks unnecessary clock pulses by maintaining
the clock signal’s value after the trailing edge. For example, for flip-flops inferred by HDL
constructs of rising-edge clocks, the clock gate forces the gated clock to 0 after the falling
edge of the clock.

By controlling the clock signal for the register bank, you can eliminate the need for reloading
the same value in the register through multiple clock cycles. Clock gating inserts
clock-gating circuitry into the register bank’s clock network, creating the control to eliminate
unnecessary register activity.

Control
logic

Register
bank

QD

DATA
IN

EN

CLK

DATA
OUT

ENCLK

ENL

CLK

LQ

LATCH

LD

LG

Flip-
flop

CLK

CLK

EN

ENL

ENCLK
Chapter 7: Clock Gating
Introduction to Clock Gating 7-5
Chapter 7: Clock Gating
Introduction to Clock Gating 7-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Clock gating reduces the clock network power dissipation, relaxes the datapath timing, and
reduces routing congestion by eliminating feedback multiplexer loops. For designs that have
large multi-bit registers, clock gating can save power and reduce the number of gates in the
design. However, for smaller register banks, the overhead of adding logic to the clock tree
might not compare favorably to the power saved by eliminating a few feedback nets and
multiplexers.

Using Clock-Gating Conditions

Before gating the clock signal of a register, Power Compiler checks if certain clock-gating
conditions are satisfied. Power Compiler inserts a clock gate only if all clock-gating
conditions are satisfied.

Registers in your design qualify for clock gating when the following conditions are met:

• The circuit demonstrates synchronous load-enable functionality.

• The circuit satisfies the setup condition.

• The register bank or group of register banks satisfies the minimum number of bits you
specify with the set_clock_gating_style -minimum_bitwdith command. The default
value used for the minimum bitwidth is 3.

After clock gating is complete, the status of clock-gating conditions for gated and ungated
register banks appears in the clock-gating report. For information about the clock-gating
report, see “Reporting Command for Clock Gates and Clock Tree Power” on page 7-74.

Clock-Gating Conditions
The register must satisfy all three of the following conditions before Power Compiler gates
the clock signal of the registers:

• Enable condition

This condition checks if the register bank’s synchronous load-enable signal is constant
logic 1, reducible to logic 1, or logic 0. In these cases, the condition is false and the circuit
is not gated. If the synchronous load-enable signal is not constant logic 1 or 0, the
condition is true and clock gating goes on to check the setup condition. The enable
condition is the first condition clock gating checks.

• Setup condition

This setup condition applies to latch-free clock gating only. It checks that the enable
signal comes from a register that is clocked by the same clock as the register being
gated. Clock gating checks this condition only if the register satisfies the enable
condition.
Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-6

Power Compiler User Guide Version E-2010.12-SP2
• Width condition

The width condition is the minimum number of bits for gating registers or groups of
registers with equivalent enable signals. The default value is 3. You can set the width
condition by using the -minimum_bitwidth option of the set_clock_gating_style
command. Clock gating checks this condition only if the register satisfies the enable
condition and the setup condition.

Enable Condition
The enable condition of a register or clock gate is a combinational function of nets in the
design. The enable condition of a register represents the states for which a clock signal must
be passed to the register. The enable condition of a clock gate corresponds to the states for
which a clock is passed to the registers in the fanout of the clock gate. Power Compiler
utilizes the enable condition of the registers for clock-gate insertion.

Enable conditions are represented by Boolean expressions for nets. For example:

module TEST (en1, en2, en3, in, clk, dataout);
 input en1, en2, en3, clk;
 input [5:0] in;
 output [5.0] dataout;
 reg [5.0] dataout;

 wire enable;

 assign enable = (en1 | en3) & en2;

always @(posedge clk) begin
 if(enable)
 dataout <= in;
 else
 dataout <= dataout;
end

endmodule

In this example, the enable condition for the register bank dataout_reg* can be expressed as
en1 en2 + en3 en2.

Enable conditions can be hard to identify in the RTL netlist. Set the
power_cg_print_enable_conditions variable to true to report the enable conditions.
Control the number of Boolean expressions included in the report with the
power_cg_print_enable_conditions_max_terms variable. The default is 10.

Setup Condition
If the enable condition is satisfied, Power Compiler requires that the enable signal of the
register bank enable be synchronous with its clock. This is the setup condition.
Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-7
Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
For latch-based or integrated clock gating, Power Compiler can insert clock gating
irrespective of the enable signal’s and the clock’s clock domains. If the enable signal and the
register bank reside in different clock domains, you must ensure that the two clock domains
are synchronous and that the setup and hold times for the clock-gating cell meet the timing
requirements.

For latch-free clock gating, if any of the following characteristics exist, the setup condition is
false and the register bank is not gated:

• If the register bank and its controlling logic (including flip-flops) belong to different clock
domains, the setup condition is false.

• If the register bank and its controlling logic (including flip-flops) are driven by different
edges of the same clock signals, the setup condition is false.

• If the controlling logic is driven by a combination path from the input port, the setup
condition is false, unless:

• For primary input ports, you specified a clock with the set_input_delay command.

• You specified power_cg_derive_related_clock true, which enables clock
propagation of the related clocks from parent hierarchies for inputs on subdesigns.
The default is false.

These two special cases specify that an input port is synchronous with a given clock;
therefore, the setup condition is true.

Specify power_cg_ignore_setup_condition true to cause Power Compiler to ignore the
setup condition for latch-free clock gating. Use this variable with extreme caution.

Enabling or Disabling Clock Gating on Design Objects
You can enable or disable clock gating on certain design objects by overriding all necessary
conditions set by the clock-gating style. The set_clock_gating_objects command
specifies the design objects on which clock gating should be enabled or disabled during
compile_ultra -gate_clock command. If you use the insert_clock_gating command,
you must run the uniquify command, before inserting the clock gates.

The set_clock_gating_objects command has the following syntax:

set_clock_gating_objects
 [-force_include object_list]
 [-exclude object_list]
 [-include object_list]
 [-undo object_list]
Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-8

Power Compiler User Guide Version E-2010.12-SP2
-force_include

Forces the inclusion of the specified list of objects, by overriding the constraints specified
by the -minimum_bitwidth and -max_fanout options of the
set_clock_gating_style command.

-exclude

Excludes the specified list of objects from clock gating.

-include

Includes the specified list of objects and honors the style set by the
set_clock_gating_style command.

-undo

 Removes the existing inclusion or exclusion criteria specified by the -force_include,
-exclude, or -include options.

The following example includes some registers and excludes other registers from clock
gating:

dc_shell> set_clock_gating_objects \
 -force_include ADDER/out1_reg[*] \
 -exclude ADDER/out2_reg[*]

The following example excludes all registers in the subdesign ADDER, except the out1_reg
bank. The out1_reg bank is clock-gated according to the specified clock-gating style:

dc_shell> set_clock_gating_objects \
 -exclude ADDER \
 -include ADDER/out1_reg[*]

The following example sets and then removes the inclusion and exclusion criteria specified
by the -include and -exclude options:

dc_shell> set_clock_gating_objects \
 -include ADDER/out1_reg[*] \
 -exclude ADDER/out2_reg[*]

dc_shell> set_clock_gating_objects \
 -undo{ADDER/out1_reg[*] ADDER/out2_reg[*]}

For more details, see the set_clock_gating_objects command man page.

Overriding Clock-Gating Conditions Using the set_clock_gating_registers Command

You can also use the set_clock_gating_registers command to explicitly include or
exclude an HDL signal in clock gating, thus overriding the clock-gating conditions.

The syntax is
Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-9
Chapter 7: Clock Gating
Using Clock-Gating Conditions 7-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
set_clock_gating_registers \
 [-include_instances instance_list] \
 [-exclude_instances instance_list] \
 [-undo register_list]

For example, suppose you have two clocks, clk1 and clk2, and you only want to perform
clock gating on clk2. Specify the set_clock_gating_registers command as follows:

set_clock_gating_registers -exclude [all_reg]
set_clock_gating_registers -include [all_reg -clock clk2]

Use this command with the compile_ultra -gate_clock and the insert_clock_gating
command.

For additional information about these commands, see the respective man pages.

Inserting Clock Gates

Power Compiler inserts clock-gating cells to your design if you compile your design using the
-gate_clock option of the compile or compile_ultra command. You can also insert clock
gates to your design using the insert_clock_gating command. The following sections
discusses in detail these two ways of clock-gate insertion.

Using the compile_ultra -gate_clock Command
During the compilation process, Power Compiler can insert clock-gates to your design if you
use the -gate_clock option of the compile or compile_ultra commands. With the
-gate_clock option, compile or compile_ultra commands can perform clock-gate
insertion on the gate-level netlist and the RTL netlist as well as GTECH netlist. By default,
when you use the -gate_clock option, the tool inserts clock gates only in the same level of
hierarchy as the registers gated by the clock gate. For the tool to perform clock gating across
the design hierarchy, set the compile_clock_gating_through_hierarchy variable to
true. For more details on hierarchical clock gating see “Hierarchical Clock Gating” on
page 7-70.

The compile_ultra -gate_clock command can also perform clock gating on DesignWare
components. For more details, see “Performing Clock-Gating on DesignWare Components”
on page 7-74.

In the Design Compiler topographical mode, when you perform clock gating with incremental
compile, using the compile_ultra -incremental -gate_clock command, the tool
performs incremental placement and gate-level clock-gating.
Chapter 7: Clock Gating
Inserting Clock Gates 7-10

Power Compiler User Guide Version E-2010.12-SP2
Using the insert_clock_gating Command
The insert_clock_gating command can be used to perform clock-gating on the GTECH
netlist. You cannot use this command to perform clock gating on gate-level netlist. To
perform clock gating on a gate-level netlist use the compile_ultra -gate_clock
command. This command identifies clock-gating opportunities by combining different
register banks that share common enable signal.

The insert_clock_gating command performs clock gating on all the subdesigns in the
design hierarchy by processing each subdesign independently. Use the -no_hier option to
limit the clock-gate insertion to the top level of the design hierarchy. Use the -global option
to perform hierarchical clock gating, that is, to insert clock gates on all levels of design
hierarchy, considering the design as a whole and not considering each subdesign
independently. For more details on hierarchical clock gating see “Hierarchical Clock Gating”
on page 7-70. For more details of the insert_clock_gating command see the command
man page.

Clock-Gate Insertion in Multivoltage Designs
In a multivoltage design, the different hierarchies of the design can have different operating
condition definition and use different target library subsets. So, while inserting clock-gating
cells in a multivoltage design, Power Compiler chooses the appropriate library cells based
on the specified clock gating style as well as the operating conditions that match the
operating conditions of the hierarchical cell of the design. If you do not specify a clock gating
style, the tool chooses a suitable clock gating style. If the tool does not find a library cell that
suites both, the clock gating style and the operating condition, a clock gating cell is not
inserted and a warning message is issued. For more details on clock gating style see
“Selecting Clock-Gating Style” on page 7-35.

Clock Gating Flows

The various clock-gating flows supported by the tool is discussed in detail in the following
sections.

Inserting Clock Gates in the RTL Design
To insert clock gating logic in your RTL design and to synthesize the design with the
clock-gating logic, follow these steps:

1. Read the RTL design.

2. Use the compile_ultra -gate_clock command to compile your design.
Chapter 7: Clock Gating
Clock Gating Flows 7-11
Chapter 7: Clock Gating
Clock Gating Flows 7-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
During the compilation process clock gate is inserted on the registers qualified for
clock-gating. By default, during the clock-gate insertion the compile_ultra command
uses the default values of the set_clock_gating_style command and also honors the
setup, hold, and other constraints specified in the technology libraries. To override the
setup and hold values specified in the technology library, use the
set_clock_gating_style command before compiling your design.

You can also use the insert_clock_gating command to insert the clock-gating cells.

Both, compile_ultra and insert_clock_gating commands use the default values of
the clock-gating style during the clock gate insertion. The default values of the
set_clock_gating_style command is suitable for most designs. For more details on
the default clock-gating style, see “Using the Default Clock-Gating Style” on page 7-46.

3. If you are using testability in your design, use the insert_dft command to connect the
scan_enable and the test_mode ports or pins of the integrated clock-gating cells.

4. Use the report_clock_gating command to report the registers and the clock gating
cells in the design. Use the report_power command to get details of the dynamic power
utilized by your design after the clock gate insertion.

In the following example, clock gating is implemented in the design during the compilation
process. The default values of the set_clock_gating_style command are used during
the clock-gate insertion. The -scan option of the compile_ultra command enables the
examination of your design for scan insertion for mission mode constraints.

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name CLK
dc_shell> compile_ultra -gate_clock -scan
dc_shell> insert_dft
dc_shell> report_clock_gating
dc_shell> report_power

Inserting Clock Gates in Gate-Level Design
To insert clock gating logic in your gate-level netlist and to re-synthesize the design with the
clock gating logic follow these steps:

1. Read the gate-level netlist.

2. Use the compile_ultra -gate_clock command to compile your design.

During the compilation process, clock-gating cells are inserted on the registers qualified
for clock-gating. During this process by default, the compile_ultra command

• Reads the setup and hold constraints that are specified in the technology libraries

• Propagates these constraints up the hierarchy.
Chapter 7: Clock Gating
Clock Gating Flows 7-12

Power Compiler User Guide Version E-2010.12-SP2
To override the setup and hold values specified in the technology library, use the
set_clock_gating_style before compiling your design. Using the compile_ultra
-gate_clock command you can perform clock-gate insertion on designware elements
as well. For more details about clock-gate insertion on DesignWare components see,
“Performing Clock-Gating on DesignWare Components” on page 7-74.

The compile_ultra -gate_clock command uses the default values of the clock gating
style during the clock-gate insertion. The default values of the
set_clock_gating_style command are suitable for most designs. For more details on
the default clock-gating style, see “Using the Default Clock-Gating Style” on page 7-46.

3. If you are using testability in your design, use the insert_dft command to connect the
scan_enable and test_mode ports or pins of the integrated clock-gating cells.

4. Use the report_clock_gating command to report the registers and the clock gating
cells in the design. Use the report_power command to get details of the dynamic power
utilized by your design after the clock gate insertion.

In the following example, clock gating is implemented in the design during the compilation
process. The default values of the set_clock_gating_style command are used during
the clock-gate insertion.

dc_shell> read_ddc design.ddc
dc_shell> compile_ultra -inc -gate_clock -scan
dc_shell> insert_dft
dc_shell> report_clock_gating
dc_shell> report_power

Power-Driven Clock Gating
You can perform power-driven clock gating by setting the power_driven_clock_gating
variable to true before synthesizing your design. With this variable set, while compiling the
design using the compile_ultra -gate_clock command, Power Compiler performs the
following tasks:

• Examines all register banks that can potentially be clock-gated, calculates their power
with and without clock gates, and retains the clock gates that provide lower power costs.

• Uses default or user-annotated switching activity information to help compute the power
costs for clock gates inserted at the register banks.

If you do not specify the switching activity, the tool uses the default switching activity. You
specify the switching activity either by SAIF or by using the set_switching_activity
command. If you specify the switching activity, the nonannotated nodes have the
propagated switching activity. For information about SAIF, see “Annotating Switching
Activity Using RTL SAIF Files” on page 5-2.
Chapter 7: Clock Gating
Clock Gating Flows 7-13
Chapter 7: Clock Gating
Clock Gating Flows 7-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Propagation of the default switching activity assumes 50% toggle rate with respect to the
clock. For more information about default propagation, see “Annotating the Design Nets
Using the Default Switching Activity Values” on page 5-13.

• Performs clock gating with the necessary mapping optimizations.

• Optimizes new and existing clock-gating logic. Optimizations can be any of the following:
insertion, removal, changing fanout, and combining redundant clock gates.

• Performs DesignWare clock gating.

• In Design Compiler topographical mode, automatically uses power correlation. For more
information, see “Power Correlation” on page 6-9.

Note:
Gate-level and power-driven clock gating work with the compile_ultra -inc option as
well, but not if Design Compiler is in topographical mode.

Power-driven clock gating only considers the minimum bit-width if you specify it explicitly
with the set_clock_gating_style -minimum_bitwidth command. Doing so, however,
can interfere with the algorithm that evaluates the actual power savings of the clock gates.
This algorithm is more accurate than relying on the minimum bitwidth and typically leads to
better dynamic power results. The following warning message appears if you specify
set_clock_gating_style with the -minimum_bitwidth option:

Warning: A minimum bit-width constraint has been set;
power-driven clock gating may yield inferior results.
(PWR-650)

The following script performs power-driven clock-gate insertion in Design Compiler:

#optional setting
set_clock_gating_style -positive integrated
read_verilog {register_bank.v subdesign.v top.v}
current_design top
link
create_clock -p 5 clk -name CLK
compile_ultra -gate_clock
insert_dft
report_clock_gating
report_power
Chapter 7: Clock Gating
Clock Gating Flows 7-14

Power Compiler User Guide Version E-2010.12-SP2
Table 7-1 compares the various clock-gating techniques:

Specifying Clock-Gate Latency

During synthesis, Design Compiler assumes that the clocks are ideal. An ideal clock incurs
no delay through the clock network. This assumption is made because real clock-network
delays are not known until after clock tree synthesis. In reality clocks are not ideal and there
is a non-zero delay through the clock network. For designs with clock gating, the
clock-network delay at the registers is different from the clock-network delay at the
clock-gating cell. This difference in the clock-network delay at the registers and at the
clock-gating cell results in stricter constraints for the setup condition at the enable input of
the clock-gating cell.

Table 7-1 Clock-Gating Technique Comparison

RTL Gate-level Power-driven

Input Netlist RTL Gate-level Gate-level

Honor the
set_clock_gating_style
command

Yes Yes Yes. Using the
-minimum_bitwidth option is
not recommended

Cost factor considered
during clock-gate insertion

Design topology Design
topology

Dynamic power and switching
activity

Performing Clock gate
insertion

Use
compile_ultra
-gate_clock or
insert_clock_
gating
command

Use the
compile_ultra
-gate_clock
or the
compile_ultra
-incremental
-gate_clock
command

set
power_driven_clock_gating
true followed by
compile_ultra -gate_clock

Tasks performed Clock-gate
insertion

Clock-gate
insertion

Clock-gate insertion,
optimization, and removal

Additional tasks performed
in Design Compiler
Topographical Technology

None Power
correlation

Power correlation
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-15
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
For Design Compiler to account for the clock network delays during the timing calculation,
specify the clock network latency using either the set_clock_gate_latency or the
set_clock_latency command. The set_clock_gate_latency command can be used for
both, gate-level and RTL designs. The set_clock_latency command can be used only on
RTL netlist. More details of these two commands are described in the following sections.

The set_clock_gate_latency Command
When you use the compile_ultra -gate_clock command, clock gates are inserted
during the compilation process. To specify the clock network latency, even before the
clock-gating cells are inserted by the tool, use the set_clock_gate_latency command.
This command lets you specify the clock network latency for the clock-gating cells as a
function of the clock domain, clock gating stage, and the fanout of the clock-gating cell. The
latency that you specify is annotated on the clock gating cells when they are inserted by the
compile_ultra -gate_clock command. You can manually annotate the latency values on
the clock-gating cells using the apply_clock_gate_latency command. For more details,
see “Applying Clock-Gate Latency” on page 7-18.

The following example in Figure 7-3 on page 7-17 shows the definitions for the clock-gate
stages and the fanouts.

The clock gating cell C drives 200 registers. So the fanout of the cell C is 200. Because C
drives registers, and not other clock gating cells, the clock gating stage for the cell C is 1.

The clock gating cell B drives a set of 75 registers and a clock gating cell C. So the fanout of
the clock-gating cells B is 76. The clock gating stage for the cell B is 2; clock gating stage of
C + 1.

Similarly, the clock gating stage of cell A is 3 and the fanout is 1. The clock gating stage of
all the registers is stage 0.
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-16

Power Compiler User Guide Version E-2010.12-SP2
Figure 7-3 Clock-Gating Stages and Fanouts

The following example script shows how to specify the latency values for the various clock
gate stages and fanouts using the set_clock_gate_latency command for the design
shown in Figure 7-3.

set_clock_gate_latency -clock CLK -stage 0 \
 -fanout_latency {1-inf 2.0}
set_clock_gate_latency -clock CLK -stage 1 \
 -fanout_latency {1-30 2.1, 31-100 1.7, 101-inf 1.1}
set_clock_gate_latency -clock CLK -stage 2 \
 -fanout_latency {1-5 0.9, 6-20 0.5, 21-100 0.4, 101-inf 0.3}
set_clock_gate_latency -clock CLK -stage 3 \
 -fanout_latency {1-10 0.28, 11-inf 0.11}

To specify clock latency value for the clock-gated registers, use the -stage option with a
value 0. Because you are specifying the latency value for the clock gated registers, the value
for the -fanout_latency option should be 1-infinity, as shown in the following example:

set_clock_gate_latency -clock CLK -stage 0 \
-fanout_latency { 1-inf 0.1 }

For more details, see the command man page.
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-17
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-17

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The set_clock_latency Command
In RTL designs, after you insert the clock gating cells use the set_clock_latency
command to specify the clock network latency. Use this command only when your design
already has clock-gating cells.

In the following example, shown in Figure 7-4,

• lat_cgtoreg is the estimated delay from the clock pin of the clock gating cell to the clock
pin of the gated register.

• lat_reg is the estimated clock-network latency to the clock pins of the registers without
clock gating.

Figure 7-4 Clock Latency With Clock-Gating Design

For all clock pins of registers (gated or ungated) in the design that are driven by a particular
clock, use the lat_reg value for the set_clock_latency command. For clock pins of all the
clock-gating cells, use the value of lat_reg-lat_cgtoreg for the set_clock_latency
command. Because the purpose of setting the latency values is to account for the different
clock-network delays between the registers and the clock-gating cell it is important to get a
reasonably accurate value of the difference (lat_cgtoreg). The absolute values used are
relatively less important, unless you are using these values to account for clock-network
delay issues not related to clock gating.

For more details, see the command man page.

Applying Clock-Gate Latency
The clock latency specified using the set_clock_gate_latency command is annotated on
the registers during the compile_ultra -gate_clock command when the clock-gating
cells are inserted. However, if you modify the latency values on the clock gates after the

Clock-gating
cell

Register

(lat_reg)

(lat_cgtoreg)

Clock
tree

delay

Clock
tree

delay

Clock
port
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-18

Power Compiler User Guide Version E-2010.12-SP2
compilation, you must manually apply the latency values on the existing clock-gating cells
using the apply_clock_gate_latency command. This command can be used on the
clock-gating cells inserted by the tool during the compile_ultra -gate_clock command
or by the insert_clock_gating command.

Note:
Having modified the clock-gate latency using the set_clock_gate_latency command,
if you compile your design using the compile_ultra or compile_ultra -incremental
command, using the apply_clock_gate_latency command is not necessary. The tool
annotates the specified value during the compilation.

For more details, see the command man pages.

Resetting Clock-Gate Latency
To remove the clock latency information specified on the clock-gating cells, use the
reset_clock_gate_latency command. This command removes the clock latency values
on the specified clocks. If you do not specify the clock, the clock latency values on all the
clock-gating cells are removed. This command removes the clock latency on the specified
clocks, irrespective of whether the latency values were specified using the
set_clock_latency or the set_clock_gate_latency commands.

For more details, see the command man page.

Comparison of the Clock-Gate Latency Specification Commands
Table 7-2 compares various commands that you can use to specify the clock-gate latency.

Table 7-2 Comparison of Clock-Gating Latency Specification Commands

set_clock_gate_latency set_clock_gating_
style -setup -hold

set_clock_gating_check set_clock_latency

Recommended to be
used with the
compile_ultra
-gate_clock command

Default values are
recommended for
most designs. Use
this command only
if the default values
are not suitable for
your design

To specify the clock-gate
latency on existing
clock-gating cells.

To modify
clock-gate latency
on existing
clock-gating cells.
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-19
Chapter 7: Clock Gating
Specifying Clock-Gate Latency 7-19

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Calculating the Clock Tree Delay From Clock-Gating Cell to
Registers

If your clock tree synthesis tool does not insert buffers after the clock-gating cell, then the
total delay between the clock-gating cell and the registers is equal to the delay of the
clock-gating cell (clock pin to clock out signal) plus the wire delay between the clock-gating

To specify clock-gate
latency before the clock
gates are inserted by the
compile_ultra
-gate_clock command

If used before the
insert_clock_gat
ing command,
requires you to use
the
propagate_constr
aints command
after the clock-gate
insertion. If used
before the
compile_ultra
-gate_clock
command,
constraint
propagation is
automatically done
after the clock-gate
insertion.

Specification is on the
instance. So, specify on
each clock-gating cell.

Specification is on
the instance. So,
specify on each
clock-gating cell

To modify the clock-gate
latency settings on
existing clock-gating cells

To specify the setup
and hold values
before the clock
gates are inserted

Specification overrides
the setup and hold values
in the technology library

The latency setting
specifies the clock
arrival time at the
clock-gating cell

The latency setting
specifies the clock arrival
time at the clock-gating
cell

The specification
overrides the setup
and hold values
defined in the
technology library

Can be used with both
insert_clock_gating
and compile_ultra
-gate_clock command

Can be used with
both
insert_clock_ga
ting and
compile_ultra
-gate_clock
command

Specification is based on
clock domain,
clock-gating state and
fanout

Generic settings for
all the clock gates in
the design

Table 7-2 Comparison of Clock-Gating Latency Specification Commands (Continued)

set_clock_gate_latency set_clock_gating_
style -setup -hold

set_clock_gating_check set_clock_latency
Chapter 7: Clock Gating
Calculating the Clock Tree Delay From Clock-Gating Cell to Registers 7-20

Power Compiler User Guide Version E-2010.12-SP2
cell and the registers. If your clock tree synthesis tool inserts buffers after the clock-gating
cell, add an estimate of the clock-network delay to the total delay between the clock-gating
cell and the registers. You can use an estimate based on the fanout of the clock-gating cell
and the driving capacity of typical clock tree buffers or use data from earlier designs.

For most designs, the enable signal arrives early and is not affected by clock-network delay
issues. For late arriving enable signals, it is advisable to be conservative (high value) in the
selection of the delay from the clock-gating cell to the registers. A low value may mean an
enable signal which is unable to meet arrival time constraints at the clock-gating cell after the
clock tree is inserted. However, a high value may over constrain the enable signal leading to
higher area or power and ensures that the enable signal arrives in time at the clock-gating
cell.

After placement and clock tree synthesis, you can back-annotate delay information by using
the set_propagated_clock command to inform Design Compiler to use real delay data for
the clock-network delay. For more information, see the Design Compiler documentation.

Specifying Setup and Hold

During insertion of clock gates, the setup and hold time that you specify defines the margins
within which the enable signal (EN) must operate to maintain the integrity of the gated-clock
signal.

The setup and hold values for the integrated clock-gating cell are specified in the technology
library. The values specified in the technology library are honored by compile_ultra
-gate_clock command during clock gate insertion. However, you can override these values
in the following ways:

• Specifying the -setup and -hold options in set_clock_gating_style command. By
doing so, all the clock gates in the design should have the setup and hold time that you
specify.

• For the clock-gating cells already existing in your design, use the
set_clock_gating_check command to specify a desired setup and hold time. You
cannot use this command if the clock gates are inserted during the compile_ultra
-gate_clock command.

You use the report_timing -to command to the enable pin of the clock-gating cell to verify
that the new values are correct.

The following example uses the set_clock_gating_style command to specify the setup
and hold values:

set_clock_gating_style \
 -max_fanout 16 \
Chapter 7: Clock Gating
Specifying Setup and Hold 7-21
Chapter 7: Clock Gating
Specifying Setup and Hold 7-21

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 -positive_edge_logic integrated \
 -setup 6 \
 -hold 2
compile_ultra -gate_clock
to validate the user-specified setup/hold time for
integrated clock gating
report_timing -to clk_gate_out_top_reg/EN

For example, using set_clock_gating_check:

set_clock_gating_style \
 -max_fanout 16 \
 -positive_edge_logic integrated \
 -control_point before \
 -control_signal test_mode
set_clock_gating_check -setup 3 -hold 2 [get_cells
clk_gate_out_top_reg/main_gate]
set_clock_gating_check -setup 5 -hold 1.5 [get_cells
clk_gate_out_top_reg_1/main_gate]
compile_ultra -gate_clock
to validate the user-specified setup/hold time for
integrated clock gating
report_timing -to clk_gate_out_top_reg/EN report_timing -to
clk_gate_out_top_reg_1/EN

The clock gate must not alter the waveform of the clock, other than turning the clock signal
on and off. If the enable signal operates outside the properly chosen margins specified by
-setup and -hold, the resulting gated signal can be clipped or otherwise corrupted.

Figure 7-5 on page 7-23 and Figure 7-6 on page 7-24 show the relationship of setup and
hold time to a clock waveform. Figure 7-5 on page 7-23 shows the relationship with an AND
gate as the clock-gating element. Figure 7-6 on page 7-24 shows the relationship with an
OR gate as the clock-gating element.
Chapter 7: Clock Gating
Specifying Setup and Hold 7-22

Power Compiler User Guide Version E-2010.12-SP2
Figure 7-5 Setup and Hold Time for an AND Clock Gate

Enable after latch (ENL) signal must be stable before the clock input (CLK) makes a
transition to a non-controlling value. The hold time ensures that the ENL is stable for the time
you specify after the CLK returns to a controlling value. The setup and hold time ensures
that the ENL signal is stable for the entire time that the CLK signal has a non-controlling
value, which prevents clipping or glitching of the ENCLK clock signal.

You may need to add latency by using the set_clock_latency command. Use this
command for non-clock-gating registers. For more information, see “Specifying Clock-Gate
Latency” on page 7-15 and the Design Compiler documentation.

ENL

CLK

D Q

CLK

ENL

Setup Time Hold Time

ENCLK

No Change Interval

Clock

Gate

1

0

Noncontrolling

Controlling

Value

Value

AND

EN Register
Bank

Latch

CLK
Chapter 7: Clock Gating
Specifying Setup and Hold 7-23
Chapter 7: Clock Gating
Specifying Setup and Hold 7-23

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 7-6 Setup and Hold Time for an OR Clock Gate

Note:
When using PrimeTime for static timing-analysis, use the set_clock_gating_check
-setup and -hold options to change the setup and hold values for the gating check.
PrimeTime performs clock-gating checks on all gated clocks using 0.0 as the default for
setup and hold.

Predicting the Impact of Clock Tree Synthesis
Clock tree synthesis can affect your choice of setup and hold time. However, during clock
gating, the clock tree does not exist yet: clock tree synthesis normally occurs much later in
the design process than clock gating. Without the clock tree, it can be difficult to precisely
predict the impact of clock tree synthesis on the delay of the design. For this reason, you
might find it necessary to alter your setup and hold time after clock tree synthesis.

No Change Interval

CLK

ENL

D Q

CLK

ENL

Setup Time Hold Time

Clock
Gate

ENCLK

1

0 Non

Controlling
Value

OR
EN

Latch

CLK

controlling
value

Chapter 7: Clock Gating
Specifying Setup and Hold 7-24

Power Compiler User Guide Version E-2010.12-SP2
Choosing a Value for Setup
For -setup time, choose a value that estimates the delay impact of the clock tree from the
clock gate to the gated register bank. In latch-based clock gating, the value for setup simply
mimics the delay of the clock tree from the clock gate to the register bank.

Figure 7-7 Setup and Hold Time for Clock Tree Synthesis

Your setup time constrains the ENL signal so that after gate-level synthesis, there is still
enough timing slack for the addition of the clock tree during clock tree synthesis.

In latch-free clock gating, the value for setup must consider the clock signal duty cycle. For
example, in a design using a latch-free clock gate:

1. Estimate the delay of the clock tree between the clock gate and the gated register (as you
would for the latch-based clock gate).

2. From the value you estimate in step 1, add the worst-case (largest possible) clock low
time (typically half of the clock-cycle time).

This is appropriate for flip-flops triggered on the clock’s rising edge. For flip-flops
triggered on the clock’s falling edge, add the worst-case (largest possible) clock high
time.

If the value of -setup is too small, the ENL signal must be reoptimized after back-annotation
from layout to fit the tighter timing constraints. If the value of -setup is too large, the ENL
signal is too constrained and optimization of combinational control logic results in larger area
and power to satisfy the tighter timing constraints.

Flip-

Register
Bank

D Setup

Latch

EN

Combo
Cloud

CLK

ENL

D Hold

Clock Tree
Synthesis

Delay

CLK

ENCLK

Clock Tree
Synthesis/
Layout Delay

Main

Gate

Flop
Chapter 7: Clock Gating
Specifying Setup and Hold 7-25
Chapter 7: Clock Gating
Specifying Setup and Hold 7-25

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Choosing a Value for Hold
Latch-based clock gating has the timing requirement that the transition of the ENL signal
occur at the 2-input clock gate after the trailing edge (rising edge for falling-edge flip-flop) of
the clock signal. This timing requirement is usually satisfied because clock gating’s addition
of a latch increases the delay on the ENL signal. In rare cases, however, after clock tree
synthesis and physical design, additional delay in the clock signal might cause the CLK
signal to arrive after the ENL signal. This is due to clock skew between the clock signal
driving the clock-gating latch and the clock signal driving the 2-input gate.

If you expect this timing violation, you can set the -hold value during clock gating to
artificially define a hold constraint on the ENL signal. Gate-level synthesis adds buffers in the
ENL signal if they are necessary to satisfy your hold constraint.

If the value of -hold is too small, you might have to reoptimize the ENL signal after
back-annotation from layout to ensure the integrity of the gated clock signal. If the value of
-hold is too large, you might find a chain of buffers delaying the ENL signal before the clock
gate.

Choosing Gating Logic

The following options of the set_clock_gating_style command specify the type of
clock-gating logic or clock-gating cell used for implementing clock gating:

-positive_edge_logic [gate_list] [cell_list]
-negative_edge_logic [gate_list] [cell_list]

You can specify a configuration of 1- and 2-input gates (simple gating cells) to use for clock
gating, or an integrated clock-gating cell already defined in the target library. An integrated
cell is a dedicated clock-gating cell that combines all of the simple gating logic of a clock
gate into one fully characterized cell, possibly with additional logic such as multiple enable
inputs, active-low enabling logic, or an inverted gated clock output.

Choosing a Configuration for Gating Logic
The -positive_edge_logic and -negative_edge_logic options can have up to three
string parameters that specify the type of clock gating logic:

• The type of 2-input clock gate (AND, NAND, OR, NOR)

• An inverter or buffer on the clock network before the 2-input clock gate

• An inverter or buffer on the clock network after the 2-input clock gate
Chapter 7: Clock Gating
Choosing Gating Logic 7-26

Power Compiler User Guide Version E-2010.12-SP2
The positions of the string parameters determine whether clock gating places a buffer or
inverter before or after the 2-input clock gate. For example, if the value of
-positive_edge_logic is {and buf}, clock gating uses an AND gate and places a buffer
in the fanout from the AND gate. If the value is {inv nor}, clock gating uses a NOR gate
and places an inverter in the fanin of the NOR gate. Both of these examples result in AND
functionality of the clock gate.

The type of logic that is appropriate for gating your circuit depends on,

• Whether the gated register banks are inferred by rising- or falling-edge clock constructs
in your HDL code

and

• Whether you use latch-based or latch-free clock gating

When using latch-free clock gating, you must specify both the -positive_edge_logic and
-negative_edge_logic options.

For proper operation of the gated design, use the -positive_edge_logic and
-negative_edge_logic options of the set_clock_gating_style command to choose
any combination of gates that provides the appropriate functionality shown in Table 7-3 and
Table 7-4 on page 7-29. Table 7-3 provides information for the latch-based clock-gating
style. Table 7-4 on page 7-29 provides information for the latch-free clock-gating style.

Table 7-3 Gating Functionality for Latch-Based Clock Gating

Latch-based clock gating

Rising-edge-triggered registers1 Falling-edge-triggered registers2

Gating logic
-pos{} or -neg{}

Valid? Remarks Valid? Remarks

{and} Yes

{or} Yes (3)

{nand} Yes Clock gating adds an
inverter to the clock line
to the register.

{nor} Yes Clock gating removes the
inverter from the clock
line to the register.
Chapter 7: Clock Gating
Choosing Gating Logic 7-27
Chapter 7: Clock Gating
Choosing Gating Logic 7-27

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
{and inv} Yes Clock gating adds an
inverter to the clock line
to the register.

{or inv} Yes Clock gating removes the
inverter from the clock
line to the register.

{nand inv} Yes

{nor inv} Yes

{inv and} Yes Clock gating removes the
inverter from the clock
line to the register.

{inv or} Yes Clock gating adds an
inverter to the clock line
to the register.

{inv nand} Yes (4)

{inv nor} Yes

{inv and inv} Yes (4)

{inv or inv} Yes

{inv nand inv} Yes Clock gating removes the
inverter from the clock
line to the register.

{inv nor inv} Yes Clock gating adds an
inverter to the clock line
to the register.

1. If Power Compiler adds an inverter on the clock line to a rising-edge-triggered register, Design Compiler might infer
a falling-edge-triggered register during later synthesis if one is available in your technology library. This is normal.
2. If Power Compiler removes an inverter from the clock line to a falling-edge-triggered register, Design Compiler
might infer a rising-edge-triggered register if one is available in your technology library. This is normal.

Table 7-3 Gating Functionality for Latch-Based Clock Gating (Continued)

Latch-based clock gating

Rising-edge-triggered registers1 Falling-edge-triggered registers2

Gating logic
-pos{} or -neg{}

Valid? Remarks Valid? Remarks
Chapter 7: Clock Gating
Choosing Gating Logic 7-28

Power Compiler User Guide Version E-2010.12-SP2
3. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating.
4. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating. This
cancels the effect of the additional inverter on the enable input signal. Therefore only the clock pin of the main gate is
inverted.

Table 7-4 Gating Functionality for Latch-Free Clock Gating

Latch-free clock gating

Rising-edge-triggered registers1 Falling-edge-triggered registers2

Gating logic
-pos{} or -neg{}

Valid? Remarks Valid? Remarks

{and} Yes

{or} Yes (3)

{nand} Yes Clock gating removes the
inverter from the clock
line to the register.

{nor} Yes Clock gating adds an
inverter to the clock line
to the register.

{and inv} Yes Clock gating removes the
inverter from the clock
line to the register.

{or inv} Yes Clock gating adds an
inverter to the clock line
to the register.

{nand inv} Yes

{nor inv} Yes (3)

{inv and} Yes Clock gating adds an
inverter to the clock line
to the register.

{inv or} Yes Clock gating removes the
inverter from the clock
line to the register.

{inv nand} Yes (4)
Chapter 7: Clock Gating
Choosing Gating Logic 7-29
Chapter 7: Clock Gating
Choosing Gating Logic 7-29

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
For example, to achieve AND functionality, you can simply use an AND gate. However, AND
functionality also results from the combination of an INV and a NOR gate. Any combination
of individual gates is allowable if the combination results in the appropriate functionality
shown in Table 7-3 on page 7-27 and Table 7-4.

In the following example, latch-based clock gating uses an AND gate for gating clocks of
rising-edge-triggered register banks and an OR gate for gating clocks of
falling-edge-triggered register banks. The enable input of the OR gate has an inverter to
ensure correct functionality when using clock gating.

-positive_edge_logic {and} -neg {or}

{inv nor} Yes

{inv and inv} Yes (4)

{inv or inv} Yes

{inv nand inv} Yes Clock gating adds an
inverter to the clock line
to the register.

{inv nor inv} Yes Clock gating removes the
inverter from the clock
line to the register.

1. If Power Compiler adds an inverter on the clock line to a rising-edge-triggered register, Design Compiler might infer
a falling-edge-triggered register during later synthesis if one is available in your technology library. This is normal.
2. If Power Compiler removes an inverter from the clock line to a falling-edge-triggered register, Design Compiler
might infer a rising-edge-triggered register if one is available in your technology library. This is normal.
3. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating.
4. The enable input of the OR gate has an inverter to ensure correct functionality when using clock gating. This
cancels the effect of the additional inverter on the enable input signal. Therefore only the clock pin of the main gate is
inverted.

Table 7-4 Gating Functionality for Latch-Free Clock Gating (Continued)

Latch-free clock gating

Rising-edge-triggered registers1 Falling-edge-triggered registers2

Gating logic
-pos{} or -neg{}

Valid? Remarks Valid? Remarks
Chapter 7: Clock Gating
Choosing Gating Logic 7-30

Power Compiler User Guide Version E-2010.12-SP2
In the following example, latch-based clock gating chooses a NOR gate for gating clocks of
rising-edge-triggered register banks. Clock gating inserts an inverter in the fanin to the
2-input clock gate and a buffer in the fanout from the 2-input clock gate. This combination
results in AND functionality.

-positive_edge_logic {inv nor buf} -neg {inv and inv}

For falling-edge-triggered register banks in this example, clock gating uses an AND gate to
gate the clock. Clock gating inserts inverters in the fanin and fanout of the 2-input clock gate.
This combination results in OR functionality. The enable input of the OR gate already has an
inverter. This cancels the effect of the additional inverter on the enable input signal.
Therefore, only the clock pin of the main gate is inverted.

Choosing a Simple Gating Cell by Name
The syntax of the -positive_edge_logic and -negative_edge_logic options allows you
to use a specific clock-gating cell during clock gating. To use a specific gating cell from the
target library, enter the cell name after the element type, separating the two with a colon.

In the following example for rising-edge-triggered register banks, latch-based clock gating
chooses the specific AND gate, MYAND2, from the target library. In this example, clock
gating inserts a buffer in the fanout of the clock gate.

-positive_edge_logic {and:MYAND2 buf}

Choosing a Simple Gating Cell and Library by Name
In some cases, you might have more than one target library with cell names that are the
same. In such cases, you can use a specific cell from a specific library for clock gating. The
syntax of -positive_edge_logic and -negative_edge_logic allows you to indicate a
specific library and cell for clock gating, as follows.

target_library = { "CMOS8_MAX.db" "tech_lib1.db"
"tech_lib2.db" }

-positive_edge_logic {and:tech_lib1/MYAND2 buf:tech_lib2/
MYBUF2}

In this example, clock gating uses a particular AND cell and BUF cell from different
technology libraries. The AND cell is MYAND2 from the tech_lib1 library, and the buffer is
MYBUF2 from the tech_lib2 library. You must have previously specified these technology
libraries as target libraries by setting the Design Compiler target_library variable.
Chapter 7: Clock Gating
Choosing Gating Logic 7-31
Chapter 7: Clock Gating
Choosing Gating Logic 7-31

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Choosing an Integrated Clock-Gating Cell
You can use the -positive_edge_logic and -negative_edge_logic options of the
set_clock_gating_style command to specify the integrated clock-gating cell for clock
gating:

-positive_edge_logic [gate_list] [cell_list]
-negative_edge_logic [gate_list] [cell_list]

The first cell found that meets the clock-gating requirements is used and possibly sized up
or down to meet the design rule violations if the library has integrated cells of different sizes.
As desired, use the power_do_not_size_icg_cells variable to prevent this behavior.

Choosing an Integrated Cell by Functionality
When selecting an integrated cell by functionality, clock gating searches your technology
library for integrated cells having the correct value of the clock_gating_integrated_cell
attribute.

Use the set_clock_gating_style command to specify the functionality of the integrated
cell you want clock gating to look for.

Power Compiler uses the first integrated cell it finds in your library that matches the
requirements you specify with the set_clock_gating_style command. For example, if
you enter

set_clock_gating_style -neg {integrated}

Power Compiler uses the first integrated cell it finds in your technology library that has the
clock_gating_integrated_cell attribute, as follows:

clock_gating_integrated_cell : "latch_negedge";

You do not need to specify latch-based or latch-free gating if you use the default latch-based
gating. For more information about attributes for integrated cells and library syntax, see the
Library Compiler documentation.

Choosing an Integrated Cell by Name
Choose an integrated cell by name when you require a specific integrated cell or if you have
more than one integrated cell with the same clock_gating_integrated_cell attribute.
For example,

set_clock_gating_style -pos {integrated:my_cell}
Chapter 7: Clock Gating
Choosing Gating Logic 7-32

Power Compiler User Guide Version E-2010.12-SP2
In this example, clock gating chooses an integrated cell called my_cell from the technology
library. For more information about attributes for integrated cells and Library syntax, see the
Library Compiler documentation.

Specifying a Subset of Integrated Clock Gates
Use the set_dont_use -power command to limit clock gate insertion to a specific set of
integrated clock gate cells from one or more libraries. This command guarantees that the
specified cells is not used for power optimization. For example,

set_dont_use -power [get_lib_cell a1.db/icg_a1_*]
set_dont_use -power [get_lib_cell b2.db/icg_b2_*]
set_dont_use -power [get_lib_cell c3.db/icg_c3_*]
set_clock_gating_style -pos {integrated}
compile_ultra -gate_clock

In the example mentioned above, the set_clock_gating_style command directs the
compile_ultra -gate_clock command to use all integrated cells except for those that
have the dont_use attribute.

Using Setup and Hold for Integrated Cells
Setup and hold constraints are built into the integrated cell when you create it with Library
Compiler, but you can override the values by using either the set_clock_gating_style
command or the set_clock_gating_check command.

If you provide -setup and -hold values on the command line when using an integrated cell,
the values are overridden.

Consider the following example that uses an integrated cell to gate rising-edge-triggered
registers and uses simple cells to gate falling-edge-triggered registers using latch-free style.

Example
set_clock_gating_style -seq none
-setup setup_value
-hold hold_value
-pos {integrated}
-neg {inv nor buf}

The setup_value and hold_value apply not only to the integrated cell, but also to the clock
gate built for falling-edge-triggered registers using simple cells (INV, NOR, and BUF gates in
this example). For more information about integrated cells and timing, see the Library
Compiler documentation.
Chapter 7: Clock Gating
Choosing Gating Logic 7-33
Chapter 7: Clock Gating
Choosing Gating Logic 7-33

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Designating Simple Cells Exclusively for Clock Gating
During technology mapping, Design Compiler builds clock-gating logic, using the generic
representation created by Power Compiler and cells from your technology library.

Unless you are using an integrated cell for gating, there is nothing to prevent Design
Compiler from using the same cells for mapping other parts of the design.

You can designate certain cells to be used exclusively or preferentially for gating clocks.
Such cells can be the 2-input clock gate, inverters, buffers, or latches used in the
latch-based style of clock gating.

To use a specific cell for clock gating and preclude its use in other areas of the design, set
the following Library Compiler attributes to true in the library description of the cell:

• dont_use

When set to true, this attribute prevents Design Compiler from choosing the cell when
mapping the design to technology.

• is_clock_gating_cell

This is an attribute of type Boolean for the cell group. When set to true, this attribute
identifies the cell for use in clock gating. If dont_use and is_clock_gating_cell are
both set to true, the cell is used only in clock-gating circuitry.

You can set dont_use and is_clock_gating_cell on

• 2-input clock gates

Examples of 2-input clock gates are AND, NAND, OR, and NOR library cells that are used
to gate clocks.

• 1-input clock gates

Examples of 1-input clock gates are buffer and inverter library cells that are used in the
fanin and fanout of the 2-input clock gate.

• 2-input D latches

These latches can be active high or low and must have a noninverting output.

To use a cell preferentially in clock gating, set only the is_clock_gating_cell attribute to
true. Clock gating uses such cells preferentially when inserting clock-gating circuitry. Later,
Design Compiler can use them as well when mapping other parts of the design to the target
technology.

For more information about the syntax and use of Library Compiler attributes, see the
Library Compiler documentation.
Chapter 7: Clock Gating
Choosing Gating Logic 7-34

Power Compiler User Guide Version E-2010.12-SP2
The 2-input clock gate has an enabling input and a clock input that is connected to ENL and
CLK signals in Figure 7-2 on page 7-5. If the clock attribute is set on one of the pins of the
2-input clock gate, Power Compiler recognizes the remaining input pin as the enable pin.
However, library cell syntax allows you to explicitly designate an input pin as the enabling
input. In the pin group of the library description for the cell, set the clock_gate_enable_pin
attribute to true. This is an attribute of type Boolean for the pin group.

Example
clock_gate_enable_pin : true;

If Power Compiler finds neither a clock attribute nor a clock_gate_enable_pin attribute,
the software checks for the existence of setup and hold time on the pins. If setup and hold
time are found on a pin, the software uses that pin as the enable pin. For more information
about Library Compiler syntax and cell descriptions, see the Library Compiler
documentation.

Selecting Clock-Gating Style

Use the set_clock_gating_style command to select the clock-gating style. The
compile_ultra -gate_clock and the insert_clock_gating commands use the
specified clock-gating style to insert the clock-gating cells. The default value of the
set_clock_gating_style command is suitable for most designs. If the default setting does
not suit your design, use this command to change the default setting.

The clock-gating style that you specify is applied to the entire design, by default. You can
also apply the clock-gating style only to specific power domains or hierarchical cells of the
design. For more details on specifying clock-gating styles on specific instances, see “Using
the Instance-Specific Clock-Gating Styles” on page 7-44.

Using the set_clock_gating_style command you can,

• Specify the conditions when clock gating should be applied

• Specify a latch-based or latch-free clock-gating style (the default is latch-based, with or
without an integrated cell)

• Assign values for setup and hold times at the enable input of the clock-gating cell. The
default is 0.

• Specify the test logic to be added during clock gating to improve controllability and
observability

The set_clock_gating_style command has the following syntax:

set_clock_gating_style
 [-sequential_cell none | latch]
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-35
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-35

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 [-minimum_bitwidth int]
 [-setup sh_value]
 [-hold sh_value]
 [-positive_edge_logic {cell_list | \
 integrated [active_low_enable][invert_gclk]}]
 [-negative_edge_logic {cell_list | \
 integrated [active_low_enable][invert_gclk]}]
 [-control_point before | after]
 [-control_signal scan_enable | test_mode]
 [-observation_point true | false]
 [-observation_logic_depth int]
 [-max_fanout int]
 [-num_stages int]
 [-no_sharing]
 [-instances instances]
 [-power_domains power_domains]

The following sections describe how to use the set_clock_gating_style command:

• Choosing a Specific Latch and Library

• Choosing a Latch-Free Style

• Improving Testability

• Connecting the Test Ports Throughout the Hierarchy

• Using the Instance-Specific Clock-Gating Styles

• Using the Default Clock-Gating Style

Choosing a Specific Latch and Library
The -sequential_cell option allows you to use a specific latch when inserting
clock-gating circuitry. To use a specific latch from the target library, specify the name of the
latch after the element type, separating the two with a colon (:). For example:

-sequential_cell latch:LAH10

To designate a specific latch from a specific target technology library, insert the name of the
technology library as shown in the following example. Clock gating uses a latch called
LAH10 from the target library.

-sequential_cell latch:SPECIFIC_TECHLIB/LAH10

In the next example, clock gating uses the LAH10 latch from a technology library called
SPECIFIC_TECHLIB. You must previously have specified this technology library file name
when setting the Design Compiler target_library variable.

target_library = { "CMOS8_MAX.db" "SPECIFIC_TECHLIB.db" }
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-36

Power Compiler User Guide Version E-2010.12-SP2
Note:
By convention, the technology library name and file name are usually different. For
example, CMOS8_max is the name of a technology library. The file name for it can be any
name.lib. The .lib extension means the library is in Liberty text format. In this example,
CMOS8_MAX.lib is the file name for this library in text format. CMOS8_MAX.db is the file
name for this library in Synopsys proprietary binary format.

Choosing a Latch-Free Style
The -sequential_cell option of set_clock_gating_style command allows you to
select a clock-gating style that uses latches or avoids the use of latches. Figure 7-2 on
page 7-5, earlier in this chapter, shows an example of the latch-based clock-gating style. An
example of a circuit with the latch-free clock-gating style is shown in Figure 7-8 on
page 7-38.

In this example of the latch-free style, clock pulses to the register bank are gated by the OR
gate. In the latch-free style, the clock gate prevents the trailing clock edge. A latch-free clock
gate for rising-edge-triggered logic prevents the falling clock edge.

Eliminating the latch can reduce power dissipation and area slightly. However, the latch-free
method has a significant drawback: The EN signal must be stable at its new value before the
falling clock edge. If the EN signal is not stable before the falling clock edge, glitches on the
EN signal can corrupt the clock signal to the register. Any glitches on the EN signal after the
trailing edge of the clock lead to glitching and corruption of the gated clock signal. See
Figure 7-8 on page 7-38 for an example of latch-free clock gating.
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-37
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-37

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 7-8 Latch-Free Clock Gating

Improving Testability
Clock gating introduces multiple clock domains in the design. Introducing multiple clock
domains can affect the testability of your design unless you add logic to enhance testability.

In certain scan register styles, a gated register cannot be included in a scan chain, because
gating the register’s clock makes it uncontrollable for test (assuming there is no dedicated
scan clock). Without the register in the scan chain, test controllability is reduced at the
register output and test observability is reduced at the register input. If you have many gated
registers, this can significantly reduce the fault coverage in your design.

You can improve the testability of your circuit by using the options of the
set_clock_gating_style command to determine the amount and type of testability logic
added during clock gating. You can perform the following steps to improve testability:

Flip-
Flop EN

CLK

EN

ENCLK

Register
Bank

QD

DATA
IN

DATA
OUT

ENCLK

CLK
CLK

Control
Logic

EN

EN

Glitch
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-38

Power Compiler User Guide Version E-2010.12-SP2
• Add a control point for testing

• Choose test_mode or scan_enable

• Add observability logic

Inserting a Control Point for Testability
A control point increases the testability of your design by restoring the clock signal to its
ungated form during test. The control point is an OR gate that eliminates the function of the
clock gate during test, which restores the controllability of the clock signal.

Figure 7-9 shows a control point (OR gate) connected to the scan_enable port. The control
point is before the latch in this example.

Figure 7-9 Control Point in Gated Clock Circuitry

When the scan_enable signal is high, the test signal overrides clock gating, thus making the
ENCLK and CLK signals identical during shift mode. The test solution in Figure 7-9 has the
advantage of achieving testability with the addition of only one OR gate. This configuration
has fault coverage comparable to that of a design without clock gating.

Levels of
Design

Hierarchy

EN ENL

ENCLK

CLK

SCAN_ENABLE

DATA
IN

Register
Bank

QD

DATA
OUT

CLK

Control
Logic

LQ

LATCH

LD

LG

Flip-
Flop

CLK

ENCLK

SCAN_ENABLE
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-39
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-39

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The set_clock_gating_style command has two options to determine the location and
type of the control point for test:

• -control_point none | before | after

The default is none. The -control_point option inserts your control point before or after
the clock-gating latch. When using the latch-free clock-gating style, before and after are
equivalent.

• -control_signal test_mode | scan_enable

The default is scan_enable. This option creates a scan_enable or test_mode test port
and connects the port to the control-point OR gate. DFT Compiler interprets test_mode
and scan_enable in a specific manner. The -control_signal option also applies to any
observability logic inserted by the -observation_point option. You can use the
control_signal option only if you have used the -control_point option.

When creating the control point, Power Compiler creates and names a new test port and
assigns appropriate attributes to the port. Table 7-5 shows variables that Power Compiler
checks when naming the new port and when setting attributes on it.

To connect the test port of the clock-gating design to the test port of your design, use the
insert_dft command. For more information, see “Connecting the Test Ports Throughout
the Hierarchy” on page 7-43.

Latch-based clock gating requires that the enable signal always arrive after the trailing edge
(rising edge for falling-edge signal) of the clock. If you insert the control point before the
latch, it is impossible for the control point to violate this requirement. However, your test tool
might not support positioning the control point before the clock-gating latch. In such cases,
use -control_point after to insert the control point after the clock-gating latch.

Table 7-5 Test Port Naming and Attribute Assignment

Setting of
-control_signal

Variable that determines
test port name

Attributes on test port are
the same as those set by

scan_enable test_scan_enable_port_naming_style set_dft_signal -type
 ScanEnable

test_mode test_mode_port_naming_style set_attribute
test_port_clock_gating
set_dft_signal -type
 TestMode
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-40

Power Compiler User Guide Version E-2010.12-SP2
Note:
If you insert the control point after the latch, the scan_enable signal or test_mode signal
must transition after the trailing edge (rising edge for falling-edge signal) of the clock
signal during test at the foundry; otherwise glitches in their resulting signal corrupts the
clock output.

Scan Enable Versus Test Mode
Scan enable and test mode differ in the following way:

• Scan enable is active only during scan mode.

• Test mode is active during the entire test (scan mode and parallel mode).

Scan enable typically provides higher fault coverage than test mode. Fault coverage with
scan enable is comparable to a circuit without clock gating. However, there can be situations
in which you must use test mode. For example, you might need to use test mode if you place
the control point before the latch and your test tool does not support this position of the
control point with scan enable.

Improving Observability With test_mode
When using test mode, the EN signal and other signals in the control logic are untestable. If
your test methodology requires that you use test_mode, you might need to increase your
fault coverage. You can increase fault coverage with test mode by adding observability logic
during clock gating.

Note:
When using -control_signal scan_enable, increasing observability with observability
logic is not necessary.

The set_clock_gating_style command has two options for increasing observability
when using -control_signal test_mode:

• -observation_point true | false

The default is false. When you set this option to true, clock gating adds a cell that
contains at least one observability register and an appropriate number of XOR trees (if
there is only one signal to be observed, an XOR tree is unnecessary). The scan chain
includes the observability register, but the observability register’s output is not
functionally connected to the circuit.

• -observation_logic_depth depth_value

The default is 5. The value of this option determines the depth of logic of the XOR tree
that -observation_point builds during clock gating. If this value is set to 0, each ENL
signal is latched separately and no XOR tree is built. The XOR tree reduces the number
of observability registers needed to capture the test signature.
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-41
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-41

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 7-10 on page 7-42 shows a gated clock, including an observability register and an
XOR tree.

Figure 7-10 Gated Clock With High Observability

During test, observability circuitry allows observation of the ENL signal. During normal
operation of the circuit, the XOR tree does not consume power, because the NAND gate
blocks all ENL signal transitions. This test solution has high testability and is power-efficient,
because the XOR tree consumes power only during test and the clock of the observability
register is gated.

CLK

Control
Logic

Flip-
Flop

EN

ENCLK

ENL

CLK

CLK

TEST_MODE

ENCLK

TEST_MODE
DATA

IN

Gated
Register

Bank

QD

DATA
OUT

Observability
Register

XOR
Tree

Observability Circuitry

OBS_EN

CLK

ENL2

ENL3

ENL

LQ

LATCH

LD

LG
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-42

Power Compiler User Guide Version E-2010.12-SP2
To connect the test port of the clock-gating design to the test port of your design, see
“Connecting the Test Ports Throughout the Hierarchy” on page 7-43.

Choosing a Depth for Observability Logic
Use the -observation_logic_depth option of the set_clock_gating_style command
to set the logic depth of the XOR tree in the observability cell. The default for this option is 5.

Power Compiler builds one observability cell for each clock-gated design. Each gated
register in the design provides a gated enable signal (OBS_EN in Figure 7-10 on page 7-42)
as input to the XOR tree in the observability cell.

If you set the logic depth of your XOR tree too small, clock gating creates more XOR trees
(and associated registers) to provide enough XOR inputs to accommodate signals from all
the gated registers. Each additional XOR tree adds some overhead for area and power.
Using one XOR tree adds the least amount of overhead to the design.

If you set the logic depth of your XOR tree too high, clock gating can create one XOR tree
with plenty of inputs. However, too large a tree can cause the delay in the observability
circuitry to become critical.

Use the following guidelines in choosing or changing the logic depth of your XOR tree.
Choose a value that is

• High enough to cause the construction of as few XOR trees as possible

and

• Low enough to keep the delay in the observability circuitry from becoming critical

Connecting the Test Ports Throughout the Hierarchy
You use the insert_dft command to connect the test ports through various level of the
design hierarchy.

If you have used the clock-gating feature of Power Compiler with the testability options, you
must connect the test ports using the insert_dft command. After you have compiled all
the lower level hierarchies of the design, use the command on the top level of the design.

There are two types of test ports: the test_mode port and the scan_enable port. A port can
be recognized as a test port if it is designated as a scan_enable or a test_mode port using
the set_dft_signal command. Alternatively, a port can be designated as a test port by
setting the test_port_clock_gating attribute on it.
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-43
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-43

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
A scan_enable (test_mode) port is only connected to other scan_enable (test_mode)
ports in the design hierarchy. If a scan_enable (test_mode) port exists at a particular level
of the hierarchy, it is connected to scan_enable (test_mode) ports at all higher levels of the
hierarchy. If a scan_enable (test_mode) port does not exist at a higher level of hierarchy,
the scan_enable (test_mode) port is created.

The insert_dft command connects the test ports on all levels of the design hierarchy to
the test_mode or scan_enable pins of the OR gate in the clock gating logic and the XOR
gates in the clock-gating observability logic. If the design does not have a test port at any
level of hierarchy, a test port is created. If a test port exists, it is used.

Using the insert_dft Command
You use the insert_dft command to connect the top-level test ports to the test pins of the
clock-gating cells through the design hierarchy. A test port is created if the design does not
have a test port at any level of the hierarchy. To identify the test ports, the tool uses the
options you specified using the set_dft_signal command. The following example shows
the usage of the insert_dft command to connect to the clock-gating cells. When you
specify the value clock_gating to the -usage option of the set_dft_signal command,
during the execution of the insert_dft command, the tool connects the specified signal to
the test pin of the clock-gating cells.

dc_shell> read_ddc design.ddc
dc_shell> set_clock_gating_style -control_signal scan_enable \
 -control_point before
dc_shell> compile_ultra -scan -gate_clock
dc_shell> set_dft_signal -type ScanEnable -port test_se_1
dc_shell> set_dft_signal -type ScanEnable -port test_se_2 \
 -usage clock_gating
dc_shell> create_test_protocol
dc_shell> dft_drc -verbose
dc_shell> preview_dft
dc_shell> insert_dft

For more information, see DFT Compiler Scan User Guide.

Using the Instance-Specific Clock-Gating Styles
Power Compiler supports setting and removing clock-gating styles on specific design
instances and on power domains. You can also enable and disable clock gating by overriding
the specified styles. These instance-specific clock-gating styles are honored only by the
compile_ultra -gate_clock command, as described in the following sections:

• Specifying Clock-Gating Styles on Design Objects

• Removing Instance-Specific Clock-Gating Styles
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-44

Power Compiler User Guide Version E-2010.12-SP2
Specifying Clock-Gating Styles on Design Objects
The clock-gating styles that you specify using the set_clock_gating_style command is
applied to the entire design by default. To restrict the clock-gating style to specific objects of
the design, follow these steps:

1. Set the power_cg_iscgs_enable variable to true. The default value of this variable is
false.

2. Use the -instances or the -power_domains option of the set_clock_gating_style
command to restrict the clock-gating styles to be applied to the specified instances or
power domains, respectively.

The clock-gating cells are inserted, based on the clock-gating style that you specified.

With the power_cg_iscgs_enable variable set to true, when a specific instance does not
have a specified clock-gating style, the tool chooses the style in the following decreasing
order of priority:

• The style specified on the power domain that contains the instance

• The style of the hierarchical cell containing the instance

• The style of the higher level hierarchical cell contains the instance

• When clock-gating style is not specified at all, Power Compiler derives a default clock
gating style based on the specified libraries. For more details, see “Using the Default
Clock-Gating Style” on page 7-46

Note:
With the power_cg_iscgs_enable variable set to true, if you do not use the
-instances or the -power_domains option, the clock-gating style is applied only to the
current design.

Without setting the power_cg_iscgs_enable variable to true, if you use the
-instances or the -power_domains option, the set_clock_gating_style command
issues PWR-815 error message.

Removing Instance-Specific Clock-Gating Styles
Use the remove_clock_gating_style command to remove the instance-specific
clock-gating styles that you specified on the design objects. However, this command can be
used only if you have set the power_cg_iscgs_enable variable to true. For more details,
see the man page of the power_cg_iscgs_enable variable.
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-45
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-45

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Instance-Specific Clock-Gating Style Example
In the following example, one clock-gating cell is manually inserted on one of the four
instances of the design. Using the instance-specific clock-gating feature, the clock-gating
cell is inserted by the compile_ultra -gate_clock command. The first
report_clock_gating command in this example does not report any clock-gating cell. The
second report_clock_gating command reports one clock-gating cell and one identified
clock-gating cell. The third report_clock_gating command shows the instantiated and the
inserted clock-gating cell.

set power_cg_auto_identify true
set power_cg_iscgs_enable true
set link_library [list * test_max.db test1_max.db]
set target_library [list test_max.db test1_max.db]

read_verilog test.v
create_clock -p 1 clk
current_design test
link
create_clock -p 1 clk
report_clock_gating
set_clock_gating_style -min 3 -pos {integrated} -control_point after \
 -instances {test1_inst1} -max4
set_clock_gating_style -min 3 -pos {integrated} -control_point after \
 -instances {test1_inst2 test2_inst1} -max 8
compile_ultra -gate_clock -no_autoungroup -incremental
report_clock_gating

Using the Default Clock-Gating Style
The compile_ultra -gate_clock and the insert_clock_gating command honor the
clock-gating style that you specify using the set_clock_gating_style command. The
default values of the set_clock_gating_style command are suitable for most designs.

The compile_ultra -gate_clock command prevents clock-gate insertion when the target
library does not contain cells for the defined clock-gating style and operating condition; it
issues the PWR-763 information message. You must redefine the clock-gating style or the
operating condition based on the clock-gating cells available in the target library for the tool
to perform clock-gate insertion.

When you do not specify a clock-gating style, Power Compiler derives a default clock gating
style based on the specified libraries. The cells are chosen from the library in the following
decreasing order of priority:

1. set_clock_gating_style -pos integrated -neg integrated \
-ctrl_pt before -ctrl_sig scan_enable
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-46

Power Compiler User Guide Version E-2010.12-SP2
2. set_clock_gating_style -pos integrated -neg integrated \
-ctrl_pt after -ctrl_sig scan_enable

3. set_clock_gating_style -pos integrated -neg integrated \
-ctrl_pt before -ctrl_sig test_mode -obs_pt true

4. set_clock_gating_style -pos integrated -neg integrated \
-ctrl_pt after -ctrl_sig test_mode -obs_pt true

5. set_clock_gating_style -pos integrated -neg integrated

6. set_clock_gating_style -pos integrated -neg or \
-ctrl_pt after -ctrl_sig scan_enable

7. set_clock_gating_style -pos integrated -neg or \
-ctrl_pt before -ctrl_sig test_mode -obs_pt true

8. set_clock_gating_style -pos integrated -neg or \
-ctrl_pt after -ctrl_sig test_mode

9. set_clock_gating_style -pos integrated -neg or \
-ctrl_pt after -ctrl_sig test_mode -obs_pt true

10. set_clock_gating_style -pos integrated -neg or

11. set_clock_gating_style -pos and -neg integrated \
-ctrl_pt before -ctrl_sig scan_enable

12. set_clock_gating_style -pos and -neg integrated \
-ctrl_pt after -ctrl_sig scan_enable

13. set_clock_gating_style -pos and -neg integrated \
-ctrl_pt before -ctrl_sig test_mode -obs_pt true

14. set_clock_gating_style -pos and -neg integrated \
-ctrl_pt after -ctrl_sig test_mode -obs_pt true

15. set_clock_gating_style -pos and -neg integrated

16. set_clock_gating_style -pos and -neg or

The following example inserts clock-gating cells by choosing the best default style:

dc_shell> read_verilog low.v
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating -style
dc_shell> compile_ultra -incremental
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-47
Chapter 7: Clock Gating
Selecting Clock-Gating Style 7-47

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Modifying the Clock-Gating Structure

While performing RTL clock gating, you can specify the set_clock_gating_style
-max_fanout option to limit the number of registers that are gated by a single clock-gating
element. The results can be multiple clock-gating elements that have the same enable
signal and, logically, the same gated-clock signal. All clock-gating cells with the same enable
signal belong to the same clock-gating group. All registers gated by a single clock-gating
element belong to the same clock-gating subgroup.

The gated registers inserted by the compile_ultra -gate_clock command are
partitioned into subgroups. These partitions are not based on timing or placement
constraints. So the placement tool tries to place the clock-gated registers close to the
clock-gating cell, but this may not happen because of other design constraints. The result is
a suboptimal partition of gated registers into subgroups.

You can correct this problem by moving clock-gated registers between the clock-gating cells
belonging to the same clock-gating group. Because these clock-gating cells are logically
equivalent, the rewired circuit is functionally valid.

Using the rewire_clock_gating command and remove_clock_gating command, you
can rewire or remove clock gating in your design.

Changing a Clock-Gated Register to Another
Clock-Gating Cell
The rewire_clock_gating command enables you to selectively rewire a clock-gated
register from one clock-gating cell to another logically equivalent clock-gating cell.

However, if a dont_touch attribute is set on a clock-gating cell or any of its parent in the
hierarchy, the tool does not perform rewiring of such clock-gating cells.

You can use the -undo option to remove any rewiring you specified with the
rewire_clock_gating command. Based on the options specified, the -undo option deletes
the directives specified by the previously specified rewire_clock_gating command. Use
the -undo option before you use the compile -incremental command. The compile
command modifies the netlist to rewire the gated registers.

Because rewiring the gated registers alters the clock-gating cell that gates the registers, any
path-based timing exception that goes through the old clock-gating cell to a gated register is
no longer relevant and is lost.
Chapter 7: Clock Gating
Modifying the Clock-Gating Structure 7-48

Power Compiler User Guide Version E-2010.12-SP2
Removing Clock Gating From the Design
Power Compiler performs clock gating at the RTL level during the compilation process when
you use the compile_ultra -gate_clock command. The remove_clock_gating
command lets you selectively remove the clock gates without having to start at RTL again.
The subsequent compile_ultra command removes the selected clock-gating cells. As a
result you have the ability to use aggressive clock-gating strategies initially and selectively
remove clock gating if needed.

This command also removes redundant clock-gating cells that are no longer connected to
any clock-gating cells. Any associated test observation logic is also optimized. However, if a
dont_touch attribute is set on a clock-gating cell or any of its parent in the hierarchy, the tool
does not remove such cells.

All the registers that are ungated are remapped to new sequential cells. This may result in
new pin names for the registers. If there were pin-based timing exceptions (by means of the
set_max_delay, set_min_delay, set_multicycle_path, and set_fast_path
commands) set on the pins of the old register, they may not be transferred properly during
the transformation if the new and old pin names do not match.

The remove_clock_gating command displays a warning if there are pin-based timing
exceptions on the register to be ungated. Cell based timing exceptions are not affected
because the ungated registers retain their name. It is advisable to use the cell-based timing
exceptions with clock-gating registers. For information, see the Design Compiler
documentation.

Rewiring Clock Gating After Retiming
Power Compiler supports the -balance_fanout option to the rewire_clock_gating
command.

This command is used to rebalance the fanout of the clock gates within the design after
modifications have been made during retiming. During elaboration, Power Compiler
automatically balances the register banks based on the minimum and maximum fanout
requirements. However, when you run commands such as compile -ungroup or
optimize_registers that perform retiming, registers can be removed if they are not loaded
or if that improves the timing. For clock-tree synthesis, it is important the clock gates have
equivalent fanout loads: hence, the -balance_fanout option.

You use the rewire_clock_gating -balance_fanout command either after retiming or
after compilation to restore a balanced fanout. When you use this command, Power
Compiler compares the changed fanout of each equivalent clock-gating cell. The registers
are moved around so that each equivalent clock-gating cell now has a balanced set of
registers and honors the -max_fanout option that you specified originally. Any register
Chapter 7: Clock Gating
Modifying the Clock-Gating Structure 7-49
Chapter 7: Clock Gating
Modifying the Clock-Gating Structure 7-49

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
banks not meeting the minimum_bitwidth requirement are ungated. However, if a
dont_touch attribute is set on a clock-gating cell or any of its parent in the hierarchy, the tool
does not perform fanout balancing on such cells.

Note:
The command is not intended for use after the balance_registers command. When
performing clock gating, it is recommended that you use the optimize_registers
command.

Integrated Clock-Gating Cells

An integrated clock-gating cell integrates the various combinational and sequential elements
of a clock gate into a single cell located in the technology library. An integrated clock-gating
cell is a cell that you or your library developer creates to use especially for clock gating.

Consider using an integrated clock-gating cell if you are experiencing timing problems, such
as clock skew, caused by the placement of clock-gating cells on your clock line.

Use Library Compiler to create an integrated cell for clock gating. For detailed information,
see the Library Compiler documentation.

Library Compiler assigns a black box attribute to the complex sequential cells such as
integrated clock-gating cells. Design Compiler does not use the integrated cells for the
general logic synthesis. Power Compiler uses these integrated clock-gating cell for
clock-gating. The selection of the clock-gating cell is determined either by the default or the
values specified with the set_clock_gating_style command. Each integrated
clock-gating cell in the library must contain the Library Compiler attribute called
clock_gating_integrated_cell. This attribute can be set to either the string generic or
to one of 26 strings that represent specific clock-gating types. The string generic causes
Library Compiler to infer the clock_gating_integrated_cell attribute from the
functionality of the clock-gating cell. Using one of the 26 standard strings specifies the
functionality explicitly according to established conventions. For more details, see Appendix
A, “Integrated Clock-Gating Cell Example.”

Integrated Clock-Gating Cell Attributes
The clock_gating_integrated_cell attribute should be set to one of 26 function-specific
strings, such as latch_posedge_postcontrol. Each string is a concatenation of up to four
strings that describe the cell’s functionality. The library developer specifies the attribute
when the integrated cell is created. It is recommended that you set the
clock_gating_integrated_cell attribute to generic in the library (.lib) file so that Library
Compiler infers the correct value. For more details, see the Library Compiler Methodology
and Modeling Functionality in Technology Libraries User Guide.
Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-50

Power Compiler User Guide Version E-2010.12-SP2
The clock_gating_integrated_cell attribute can have any one of 26 different values.
Table 7-6 contains a short list of example values and their meanings.

For more examples, see Appendix A, “Integrated Clock-Gating Cell Example.”

The set_clock_gating_style command determines the integrated cell that Power
Compiler uses for clock gating. Power Compiler searches the library for the integrated cell
having the attribute value corresponding to the options you specify with the
set_clock_gating_style command.

Suppose that you set the clock-gating style as follows:

set_clock_gating_style
-sequential_cell none
-positive_edge_logic {integrated}
-control_point before
-control_signal test_mode]
-observation_point true

Table 7-6 Examples of Values for Integrated Clock Gating Cell

Value of
clock_gating_integrated_cell

Integrated cell must contain

latch_negedge Latch-based gating logic

Logic appropriate for gating falling-edge-
triggered registers

latch_posedge_postcontrol Latch-based gating logic

Logic appropriate for gating rising-edge-
triggered registers

Test control logic located after the latch

latch_negedge_precontrol Latch-based gating logic

Logic appropriate for gating falling-edge-
triggered registers

Test control logic located before the latch

none_posedge_control_obs Latch-free gating logic

Logic appropriate for gating rising-edge-
triggered registers

Test control logic (no latch)

Observability port
Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-51
Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-51

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
When you specify the -sequential_cell none, the tool uses a latch-free clock-gating
style. In latch-free clock gating you can specify either a -control_point before or a
-control_point after; Power Compiler searches for an integrated clock-gating cell with
control as the third string parameter of the clock_gating_integrated_cell attribute.

If you use the -positive_edge_logic or the -negative_edge_logic option of the
set_clock_gating_style command with the gate type as integrated, the tool inserts an
integrated clock-gating cell that is a positive edge latch.

If more than one integrated cell has the correct attribute value, Power Compiler chooses the
first integrated cell that it finds in the target library. If you have a preference, be sure to
specify the integrated cell by name to ensure that you get the one you want. To fix design
rule violations, Power Compiler can size-up the integrated clock-gating cell with another
integrated clock-gating cell that is logically equivalent to the one that is being replaced.

Power Compiler does not check the function of the integrated cell to ensure that it complies
with the value of the clock_gating_integrated_cell attribute. The correct functionality
should have been checked by Library Compiler when the integrated cell was initially created.
Power Compiler merely searches for an integrated clock-gating cell that contains the
attribute value(s) you request.

Pin Attributes
Power Compiler requires certain Library Compiler attributes on the pins of your integrated
clock-gating cell. Table 7-7 lists the required pin attributes for pin names that pertain to clock
gating. Some pins, such as the pins for test and observability are optional; however, if a pin
is present, it must have the corresponding attribute listed in Table 7-7.

Table 7-7 Pin Attributes for Integrated Clock-Gating Cells

Integrated cell pin
name

Input or output Required Library Compiler
attribute

clock Input clock_gate_clock_pin

enable Input clock_gate_enable_pin

test_mode or
scan_enable

Input clock_gate_test_pin

enable_clock Output clock_gate_out_pin

observability Output clock_gate_obs_pin
Chapter 7: Clock Gating
Integrated Clock-Gating Cells 7-52

Power Compiler User Guide Version E-2010.12-SP2
Other tools used in your synthesis and verification flow might require additional pin attributes
that are not specific to clock gating and are not listed in Table 7-7 on page 7-52.

For more information about Library Compiler attributes and library syntax, see the Library
Compiler documentation.

Timing Considerations
Clock gating requires certain timing arcs on your integrated clock-gating cell.

For latch-based clock gating,

• Define setup and hold arcs on the enable pin with respect to the clock pin.

For the latch-based gating style, these arcs are defined with respect to the controlling
edge of the clock that is driving the latch.

• Define combinational arcs from the clock and enable inputs to the output.

For latch-free clock gating,

• Define no-change arcs on the enable pin with respect to the clock pin.

For the integrated latch-free gating style, these arcs must be no-change arcs, because
they are defined with respect to different clock edges.

• Define combinational arcs from the clock and enable inputs to the output.

For more detailed information about timing your integrated cell, see the Library Compiler
documentation.

Propagating Clock Constraints

After creating clock gates, propagate the constraints before compiling your design. The
propagate_constraints command traverses the hierarchy of the current design,
searching for setup- and hold-time constraints on clock-gate subdesigns. The command
propagates the setup- and hold-time constraints from the newly created clock-gate
subdesigns upward in the design hierarchy. For more information, see the man page for the
command.

Ensuring Accuracy When Using Ideal Clocks

When using ideal clocks, set the clock transition time to 0 before analyzing the power of your
design. To set the clock transition time to 0, use the set_clock_transition command.
Chapter 7: Clock Gating
Propagating Clock Constraints 7-53
Chapter 7: Clock Gating
Propagating Clock Constraints 7-53

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The presence of clock-gating circuitry leads to a nonzero transition time on the gated clock
signal. This increases with the number of flip-flops being gated by the signal. A large
transition time at the clock pin of the gated flip-flop leads to a very high internal power usage.
However, this is not realistic because the clock tree synthesis tool inserts buffers to reduce
clock edge transition time. Setting the clock transition to 0 ensures the most accurate
analysis of timing and power after insertion of clock-gating circuitry and before clock tree
synthesis.

Sample Clock-Gating Script

Example 7-1 is a sample script to perform clock gating:

Example 7-1 Clock-Gating Script
set_clock_gating_style -sequential latch -min 4 -control_point before \
-control_signal scan_enable -max_fanout 4 -num_stages 6

/* analysis and elaboration for clock gating */
analyze -f verilog my_design.v
elaborate TOP_DESIGN # Your top design
current_design TOP_DESIGN

/* clock and constraints */
create_clock clk -p 10
set_fix_hold find(clock, "clk")
set_input_delay 0 -clock clk { reset }
set_input_delay 0 -clock clk { data_in }
set_clock_transition 0 clk

compile_ultra -gate_clock
report_constraints -all_violation
report_clock_gating
report_power

The script creates a design having the hierarchy shown in Figure 7-11 on page 7-55.
Chapter 7: Clock Gating
Sample Clock-Gating Script 7-54

Power Compiler User Guide Version E-2010.12-SP2
Figure 7-11 Hierarchy of Design With Gated Clocks

Clock gating creates subdesigns containing clock-gating logic and instantiates them in
TOP_DESIGN and LOW_DESIGN.

Clock-Gating Naming Conventions

Clock-gating creates subdesigns containing clock-gating logic as mentioned earlier. Default
naming conventions are shown in Figure 7-12 on page 7-56.

clk_gate_DOUT_reg

clk_gate_MEM_reg

TOP_DESIGN

SNPS_CLOCK_GATE_HIGH_LOW_DESIGN

SNPS_CLOCK_GATE_HIGH_TOP_DESIGN

Cell Reference

LOW_DESIGN

U2

U1
Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-55
Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-55

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 7-12 Default Naming Conventions

The Verilog netlist may look as follows:

module SNPS_CLOCK_GATE_HIGH_ff_03 (CLK, EN, ENCLK);
 input CLK, EN;
 wire net50, net52, net53, net56;
 assign net50 = CLK;
 assign net50 = CLK;
 assign ENCLK = net52;
 assign net53 = EN;

 L_CSLDP1NQW latch (.D(net53), .ENN(net50),
.Q(net56));
 L_CSAN2 main_gate (.A(net56), .B(net50), .Z(net52));
 endmodule
 module ff_03 (q, d, clk, e, clr);
 output [2:0] q;
 output [2:0] q;
 input [2:0] d;
 input clk, e, clr;
 wire N0, net62;

 L_CSFD2QP \q_reg[2] (.D(d[2]), .CP(net62), .RN(clr),
.Q(q[2]));
 L_CSFD2QP \q_reg[1] (.D(d[1]), .CP(net62), .RN(clr),
.Q(q[1]));
L_CSFD2QP \q_reg[0] (.D(d[0]), .CP(net62), .RN(clr),
.Q(q[0]));
 SNPS_CLOCK_GATE_HIGH_ff_03 clk_gate_q_reg (.CLK(clk),
.EN(N0),
.ENCLK(net62));
 L_CSIV1 U5 (.A(e), .Z(N0));

Latch
Main Gate

EN

CLK

Module Name: SNPS_CLOCK_GATE_HIGH_<design_name>

Reference Cell Name: clk_gate_<register>

net62
(not net52 see
netlist below)

The name of this net is randomly
generated. Ex: net52 in the
Verilog netlist below
Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-56

Power Compiler User Guide Version E-2010.12-SP2
 endmodule

The module_name(SNPS_CLOCK_GATE_..), reference cell_name(clk_gate..) and the
gated_clock enable net name(net62) could be changed according to your preferences.

Set the power_cg_module_naming_style, power_cg_cell_naming_style, and
power_cg_gated_clock_net_naming_style variables before issuing
insert_clock_gating command.

Use the variables either in .synopsys_setup.dc file or before clock gate insertion. The
details of the implementation are as follows:

Usage: set power_cg_module_naming_style
“prefix_%e_%l_midfix_%p_%t_%d_suffix”
 where,
 prefix/midfix/suffix are just examples of any constant
strings that can
be specified.
 %e - edge type (HIGH/LOW)
 %l - library name of ICG cell library (if using ICG cells)
or concatenated
target_library names
 %p - immediate parent module name
 %t - top module (current design) name
 %d - index added if there is a name clash

Usage: set power_cg_cell_naming_style
"prefix_%c_%n_midfix_%r_%R_%d_suffix"
 where,
 %c - clock
 %n - immediate enable signal name
 %r - first gated reg bank name
 %R - all gated reg banks sorted alphabetically
 %d - index for splitting/name clash resolution

Usage: set power_cg_gated_clock_net_naming_style
"prefix_%c_%e_%g_%d_suffix”
 %c - original clock
 %e - immediate enable signal name
 %g - clock gate (instance) name
 %d - index for splitting/name clash resolution

Sample Script for Naming Style
set power_cg_module_naming_style Synopsys_%e_mid_%t
set power_cg_cell_naming_style cg_%c_%n_mid_%R
set power_cg_gated_clock_net_naming_style gclk_%c_%n

define_design_lib WORK -path ./work_writable
set target_library cstarlib_lvt.db
Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-57
Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-57

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
set link_library { cstarlib_lvt.db }

set_clock_gating_style -sequential latch -max_fanout 3 -min 1
analyze -format verilog -lib WORK ff_03.v
 elaborate ff_03
 insert_clock_gating
 uniquify
 create_clock -name "clk" -period 5 -waveform { "0" "2.5"
} { "clk" }
 compile_ultra
 current_design ff_03
 write -f verilog -out 3.ff_03.vg –hier

Sample Script Output Netlist
 module Synopsys_HIGH_mid_ff_03_0 (CLK, EN, ENCLK);
 input CLK;
 input EN;
 output ENCLK;
 wire net15, net12, net11, net9;
 assign net12 = EN;
 assign ENCLK = net11;
 assign net9 = CLK;

 L_CSAN2 main_gate (.A(net15), .B(net9), .Z(net11));
 L_CSLDP1NQW latch (.D(net12), .ENN(net9), .Q(net15));
 endmodule

 module ff_03 (q, d, clk, e, clr);
 output [2:0] q;
 input [2:0] d;
 input clk;
 input e;
 input clr;
 wire N1, gclk_clk_N1_0;

 Synopsys_HIGH_mid_ff_03_0 cg_clk_N1_mid_q_reg_0 (
.CLK(clk), .EN(N1),
 .ENCLK(gclk_clk_N1_0));
 L_CSFD2QP \q_reg[2] (.D(d[2]), .CP(gclk_clk_N1_0),
.RN(clr), .Q(q[2])
);
 L_CSFD2QP \q_reg[1] (.D(d[1]), .CP(gclk_clk_N1_0),
.RN(clr), .Q(q[1])
);
 L_CSFD2QP \q_reg[0] (.D(d[0]), .CP(gclk_clk_N1_0),
.RN(clr), .Q(q[0])
);
 L_CSIV1 U3 (.A(e), .Z(N1));
 endmodule
Chapter 7: Clock Gating
Clock-Gating Naming Conventions 7-58

Power Compiler User Guide Version E-2010.12-SP2
Note:
If %d is not specified, Power Compiler assumes a %d at the end.

Keeping Clock-Gating Information in a Structural Netlist

Power Compiler applies several clock-gating attributes to the design and to the clock-gating
cells and gated registers in the design. Commands such as report_clock_gating,
rewire_clock_gating, remove_clock_gating and several placement optimization
algorithms depend on these attributes for proper operation.

The power_cg_flatten variable specifies whether to flatten the clock-gating cells when you
use commands that perform ungrouping, such as ungroup, compile -ungroup_all, or
balance_registers. By default, the variable is set to false and the clock-gating cells are
not flattened. This is recommended for most situations because ungrouping the clock gates
could cause problems.

For example, ungrouped clock gates cannot be mapped to integrated clock gating cells.
Power Compiler commands, such as report_clock_gating, remove_clock_gating, and
rewire_clock_gating, require the original clock-gating hierarchy. Flattened clock gates
are supported when you use integrated clock-gating cells, as long as the flattening is done
only after executing the compile command.

You can write a structural netlist in ASCII format after clock-gate insertion, synthesis, or
placement. Reading back this structural netlist causes the clock-gating attributes to be lost,
possibly preventing clock-gating and optimization from operating properly.

 If you have used the compile_ultra -gate_clock command to insert clock-gating cells,
the tool can automatically retrieve the clock-gating attributes and identify the clock-gating
cells when you read back the ASCII netlist. For more details see “Automatic Identification of
Clock-Gating Cells” on page 7-59.

If you have used the insert_clock_gating command to insert the clock-gates, when you
save your design in the ASCII format, you must also save the clock-gating attributes using
the write_script command. Another alternative is to explicitly identify the clock-gating
cells using the identify_clock_gating command after you read back the design.

Automatic Identification of Clock-Gating Cells
If you insert clock gating in your design, using the compile_ultra -gate_clock command,
and save the design in ASCII format, the clock-gating attributes are not available when you
read back the design in Power Compiler. However, if you set the power_cg_auto_identify
variable to true before you read back the design, Power Compiler can automatically identify
the clock-gating cells and the related attributes. The report_clock_gating command
Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-59
Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-59

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
reports these identified clock-gating cells. Similarly, the all_clock_gates,
rewire_clock_gating, and remove_clock_gating commands also identify the
clock-gates. Figure 7-8 lists the commands that trigger auto identification of clock gates.

Note:
Only those clock-gating cells that were inserted by the tool are identified. Clock-gating
cells that you manually inserted are not identified by the tool.

Explicit Identification of Clock-Gating Cells
This section discusses the explicit methods of retaining the clock-gating cells and their
usage flow.

If you use the insert_clock_gating command to insert clock-gating cells when you save
the design in ASCII format, you should perform the following to retain the clock-gating
information.

• Save the attributes settings using the write_script command.

• Use the identify_clock_gating command after you read back the ASCII netlist.

This command regenerates the clock-gating attribute settings.

Table 7-8 Commands That Trigger Identification of Clock Gates

read_verilog create_clock connect_net

read_vhdl create_design connect_pin

read_ddc create_generated_clock disconnect_net

read_file elaborate remove_cell
Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-60

Power Compiler User Guide Version E-2010.12-SP2
The advantages and disadvantages of these two methods are summarized in Table 7-9.

Usage Flow With the write_script Command
Follow these steps to retrieve the clock-gating information in the ASCII netlist, using the
write_script command.

1. Setup environment; read in the RTL design and insert the clock-gating logic.

2. Compile the design with the required constraints.

3. Run the change_names command to conform to the specified rules.

4. Write out the netlist.

5. Save current attributes and settings by using write_script –hier command. Use the
-o option of the command to write the output to a file. This command writes out all the
attributes set by the set_attribute command.

6. Quit the Design Compiler session. Make sure you do not make any changes to the netlist
before quitting.

7. Read in the design netlist.

8. Source the file written by the write_script command. This sets all the required
attributes on the design, including the clock-gating cells, for proper execution throughout
the flow.

If you do not need the clock-gating information, you can use the -no_cg option of the
write_script command. This results in a smaller script file.

You can now report the identified clock gates, using the report_clock_gating command.

Table 7-9 Identifying Clock-Gated Designs

Strategy Advantages Disadvantages

write_script Clock-gating attributes are
written out in set_attribute
commands to save current
settings. Familiar command and
procedure.

Netlist changes may not be
supported

identify_clock_gating Netlist changes performed
outside of Design Compiler are
supported.

Invoke this command at the right
place. Some attributes such as
max_fanout might be lost unless
the set_clock_gating_style
command is used.
Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-61
Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-61

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The following example script shows the output file created by the write_script command.

##

Created by write_script -format dctcl on February 28, 2011 10:35 am

##

Set the current_design
current_design module4

set_local_link_library {CORELIB8DLL.db}
set attribute -type int [current_design] power_cg_max_fanout
2048
set_attribute -type boolean [get_cells clk_gate_out1_reg] \
clock_gating_logic true
set_attribute -type boolean [get_cells clk_gate_out1_reg] \
hpower_inv_cg_cell false
set_attribute -type integer [get_cells {out1_reg[0]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[1]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[2]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[3]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[4]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells {out1_reg[5]}] \
power_cg_gating_group 0
set_attribute -type integer [get_cells clk_gate_out1_reg] \
power_cg_gating_group 0
set_size_only [get_cells latch] true

Usage Flow With the identify_clock_gating Command
This section describes the steps you follow to retrieve the clock-gating information, using the
identify_clock_gating command.

After you have saved the design that has the clock-gating information, follow these steps to
retrieve the clock-gating information:

1. Read in the manipulated structural netlist that already has clock-gating cells inserted.

2. Set the constraints, at the least the clock constraint that was used earlier. This ensures
the number of clocks in the designs that was used for clock-gating optimization.

3. Set the set_clock_gating_style command. This ensures that the settings are the
same as before saving the design. Otherwise, a few attributes such as max_fanout are
not retained.
Chapter 7: Clock Gating
Keeping Clock-Gating Information in a Structural Netlist 7-62

Power Compiler User Guide Version E-2010.12-SP2
4. Use the identify_clock_gating command without any options to identify all
clock-gating elements. This step ensures that the design is traversed and searched
appropriately for the clock-gating structure that is inserted by Power Compiler and
annotates the attributes needed for later operations. When you do not specify any option,
the identify_clock_gating command traverses only those clocks that were specified
using the create_clock command.

Your design now contains all the clock-gating information. You can verify this using the
report_clock_gating command.

Note:
The create_clock command is not necessary when options are used with the
identify_clock_gating command.

The identify_clock_gating command does not identify user-inserted clock-gating
cells whose sequential cell is triggered by a different edge than the edge of the register
that it drives. For example, if a user-inserted clock gate is triggered by the positive edge
of the clock and the clock-gating cell drives a negative edge-triggered flip flop, the
identify_clock_gating command does not identify the clock-gating cell. This can
cause formal verification failure.

Table 7-10 summarizes the options of the identify_clock_gating command.

Replacing Clock-Gating Cells

Power Compiler is capable of automatically detecting gating circuitry at the block or module
level. The gating circuit can be either instantiated or inferred logic at the module level. Power
Compiler replaces this logic with an integrated clock-gating cell or discrete cells according to
your specification in the set_clock_gating_style command. This operation is performed

Table 7-10 Options for the identify_clock_gating Command

Argument Description

-reset Resets all clock-gating attributes.

-reset_only Cell or netlist objects need to be specified for this option. Resets the
clock-gating attributes on these objects only.

-gating_elements Marks the specified cell as a gating element. Could be used to fix any
problems.

-gated_elements Marks a cell or a pin that is specified as a gated element. Could be used
to fix any problems.

-ungated_element Marks specified cells as cells that have no clock gating. Could be used to
fix any problems by previous command.
Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-63
Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-63

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
using the replace_clock_gates command. This feature allows you to use the integrated
clock-gating cell that is recognized by the report_clock_gating, remove_clock_gating,
and rewire_clock_gating commands, for further operations.

Follow these steps to perform module-level replacement of clock-gating cells:

1. Set clock-gating directives and styles (optional).

The default values of the set_clock_gating_style command is suitable for most
designs. You can choose a value for the clock-gating conditions, and a clock-gating style
that is compatible with the clock-gating cell that is being replaced using the
set_clock_gating_style command.

2. Read the RTL design.

3. Define the clock ports.

The clock port must be identified using the create_clock command before performing
replacement operation.

4. Insert clock-gating cells.

Use the compile_ultra -gate_clock command to insert the clock gates during
synthesis of your design. Power Compiler inserts clock gates according to the style you
specified. If a style is not specified, it uses the default values of the clock-gating style.

5. Compile the design.

Use the compile_ultra command to compile your design. If you have used the
compile_ultra -gate_clock command in the previous step, you need not compile the
design again.

6. Replace manually instantiated clock-gating cells.

Use the replace_clock_gates command. Power Compiler replaces manually inserted
clock gates with the tool inserted clock gates according to the default values of the style
if a style is not specified earlier. Use the -global option to perform the replacement
hierarchically.

Note:
This command replaces only the combinational logic. It does not replace the
observability logic.

7. Report the gate elements registers.

Use the report_clock_gating command to get the list of cells as shown in the following
example:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> compile_ultra -gate_clock
dc_shell> replace_clock_gates -global
Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-64

Power Compiler User Guide Version E-2010.12-SP2
dc_shell> report_clock_gating
dc_shell> report_power

In the following example, replacement is performed on a gating cell that is driving
registers in a black box cell:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> set_replace_clock_gates -rising_edge_clock RAM/clk
dc_shell> compile_ultra -gate_clock
dc_shell> replace_clock_gates -global
dc_shell> report_clock_gating

In the following example, replacement is performed only on selected gating cells:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> set_replace_clock_gates -exclude_instances {SUB/C10}
dc_shell> compile_ultra -gate_clock
dc_shell> report_clock_gating

Example 7-2 shows a clock-gate replacement report.

Example 7-2 Clock-Gate Replacement Report
Current clock gating style....
Sequential cell: none
Minimum register bank size: 3
Minimum bank size for enhanced clock gating: 6
Maximum fanout: 2048
Setup time for clock gate: 1.300000
Hold time for clock gate: 0.000000
Clock gating circuitry (positive edge): or
Clock gating circuitry (negative edge): and
 Note: inverter between clock gating circuitry
 and (negative edge) register clock pin.
Control point insertion: none
Control signal for control point: scan_enable
Observation point insertion: false
Observation logic depth: 5
Maximum number of stages: 5
1
replace_clock_gates -global
 Loading target library 'ssc_core_typ'
 Loading design 'regs'
Information: Performing clock-gating on design regs

Clock Gate Replacement Report
===
| Clock | | Include | Clock | Edge | | Setup | Gate |
| Root | Cell Name | Exclude | Fanin | Type | Func. | Cond. | Repl. |
===
| clk | | | | | | | |
| | C7 | - | 1 | fall | and | yes | yes |
===

Summary:
Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-65
Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-65

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 number percentage
Replaced cells (total): 1 100
Cell not replaced because
 Cell was excluded: 0 0
 Multiple clock inputs: 0 0
 Mixed or unknown clock edge type: 0 0
 No compatible clock gate available: 0 0
 Setup condition violated: 0 0
Total: 1 100

Clock Gate Insertion Report
==
| Gated | | Include | | Enable | Setup | Width | Clock |
| Group | Flip-Flop Name | Exclude | Bits | Cond. | Cond. | Cond. | Gated |
==
	GATED REGISTERS						
cg0			4	yes	yes	yes	yes
	q2_reg[3]	-	1				
	q2_reg[2]	-	1				
	q2_reg[1]	-	1				
	q2_reg[0]	-	1				
cg1			4	yes	yes	yes	yes
	q3_reg[3]	-	1				
	UNGATED REGISTERS						
	si_reg	-	1	no	??	??	no
	ti_reg	-	1	no	??	??	no
	q4_reg[0]	-	1	no	??	??	no
==
Summary:
Flip-Flops Banks Bit-Width
 number percentage number percentage
Clock gated (total): 3 30 12 54
Clock not gated because
 Bank was excluded: 0 0 0 0
 Bank width too small: 0 0 0 0
 Enable condition not met: 7 70 10 45
 Setup condition violated: 0 0 0 0
Total: 10 100 22 100

Clock gates in design number percentage
 Replaced clock gates: 1 16
 Inserted clock gates: 3 50
 Factored clock gates: 2 33
Total: 6 100

Multistage clock gating information
 Number of multistage clock gates: 2
 Average multistage fanout: 2.0
 Number of gated cells: 16
 Maximum number of clock gate stages: 3
 Average number of clock gate stages: 2.2
Chapter 7: Clock Gating
Replacing Clock-Gating Cells 7-66

Power Compiler User Guide Version E-2010.12-SP2
Clock-Gate Optimization Performed During Compilation

To further increase the power saving of your design, Power Compiler uses certain
techniques during compilation to reduce the number of clock-gating cells in the design.
Some of these techniques are multistage clock-gating, hierarchical clock gating. These
techniques are described in detail in the following sections.

Multistage Clock Gating
When a clock-gating cell is driving another or a row of clock-gating cells, this is referred to
as multistage clock gating. Power Compiler can identify common enables and factoring
using another clock-gating cell as shown in Figure 7-13. The tool can apply multistage clock
gating not only on RTL designs but also on designs that contain gate cells, for further
optimizations if available.

Figure 7-13 Multistage Clock Gating

Register
BankStage 1

CG
Stage 1

CG

Stage 1
CG

Stage 1
CG

Register
Bank

Register
Bank

Register
Bank

Register
Bank

Register
Bank

EN

CLK

a

b

c

Stage 2
CG

EN

CLK

set_clock_gating_style -num_stages 2

a

b

c

Stage 1
CG

Stage 1
CG

CLK

Register
BankStage 1

CG
Stage 1

CG

Stage 1
CG

Stage 1
CG

Register
Bank

Register
Bank

Register
Bank

EN

a

b

c

Stage 2
CG

EN

CLK

a

b

c

Stage 1
CG

Stage 1
CG

CLK

Register
Bank

Bank
Register
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-67
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-67

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The multistage clock-gating feature allows you to combine as many register banks as
possible so that the clock gating can be moved up closer to the top, leading to more power
savings. As a result, the actual benefits are seen when combined with placement.

For the tool to perform multistage clock gating, you should set the maximum number of
stages for multistage clock gating using the -num_stages option of the
set_clock_gating_style command. The default value of the -num_stages option is 1.
After setting the maximum number of stages, use either compile_ultra -gate_clock or
insert_clock_gating command to perform multistage clock gating.

However, the compile_ultra command performs the following additional clock-gate
optimization during multistage clock gating.

• Reconfigure the number of clock-gating stages

If you set the power_cg_reconfig_stages variable to true, the tool reconfigures the
number of clock-gating stages. The reconfiguration complies with the value of the
-num_stages option of the set_clock_gating_style command. This is done only on
the clock gates inserted by the tool and the integrated clock-gating cells (ICG).

• Balance the number of clock-gating stages

If you set the power_cg_balance_stages variable to true, the tool balances the number
of clock-gating stages across various register banks. Balanced clock-gate stages ensure
uniform clock latency across register banks. Figure 7-14 shows the transformation for
balancing the clock-gating stages.
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-68

Power Compiler User Guide Version E-2010.12-SP2
Figure 7-14 Balancing the Number of Stages

Multistage Clock-Gating Flow

Follow the steps mentioned below to perform multistage clock gating on your design:

1. Set clock-gating styles and directives.

Use the set_clock_gating_style command to specify the clock gating stages and
other clock gating conditions. The clock gating options you set should be compatible with
the functionality of the clock-gating cell that is being replaced and of the registers. You
can set the number of stages for multistage clock gating as shown below:.

set_clock_gating_style -num_stages 5

The default for the -num_stages option is 1. This implies that when the -num_stages
option is not used, further factoring is not done by the tool.

2. Read your design.

Read in the design using a read command.

3. Multistage clock gating.

Use the compile_ultra -gate_clock or insert_clock_gating command.

4. Report the gate elements registers.

CG

CG

CG

CG

CG

CGCLK

EN1

EN2

CLK

EN2

 EN1

EN2

EN1

STAGE-1

STAGE-1

STAGE-2

STAGE-1

STAGE-1

STAGE-1
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-69
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-69

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Use the report_clock_gating command to get the list of cells and the report_power
command to see the design power after the multistage clock gating.

The following is a sample script to perform multistage clock gating using the compile_ultra
-gate_clock command:

set the target library and the link library

set_clock_gating_style -num_stages 2
read_ verilog design.v
create_clock -name clk -period 10
compile_ultra -gate_clock
report_clock_gating -verbose -gating -gated
report_power

Hierarchical Clock Gating
Generally clock gating techniques in Power Compiler extracts common enable conditions
that are shared across the registers within the same block.

In hierarchical clock gating, Power Compiler extracts the common enables shared across
registers in different levels of hierarchy in the design, during the clock-gate insertion. This
technique looks for globally shared enables while inserting clock gating cells. This increases
the clock-gating opportunity and also reduces the number of clock-gate insertion. With this
technique and proper placement, more power savings can be obtained.

Power Compiler inserts hierarchical clock-gating cells at various levels of design hierarchy.
As a result, additional ports are created for the clock-gated enable signal as shown in
Figure 7-15. These additional ports are added to the subdesigns. Formality verifies the
designs successfully as long as the designs being compared have the same number of
primary ports.
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-70

Power Compiler User Guide Version E-2010.12-SP2
Figure 7-15 Additional Ports During Hierarchical Gating

Power Compiler can perform hierarchical clock gating on RTL netlists as well as gate-level
netlists. Use the compile_ultra -gate_clock or the insert_clock_gating -global
command to perform hierarchical clock gating. You use the compile_ultra -gate_clock
command to perform hierarchical clock-gating on both RTL and gate-level netlists. This
command is especially useful for clock gating on gate-level netlists.

EN

clock

Adding an extra port

Register-level
clock gate

Clock
gate

Clock
gate

Clock
gate
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-71
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-71

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
To perform hierarchical clock gating using the compile_ultra -gate_clock command,
you must set the compile_clock_gating_through_hierarchy variable to true before
compiling your design. If you use the insert_clock_gating command, you must use the
-global option.

Steps involved in the hierarchical clock gating flow:

1. Read the design.

2. Set clock-gating styles and directives (optional).

The default values of the set_clock_gating_style command are suitable for most
designs. You can use this command to choose a style.

3. Set the compile_clock_gating_through_hierarchy variable to true and compile your
design using the compile_ultra -gate_clock command.

Alternatively, you can use the insert_clock_gating -global command before
compiling your design. The -global option not only inserts clock gating globally if it finds
the commonly shared enables across subdesign blocks, but it also performs the general
clock-gate insertion for registers that have unique enable signals.

Note:
Without the -global option, the insert_clock_gating command processes each
design separately, independent of its hierarchy, and performs limited constant
propagation.

The following sample script demonstrates hierarchical clock gating using the
compile_ultra command.

Set your target library and link library
set_clock_gating_style (optional)
Following command is optional. Use for global clock gating
set compile_clock_gating_through_hierarchy true
Read your design
create_clock -name clk -period 10
compile_ultra -gate_clock
report_clock_gating -ver -gating -gated -multi_stage
report_power

Enhanced Register-Based Clock Gating
The regular register-based clock gating requires certain conditions in order for successful
implementation. One of these conditions is the minimum bit width of the register bank to be
gated. If the minimum bit width is less than 3, which is the default, there is no clock-gating
opportunity. This width constraint ensures that the overhead of using the clock-gating cell
does not overcome the power savings.
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-72

Power Compiler User Guide Version E-2010.12-SP2
Power Compiler can factor out the common enable signal EN shared between three register
banks and insert one clock-gating cell for these register banks, which would normally not be
clock gated due to the width condition. The result is shown in Figure 7-16.

Figure 7-16 Design With Common Enable Signal

The default total minimum bit width of registers for enhanced clock gating to be implemented
is twice that of regular clock gating. Since the default for regular register clock gating is 3, for
the enhanced clock gating the register width should be at least 2 * 3, which is 6.

Enhanced clock gating is done by default along with regular clock gating with the
insert_clock_gating command. To turn off enhanced clock gating use the
-regular_only option of the insert_clock_gating command.

In the following example, automated clock gating, along with enhanced clock gating, is
implemented if the conditions are met.

Width Condition Violation (W=2):
 No Clock Gating

Register
Bank

Register
Bank

Register
Bank

Register
Bank

Register
Bank

Register
Bank

EN

EN

EN

B

A

C

CLK

Clock

Gate

GCLK

EN

CLK

A

B

C

Common Enable Factoring:
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-73
Chapter 7: Clock Gating
Clock-Gate Optimization Performed During Compilation 7-73

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> insert_clock_gating
dc_shell> report_clock_gating

In the following example, enhanced clock gating is turned off:

dc_shell> read_verilog design.v
dc_shell> create_clock -period 10 -name clk
dc_shell> insert_clock_gating -regular_only
dc_shell> report_clock_gating

Performing Clock-Gating on DesignWare Components

Power Compiler provides the ability to perform clock gating on DesignWare components
instead of treating them as black box cells. The compile_ultra -gate_clock command
perform clock gating on DesignWare components, by default.

If you use the insert_clock_gating command to insert clock gates, to run clock gating on
designware components set the power_cg_designware variable to true. The default value
of this variable is false.

 Shown below is a sample script to perform clock gating on DesignWare components:

set power_cg_designware true
set target_library [list my_lib.db cg_integ_pos.db]
set synthetic_library dw_foundation.sldb
set link_library [list "*" my_lib.db
dw_foundation.sldb cg_integ_pos.db]
set_clock_gating_style -min 1 -sequential_cell latch -pos \
 {integrated:CGLP} # Optional
read_verilog cpurd_fifo.v
write -verilog -hier -o elab.v
compile_ultra -gate_clock
insert_dft
write -verilog -hier -o comp.v

You can view the DesignWare clock-gated registers using the report_clock_gating
-gated command. The DesignWare clock gates are designated with a (*) in the report.

Reporting Command for Clock Gates and Clock Tree Power

The report_clock_gating command reports the clock-gating cells, the gated and the
ungated registers in the current design. To see the dynamic power savings because of clock
gate insertion, use the report_power command before and after the clock-gate insertion.
Chapter 7: Clock Gating
Performing Clock-Gating on DesignWare Components 7-74

Power Compiler User Guide Version E-2010.12-SP2
The top portion of the report indicates the name of each register, the clock-gating conditions
the flip-flop satisfies, and whether or not the flip-flop’s clock was gated. The double question
mark (??) indicates that the condition was not checked during clock gating because a
previously checked clock-gating condition was not satisfied. All conditions must be satisfied
to gate the clock, unless you use the set_clock_gating_registers command.

The Gated Group column contains arbitrary names for groups of register banks that have
equivalent enable signals. Power Compiler creates the group names during clock gating and
uses one clock gate to gate the register banks in each group.

In the summary portion of the report, the Banks columns show the total number and
percentages of flip-flops with gated and ungated clocks. In the Bit-Width columns, the report
shows cumulative bits and percentages of total bits for gated and ungated flip-flops.

The report_clock_gating Command
The following samples are the output of the report_clock_gating command. If you use
the report_clock_gating command without any option, the summary of the clock-gating
elements in the current design is printed as shown in Example 7-3.

Example 7-3 Clock-Gating Report Using Default Settings
dc_shell> report_clock_gating
**
Report : clock_gating
Design : low_design
Version: D-2010.03
Date : February 28, 2011 10:35 am
**
 Clock-Gating Summary

Number of Clock gating elements	1
Number of Gated registers	4 (66.67%)
Number of Ungated registers	2 (33.33%)
Total number of registers	6

Example 7-4 shows a sample report using the -gating_elements option.

Example 7-4 Clock-Gating Report Using the -gating_elements Option
dc_shell> report_clock_gating -gating_elements
**
Report : clock_gating

-gating_elements
Design : low_design
Version: X-2005.09
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-75
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-75

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Date : February 28, 2011 10:35 am
**

--
 Clock-Gating Cell Report
--

 Clock Gating Bank : clk_gate_out1_reg (ss_hvt_0v70_125c: 0.7)
--

STYLE = latch, MIN = 2, MAX = unlimited, HOLD = 0.00, OBS_DEPTH = 5

 INPUTS :
 clk_gate_out1_reg/CLK = clk
 clk_gate_out1_reg/EN = N6
 clk_gate_out1_reg/TE = test_se

 OUTPUTS :
 clk_gate_out1_reg/ENCLK = net107

 Clock Gating Bank : sub/clk_gate_out_reg (ss_hvt_1v08_125c: 1.08)

 STYLE = latch, MIN = 2, MAX = unlimited, HOLD = 0.00,
OBS_DEPTH = 5

 INPUTS :
 sub/clk_gate_out_reg/CLK = n22
 sub/clk_gate_out_reg/EN = N6
 sub/clk_gate_out_reg/TE = test_se

 OUTPUTS :
 sub/clk_gate_out_reg/ENCLK = net95

Example 7-5 on page 7-76 shows a sample report using the -ungated, -gated,
-gating_elements, and -verbose options. A table is created to display all the ungated and
gated registers in your current design.

Example 7-5 Clock-Gating Report Using Gated and Ungated Elements
**
Report : clock_gating
 -gating_elements
 -gated
 -ungated
 -verbose
Design : regs
Version: A-2007.12
Date : February 28, 2011 10:35 am
**
--
 Clock Gating Cell Report
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-76

Power Compiler User Guide Version E-2010.12-SP2
--
 Clock Gating Bank : clk_gate_C7

 STYLE = none, MIN = 3, MAX = 2048, HOLD = 0.00, SETUP = 1.30,
OBS_DEPTH = 5
 TEST INFORMATION :
 OBS_POINT = NO, CTRL_SIGNAL = scan_enable, CTRL_POINT = none
 INPUTS :
 clk_gate_C7/CLK = clk
 clk_gate_C7/EN = xi
 OUTPUTS :
 clk_gate_C7/ENCLK = xclk
 RELATED REGISTERS :
 q4_reg[3]
 q4_reg[2]
 q4_reg[1]
 q4_reg[0]
--
 Gated Register Report
--
 Clock Gating Bank | Gated Register
--
 |
 clk_gate_C7 | q4_reg[0]
 | q4_reg[1]
 | q4_reg[2]
 | q4_reg[3]
 |
 clk_gate_q3_reg | q3_reg[0]
 | q3_reg[1]
 | q3_reg[2]
 | q3_reg[3]
 |
--
 Ungated Register Report
--
 Ungated Register | Reason | What Next ?
--
 q1_reg | Min bitwidth not met |
 q2_reg | Min bitwidth not met |
 q5_reg | Min bitwidth not met |
--
 Clock Gating Summary
 --
 | Number of Clock gating elements | 6 |
 | | |
 | Number of Gated registers | 16 (72.73%) |
 | | |
 | Number of Ungated registers | 6 (27.27%) |
 | | |
 | Total number of registers | 22 |
 --
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-77
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-77

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Example 7-6 Clock-Gating Report Using the -ungated Option
**
Report : clock_gating
 -ungated
Design : rtl
Version: D-2010.03
Date : Thu Feb 4 15:18:41 2010
**

 Ungated Register Report

Ungated Register | Reason | What Next?

 q1_reg[1] | Always enabled register | -
 q1_reg[0] | Always enabled register | -
 q_reg[0] | Power degradation | This can only happen in
 | | power driven clock gating
 q_reg[1] | Power degradation | This can only happen in
 | | power driven clock gating
 | |

 Clock Gating Summary
 --
 | Number of Clock gating elements | 0 |
 | | |
 | Number of Gated registers | 0 (0.00%) |
 | | |
 | Number of Ungated registers | 4 (100.00%) |
 | | |
 | Total number of registers | 4 |
 --

Example 7-7 on page 7-78 shows a report generated with the -multi_stage and
-no_hier options for a hierarchical multistage clock gated design. A multistage clock gate
is a clock-gating cell that is driving another clock-gating cell. The report shows three
clock-gating elements, eight gated and no ungated registers at the top level. Two of the three
clock gates are multistage, and their average fanout is 1.0, indicating that the clock path
consists of a chain of three clock gates. There is one gated module in addition to the eight
gated registers. The eight registers have three stages on their clock path, but the module
has only two, bringing the average number of stages to 2.9 = ((8*3 + 2*1)/9).

Example 7-7 Clock-Gating Report Using the -no_hier and -multi_stage Options
**
Report : clock_gating
 -no_hier
 -multi_stage
Design : regs
Version: X-2005.09
Date : February 28, 2011 10:35 am
**
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-78

Power Compiler User Guide Version E-2010.12-SP2
 Clock Gating Summary
 --
 | Number of Clock gating elements | 6 |
 | | |
 | Number of Gated registers | 16 (72.73%) |
 | | |
 | Number of Ungated registers | 6 (27.27%) |
 | | |
 | Total number of registers | 22 |
 | | |
 | Number of multi-stage clock gates | 2 |
 | | |
 | Average multi-stage fanout | 2.0 |
 | | |
 | Number of gated cells | 16 |
 | | |
 | Maximum number of stages | 3 |
 | | |
 | Average number of stages | 2.2 |
 --

Example 7-8 Clock-Gating Report Using the -style Option
--
 Clock Gating Style Report
--

Clock Gating Style 1 : (3 clock gates)

STYLE
sequential_cell latch
minimum_bitwidth 2
enhanced_min_bitwidth 4
positive_edge_logic integrated:TLATNTSCAX12MTH
negative_edge_logic or
control_point before
control_signal scan_enable
observation_point flase
num_stages 2

CLOCK GATES
clk_gate_out1_reg
sub/clk_gate_out_reg
sub/r0/clk_gate_out_reg

--

 Clock Gating Summary
 --
 | Number of Clock gating elements | 3 |
 | | |
 | Number of Gated registers | 16 (100.00%) |
 | | |
 | Number of Ungated registers | 0 (0.00%) |
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-79
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-79

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 | | |
 | Total number of registers | 16 |
 --

You use the report_clock_gating -structure to get the details and a summary of the
clock-gating structure.

Note:
You cannot use the -structure option along with any other option.

Example 7-9 shows the clock-gating report when you specify the -structure option.

Example 7-9 Clock-Gating Report Using the -structure Option
**
Report : clock_gating
 -structure
Design : test
Version: B-2008.09
Date : Mon Jul 14 15:01:12 2008
**
--
 Clock Gating Structure Summary
--
 Clock | Total | CG Stage | # of Clock | # of Gated
 | Registers | | Gates | Cells
--
 clka | 284 | 1 | 9 | 285
 clkb | 284 | 1 | 9 | 285
--
--
 Clock Gating Structure Details
--
 Clock | CG | Gating | Fanout | Latency | Gated Cells
 | Stage | Element | | |
--
 clka | 1 | cg_1 | 2 | 0.000 | macro_inst
 | | | | |
 | | clk_gate_y_reg | 132 | 0.000 | S4/y_reg[0]
 | | | | | S4/y_reg[1]
 | | | | | S4/y_reg[2]
 | | | | | S4/y_reg[22]
 | | | | | S4/y_reg[23]
 | | S7/clk_gate_y_reg | 4 | 0.000 | S7/y_reg[0]
 | | | | | S7/y_reg[1]
 | | | | | S7/y_reg[2]
 | | | | | S7/y_reg[3]
 | | | | |
 | | S8/clk_gate_y_reg | 4 | 0.000 | S8/y_reg[0]
 | | | | | S8/y_reg[1]
 | | | | | S8/y_reg[2]
 | | | | | S8/y_reg[3]
 | | | | |
 | | S9/clk_gate_y_reg | 4 | 0.000 | S9/y_reg[0]
 | | | | | S9/y_reg[3]
 | | | | | S9/y_reg[1]
 | | | | | S9/y_reg[2]
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-80

Power Compiler User Guide Version E-2010.12-SP2
--

 Clock Gating Summary
 --
 | Number of Clock gating elements | 9 |
 | | |
 | Number of Gated registers | 285 (100.00%) |
 | | |
 | | |
 | Number of Ungated registers | 0 (0.00%) |
 | | |
 | Maximum number of stages | 1 |
 | | |
 | Total number of registers | 285 |

 --
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-81
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-81

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Chapter 7: Clock Gating
Reporting Command for Clock Gates and Clock Tree Power 7-82

Power Compiler User Guide Version E-2010.12-SP2
8
XOR Self Gating 8

The XOR self gating is an advanced clock-gating technique to reduce the dynamic power
consumption. The XOR self gating turns off the clock signal during specific clock cycles
when the data in the register is unchanged.

This chapter includes the following sections:

• Understanding XOR Self Gating

• Using XOR Self Gating in Power Compiler

• Sharing XOR Self Gates

• Registers Excluded From XOR Self Gating

• Performing XOR Self Gating

• Querying the XOR Self Gates

• Reporting the XOR Self Gates
Chapter 8: XOR Self Gating
8-1

Chapter 8: XOR Self Gating
8-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Understanding XOR Self Gating

With the XOR self-gating technique, an XOR gate compares the data stored in the register
with the data arriving at the data pin of the register, and the XOR output controls the enable
condition for gating. Figure 8-1 shows the insertion of a self-gating cell and the XOR gate
that generates the enable signal.

The XOR self-gating technique turns off the clock signal during specific clock cycles when
the data in the register remains unchanged. XOR self gating can be used for gating the
following types of registers:

• Registers with an enable condition that cannot be inferred from the existing logic.
Therefore, such registers cannot be gated using traditional clock-gating.

• Registers that are already gated. For these registers, the time duration for which clock
signal is turned off can be increased.

Note:
 Power Compiler supports XOR self gating only on non-gated registers.

Figure 8-1 XOR Self-Gating Cell

To minimize the area and power overhead, an XOR self-gating cell can be shared across a
few registers, by creating a combined enable condition with a tree of XOR gates. If the
self-gated registers are driven by synchronous set or synchronous clear signals, such
signals are also included in the construction of the enable signal so that the circuit remains
functionally unchanged.
Chapter 8: XOR Self Gating
Understanding XOR Self Gating 8-2

Power Compiler User Guide Version E-2010.12-SP2
Using XOR Self Gating in Power Compiler

In Power Compiler, the XOR self-gating feature first identifies those registers for which the
insertion of XOR self gating can potentially save dynamic power, without degrading the
timing. Dynamic power depends on the switching activity annotation, which is calculated
using a SAIF file or from the set_switching_activity command. Registers are grouped
to create XOR self-gating banks with a minimum size of four and a maximum size of
eight.The XOR self-gating cells are inserted without a hierarchical wrapper around them.

Integrated clock-gating cells in the technology library that have the following configuration
are used as self-gating cells. In addition, the technology library should also contain XOR,
OR, and AND gates for the corresponding operating condition.

• Sequential cell: latch

• Control point: before

• Control signal: scan_enable

• Observation point: none

When the technology library does not contain cells with these characteristics for the
corresponding operating condition, Power Compiler does not insert the XOR self-gating cell.

Power Compiler does not support the following types of sequential cells for XOR self-gating
insertion:

• Level-sensitive sequential cells

• Level-sensitive scan design registers

• Master-slave flip-flops

• Retention registers

• Multibit registers

Sharing XOR Self Gates

Two or more registers can be gated by the same XOR self-gating cell, if the following
conditions are met:

• The registers belong to the same hierarchy.

• The registers belong to the same clock domain.
Chapter 8: XOR Self Gating
Using XOR Self Gating in Power Compiler 8-3
Chapter 8: XOR Self Gating
Using XOR Self Gating in Power Compiler 8-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• If the synchronous global signals exist, the registers are driven by the same synchronous
signals: synchronous set and synchronous clear.

• If the asynchronous global signals exist, the registers are driven by the same
asynchronous signals: asynchronous set and asynchronous clear.

Registers Excluded From XOR Self Gating

Power Compiler excludes a register from XOR self-gating in the following situations:

• It is already clock-gated.

• It is already scan-stitched.

• It is marked dont_touch or it belongs to a hierarchy that is marked dont_touch.

• It has non-constant synchronous pins, containing different timing exceptions.

• It has non-standard synchronous pins such as synchronous toggle.

• Inserting XOR clock gating does not result in power saving or XOR clock gating causes
negative slack on the timing path.

Performing XOR Self Gating

The XOR self gating feature is supported only in the Design Compiler topographical mode.
Use the compile_ultra -self_gating command to perform XOR self gating. The
command uses the default style while inserting the XOR self gates. To indicate that XOR self
gate is inserted, the tool issues the PWR-790 information message as follows:

Information: Performing XOR self gating insertion (PWR-790).

Note:
Clock gate latency cannot be annotated on a XOR self gating cell by using the
set_clock_gate_latency command.

Querying the XOR Self Gates

In the Design Compiler topographical mode, use the all_self_gates command to get a
collection of all the self-gating cells or pins of self-gating cells, in the current design. The
all_self_gates command has the following syntax:

all_self_gates
 [-no_hierarchy]
Chapter 8: XOR Self Gating
Registers Excluded From XOR Self Gating 8-4

Power Compiler User Guide Version E-2010.12-SP2
 [-clock clock_name]
 [-cells]
 [-enable_pins]
 [-clock-pins]
 [-output_pins]
 [-test_pins]

-no_hierarchy

Limit the search to the current hierarchy. By default, the XOR self-gating cells across all
hierarchies in the design, is returned.

-clock

Searches only for the XOR self-gating cells of the registers that were originally clocked by
the specified clock name. By default, XOR self-gating cells in all the clock domains are
returned.

-cells

Gets a collection of the XOR self-gating cells in the design. This is the default behavior.
This option can be combined with one or more of the -clock_pins, -output_pins,
-test_pins, and -enable_pins options.

-enable_pins

Gets a collection of enable pins of the XOR self-gating cells.

-clock_pins

Gets a collection of the clock input pins of the XOR self-gating cells.

-output_pins

Gets a collection of output pins of the XOR self-gating cells.

-test_pins

Gets a collection of the test mode or scan enable pins of the XOR self-gating cells.

Reporting the XOR Self Gates

In Design Compiler topographical mode, you can use the report_self_gating command
to report the XOR self-gating cells.The command reports the number of gated registers, and
optionally, information about the ungated registers in the current design. The
report_self_gating command has the following syntax:

report_self_gating
 [-ungated]
 [-nosplit]
Chapter 8: XOR Self Gating
Reporting the XOR Self Gates 8-5
Chapter 8: XOR Self Gating
Reporting the XOR Self Gates 8-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
-ungated

Reports the names of registers that are not self gated. The report also contains the
reasons for not self gating the registers.

-nosplit

Prevents line-splitting.

Example 8-1 shows the report generated by the report_self_gating command when no
option is specified:

Example 8-1 Report Generated by the report_self_gating Command
dc_shell> report_self_gating

**
Report : self_gating
Design : my_design
Version: 2010.12
Date : Wed October 27 18:52:39 2010
**
 Self-Gating Summary
--
Number of self-gating cells	7
Number of self gated registers	50 (50.00%)
Number of registers not self-gated	50 (50.00%)
Total number of registers	100
--

Example 8-2 shows the report generated when you use the report_self_gating
-ungated command. The report shows the reason for not self gating the registers and also
mentions what action should be taken, so that the tool can self gate the register.

Example 8-2 Report Generated by the report_self_gating -ungated
dc_shell> report_self_gating -ungated

**
Report : self_gating
 -ungated
 Design : my_design
 Version: E-2010.12
 Date : Mon Oct 25 11:24:48 2010
 **

--
 Ungated Register Report
--
Ungated Register| Reason | What Next?
--
 y_reg[9] | Self gating creates negative slack on path
Chapter 8: XOR Self Gating
Reporting the XOR Self Gates 8-6

Power Compiler User Guide Version E-2010.12-SP2
 | Relax timing constraints on this path
 y_reg[8] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[7] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[6] | Self gating creates negative slack on path
 | Relax timing constraints on this path
 y_reg[5] | Self gating creates negative slack on path
 | Relax timing constraints on this path

 Self Gating Summary
 --
 | Number of self-gating cells | 0 |
 | | |
 | Number of self gated registers | 0 (0.00%) |
 | | |
 | Number of registers not self-gated | 5 (100.00%) |
 | | |
 | Total number of registers | 5 |
 --
Chapter 8: XOR Self Gating
Reporting the XOR Self Gates 8-7
Chapter 8: XOR Self Gating
Reporting the XOR Self Gates 8-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Chapter 8: XOR Self Gating
Reporting the XOR Self Gates 8-8

9
Operand Isolation 9

Operand Isolation is a technique used by Power Compiler to reduce dynamic power
consumption for datapath designs.

This chapter includes the following sections:

• Operand Isolation Overview

• Operand Isolation Methodology Flows

• Commands and Variables Related to Operand Isolation

• Using Operand Isolation

• Interoperability

• Debugging Tips

• Examples

9-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Operand Isolation Overview

In a datapath intensive design, the complex combinational circuits may contribute to the
majority of power consumption of the design. If the fan out of a datapath circuit is not
observed under conditions, the operand isolation approach can reduce the dynamic power
or dissipation of the circuit by adding isolation logic such as AND or OR gates along with the
control signal to hold the inputs of the datapath operator to a constant. Therefore, no
switching activity at the inputs propagates through the circuit and no redundant
computations are performed.

To illustrate this scenario, consider the following example:

In Figure 9-1, the adder (cell name Add_0) consumes power whenever the input Data1 and
Data2 toggle. However, the output of the adder is observed at the flip-flop (reg_0) input only
when selA is “1” and selB is “0”.

Figure 9-1 Operand Isolation Candidate

Figure 9-2 on page 9-3 shows an example of applying operand isolation. Power Compiler
inserts isolation logic to gate the inputs of Add_0.

In this example, the isolation logic consists of a control signal CTL and some AND gates.
The inputs to the adder are enabled by CTL, while CTL= selA * !selB. The inserted gates are
C1, C2 and U20.

Data 1

Data 2

SelA SelB

 MuxA MuxB

Add_0 reg_0

D-Flip-Flop 01
Chapter 9: Operand Isolation
Operand Isolation Overview 9-2

Power Compiler User Guide Version E-2010.12-SP2
Figure 9-2 Design With Operand Isolation

Observable Don’t Care Conditions
The ideal candidates for operand isolation are combinational circuits with some complexity
such as arithmetic logic units (ALUs), wide-bus adders, multipliers and hierarchical
combinational cells that frequently perform redundant computation. In order to be able to
perform operand isolation, the fan out of the combinational circuit needs to have an
observable don’t care (ODC) condition. If the output of the circuit is always observed, there’s
no operand isolation opportunity.

Referring to the example in Figure 9-1 on page 9-2, two multiplexers (MuxA and MuxB)
generate the ODC conditions.

For more information, see “Verilog RTL With Observable Don’t Care Conditions” on
page 9-21.

 MuxA MuxB

Add_0 reg_0

D-Flip-Flop 01

Data2

 Data1

U20
 C1

C2

CTL

SelA SelB

+

Chapter 9: Operand Isolation
Operand Isolation Overview 9-3
Chapter 9: Operand Isolation
Operand Isolation Overview 9-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Power Compiler Operand Isolation Approach
Power Compiler performs power-based, automatic, RTL-level exploration of operand
isolation. In general, Power Compiler applies operand isolation on an object if all of the
following conditions are met:

• The object is an arithmetic operator or a combinational hierarchical cell.

• The fan out of the object has ODC conditions.

• The netlist exploration process indicates that by inserting operand isolation it will most
likely to reduce the dynamic power consumption of the circuit.

Several factors can influence operand isolation:

• The static probability and toggle rate; for example, the switching activity at the input data
net of the operator.

• The SP and toggle rate of the nets which generate the control signal.

• The complexity of the isolation objects.

For the example in Figure 9-2 on page 9-3, assume selA and selB are uncorrelated. The
probability of selA==1 is 0.9 and the SP probability of selB ==0 is also 0.9. Since the cell
(U20) which generates the control signal is an AND gate, the probability for the control signal
CTL==1 (the case when the adder output is observed) is 0.9*0.9=0.81. This indicates the
adder output would be observed by the flip flop for the majority of the time. By default, Power
Compiler does not perform operand isolation on the adder since the reduction of total
toggles might not be enough to compensate for the toggles introduced by the isolation gates
and nets.

Automatic Versus User-Driven Operand Isolation Insertion
Power Compiler automatically chooses which operands to isolate when you activate
operand isolation. For information, see “Specifying Operand Isolation Style and Selecting
Insertion Mode” on page 9-11.

Automatic Versus Manual Operand Isolation Rollback
You can remove the operand isolation implementation either automatically or manually. For
information, see “Operand Isolation Rollback” on page 9-14.

Operand Isolation Methodology Flows

The two approaches to incorporate operand isolation into your design flow are as follows:

• Two-Pass Approach (Recommended)
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-4

Power Compiler User Guide Version E-2010.12-SP2
• One-Pass Approach

Two-Pass Approach (Recommended)
The two-pass approach entails an initial compile followed by an incremental compile. This
flow consists of two stages; isolation logic is inserted during the first stage, followed by
timing and power analysis. Rollback can take place in the second stage.

Figure 9-3 and Figure 9-4 on page 9-6 illustrate the insertion stage and the rollback stage
for the two-pass flow.

Figure 9-3 Two-Pass Approach: Operand Isolation Insertion
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-5
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 9-4 Two-Pass Approach: Analyzing Operand Isolation Results and Rollback

One-Pass Approach
The one-pass approach entails only one compile step. Operand isolation insertion is
performed during the mapping stage while rollback take place during timing optimization in
the same compile. Figure 9-5 on page 9-7 illustrates the one-pass flow.
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-6

Power Compiler User Guide Version E-2010.12-SP2
Figure 9-5 One-Pass Approach
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-7
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Sample Scripts
The following script demonstrates a two-pass flow with automatic operand isolation:

read in switching activity files
read_saif -input risc.saif –instance testrisc/proc

issue OI constraints
set do_operand_isolation true

set_operand_isolation_style \
-logic adaptive \
-verbose

set weight to 0 to disable rollback, default weight is 0
set_operand_isolation_slack 0.3 -weight 0

source design constraints
source design_constr.tcl

compile_ultra

report_operand_isolation -verbose –all_objects
report_timing
report_power

set_operand_isolation_slack 0

compile_ultra –incr

report_operand_isolation -verbose –all_objects
report_timing
report_power

The following script demonstrates a two-pass flow with user-driven operand isolation.

issue OI constraints
set do_operand_isolation true
set_operand_isolation_style \
 -verbose \
 -user_directives

specify user directives
set_operand_isolation_cell [get_cells u1/add_14]
set_operand_isolation_cell [get_cells u2]
set weight to 0 to disable rollback, default weight is 0
set_operand_isolation_slack 0.6 –weight 0

source design constraints
source design_constr.tcl
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-8

Power Compiler User Guide Version E-2010.12-SP2
compile_ultra

report_operand_isolation -verbose –all_objects
report_timing
report_power

set_operand_isolation_slack 0

compile_ultra –incr

report_operand_isolation -verbose –all_objects
report_timing
report_power

The following script demonstrates a one-pass flow with automatic operand isolation.

issue OI constraints
set do_operand_isolation true

set do_operand_isolation true
set_operand_isolation_style \
 -logic adaptive \
 -verbose \

set weight to a non-zero number to enable auto-rollback
set_operand_isolation_slack 0.3 -weight 1

source design constraints
source design_constr.tcl

compile_ultra

report and analysis
report_operand_isolation -verbose -all
report_timing
report_power
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-9
Chapter 9: Operand Isolation
Operand Isolation Methodology Flows 9-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Commands and Variables Related to Operand Isolation

Table 9-1 and Table 9-2 on page 9-11 contains the summary of operand isolation related
commands and variables. For a more detailed explanation, see “Using Operand Isolation”
on page 9-11.

Table 9-1 Operand Isolation Related Commands

Command syntax Usage Example

set_operand_isolation_style
 [-logic AND | OR | adaptive]

 [-user_directives]

 [-verbose]

1. Specify the logic type to be
used for operand Isolation.

2. Enable or disable user-driven
operand isolation.

set_operand_isolation \

 -logic adaptive \

 -verbose

set_operand_isolation_cell

 object_list

 [flag]

Define the cell object for operand
isolation.

set_operand_isolation_cell \

 [get_cells u1/add_16] \

 true

set_operand_isolation_scope

 object_list [flag]

Define the operand isolation
scope

set_operand_isolation_scope\

 [get_design test] \

 false

set_operand_isolation_slack

 [float]

 [-weight float]

Define the timing threshold to
enable automatic operand
isolation rollback

set_operand_isolation_slack \

 2.0 \

 -weight 0.1

remove_operand_isolation

 [-from from_list]

 [-to to_list]

Manually remove the operand
isolation logic inserted by Power
Compiler

remove_operand_isolation \

 -from u1/u2/EN \

 -to u1/u2/out_reg[0]/D

report operand isolation

 [-instances]

 [-isolated_objects]

 [-unisolated_objects]

 [-all_objects]

 [-verbose]

 [-no_hier]

 [-nosplit]

 [object_list]

Report the status of operand
isolation in the current design.

report_operand_isolation \

 -all_objects \

 -verbose
Chapter 9: Operand Isolation
Commands and Variables Related to Operand Isolation 9-10

Power Compiler User Guide Version E-2010.12-SP2
Using Operand Isolation

The following topics are essential for applying operand isolation in your design flow:

• Specifying Operand Isolation Style and Selecting Insertion Mode

• Controlling the Scope for Operand Isolation

• Defining User Directives

• Operand Isolation Rollback

• Operand Isolation Reporting

Specifying Operand Isolation Style and Selecting Insertion Mode
Before starting operand isolation, specify the isolation style. The
set_operand_isolation_style command is used to specify the logic type of the isolation
gate and provide an option to enable user-driven operand isolation mode.

When you issue this command without any option, the automatic operand isolation
mechanism takes place. The user-driven mode is enabled by specifying the
-user_directives option. The syntax is

set_operand_isolation_style

[-logic AND | OR | adaptive]
[-user_directives]

 [-verbose]

For information about this command, see the man page.

Table 9-2 Operand Isolation Related Variables

Variable Usage Example

do_operand_isolation Setting this variable to true
enables operand isolation.
Default value is false

set do_operand_isolation true
Chapter 9: Operand Isolation
Using Operand Isolation 9-11
Chapter 9: Operand Isolation
Using Operand Isolation 9-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Controlling the Scope for Operand Isolation
By default, Power Compiler traverses the netlist in a top-down fashion and all the designs
are processed for operand isolation. However, you can utilize the
set_operand_isolation_scope command to specify whether to include or exclude certain
hierarchies for operand isolation processing. The syntax is

set_operand_isolation_scope object_list

[true | false]

The concept of the set_operand_isolation_scope command is similar to the
set_dont_touch or set_boundary_optimization command. This command sets an
attribute on the object_list to control whether or not to enable (the option is set to true)
or disable (the option is set to false) the processing of object_list for operand isolation.

If a design or a hierarchical cell does not have the operand isolation scope attribute
specified, the behavior is inherited from that of the parent instance. By default, the attribute
of the top level is true, therefore, all the sub-designs are also true, which means operand
isolation processing is enabled for the entire design.

The following example illustrates how to change the default scope behavior. In Figure 9-6,
the hierarchy relationships are as follows: A is the top level design. Therefore, A is the parent
instance of hierarchical cell B and E, and B is the parent instance of hierarchical cell C and
D.

Figure 9-6 set_operand_isolation_scope Example

A

 B

 C

D
E

Chapter 9: Operand Isolation
Using Operand Isolation 9-12

Power Compiler User Guide Version E-2010.12-SP2
In run script, if you issue

• Case 1:

set_operand_isolation_scope [get_designs A] false

None of the designs are processed for operand isolation.

• Case 2:

set_operand_isolation_scope [get_designs A] false

set_operand_isolation_scope [get_cells C] true

Only hierarchical cell C (shown in the shaded area) is processed for operand isolation.

• Case 3:

set_operand_isolation_scope [get_cells B] false

set_operand_isolation_scope [get_cells C] true

Hierarchical cells C and E are processed for operand isolation.

Defining User Directives
The set_operand_isolation_cell command specifies the operand isolation user
directive onto the objects in the design. It sets attributes on the candidates to be included or
excluded for operand isolation. The syntax is

set_operand_isolation_cell object_list [true|false]

where the object list contains arithmetic operators or hierarchical combinational cells.

• When the option is set to true and the user-driven operand isolation is performed, Power
Compiler inserts isolation gates for the objects in object_list that meet the operand
isolation conditions.

• When the option is set to false, Power Compiler excludes all objects in object_list
from operand isolation. Both automatic and user-driven operand isolation mode honor
this directive.

The example in Figure 9-7 on page 9-14 illustrates a scenario when user-driven operand
isolation mode is applied. The design includes the hierarchical cells: u0, u0/u1 and u0/u2.

In the run script, if you issue

set_operand_isolation_style -user_directives
set_operand_isolation_cell [get_cell u0] false
set_operand_isolation_cell [get_cell u0/u1] false
set_operand_isolation_cell [get_cell u0/u2] true
Chapter 9: Operand Isolation
Using Operand Isolation 9-13
Chapter 9: Operand Isolation
Using Operand Isolation 9-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The hierarchical cells u0/u2 are isolated and u0/u1 is not isolated.

Figure 9-7 The set_operand_isolation Command Example

For more information, see “Examples of Using the Operand Isolation Commands” on
page 9-24.

Operand Isolation Rollback
There are two ways to perform rollback operand isolation implementation: automatically and
manually.

Automatic Rollback Mechanism
To perform automatic rollback operand isolation, specify the following command

set_operand_isolation_slack slack_number -weight num

The default slack number and weight are both 0. For weight, you can specify a number
between 0 and 1.

This command sets the targeted timing threshold for the worst negative slack to control the
automatic rollback operation.

In a one-pass operand isolation flow with automatic rollback, the insertion of operand
isolation logic occurs in the initial mapping phase. During timing optimization phase, Power
Compiler evaluates the threshold and the weight value specified by the
set_operand_isolation_slack command and then compares it to the worse negative
slack to determine whether or not to rollback.

1

0
D Q

u0

 u1

 u2

Top

sel_op
Chapter 9: Operand Isolation
Using Operand Isolation 9-14

Power Compiler User Guide Version E-2010.12-SP2
However, since the worse negative slack at this point does not represent the final worse
negative slack once all the timing optimizations are complete, better results can be obtained
by relaxing these constraints. Otherwise, Power Compiler would be too pessimistic and
remove non-violating operand isolation logic.

The -weight option relaxes the operand isolation slack constraint. When the weight is set
to 0 (the default) it disables automatic rollback during the initial compile step. For the one-
pass flow, the weight number should be set to a number between 0 and 1. If the weight is set
to 1, Power compiler honors the exact slack number for the threshold. Setting the number
between 0 and 1 relaxes the slack constraint and gives Power Compiler more opportunities
to preserve the isolation logic. This allows Power Compiler to control the trade-off between
timing and power optimization.

At the end of the compile, if the timing result is not acceptable, invoke either the manual or
automatic rollback mechanism with an additional incremental compile to remove the
isolation logic on the timing critical path. This is considered a two-pass approach.

In a two-pass operand isolation flow with automatic rollback, set the weight to 0 for the initial
compile. For the subsequent incremental compile, you can adjust the slack number.
Otherwise, Power Compiler utilizes the slack number from the previously issued
set_operand_isolation_slack command to perform rollback operation. Note that Power
Compiler does not relax the slack constraint during incremental compile (that is, the
-weight option is ignored).

Manual Rollback Mechanism
Manual rollback is achieved with the remove_operand_isolation command. The syntax is

remove_operand_isolation [-from <starting_point>] [-to <end_point>]

The manual rollback mechanism is available in a two-pass operand isolation flow. By issuing
this command, Power Compiler only removes the isolation logic of the timing paths specified
between the start and endpoints while preserving the rest of the operand isolation logic
followed by an incremental compile. Note that you must specify at least one of the [-from]
or [-to] options. These options remove the isolation logic regardless of the slack value
specified by the set_operand_isolation_slack command.

Sample Scripts for Operand Isolation Rollback
Two-pass operand isolation flow with automatic rollback:

set do_operand_isolation true
set_operand_isolation_style \
 -logic adaptive \
 -verbose \

Apply design timing constraints here
Chapter 9: Operand Isolation
Using Operand Isolation 9-15
Chapter 9: Operand Isolation
Using Operand Isolation 9-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Disable automatic rollback here
set_operand_isolation_slack 0.7 -weight 0

compile_ultra

report_power
report_timing
report_operand_isolation -verbose -all

this removes operand isolation logic on the timing critical paths if
the WNS at this point is worse than 0.7

compile_ultra -incr

report_timing
report_power

Two-pass operand isolation flow with manual rollback:

set do_operand_isolation true

set do_operand_isolation true
set_operand_isolation_style \
 -logic adaptive \
 -verbose \

Apply design constraints here

Does not automatic remove OI here
set_operand_isolation_slack 0.4 -weight 0

compile_ultra

report_operand_isolation -verbose -all

report_timing

Apply manual OI removal constraint here
remove_operand_isolation -from EN -to z_reg[0]/D

report_timing
report_power
report_operand_isolation -all –verbose

One-pass operand isolation flow with automatic rollback:

set do_operand_isolation true
set do_operand_isolation true
set_operand_isolation_style \
 -logic adaptive \
 -verbose \
Chapter 9: Operand Isolation
Using Operand Isolation 9-16

Power Compiler User Guide Version E-2010.12-SP2
Apply design timing constraints here

Enable automatic rollback here
set_operand_isolation_slack 0.7 -weight 0.8

compile_ultra

report_power
report_timing
report_operand_isolation -verbose -all

Operand Isolation Reporting
The report_operand_isolation command is used for the final operand isolation report.
The command syntax is:

report_operand_isolation
 [-instances]
 [-isolated_objects]
 [-unisolated_objects]
 [-all_objects]
 [-verbose]
 [-no_hier]
 [-nosplit]
 [object_list]

[object_list] is the collection of isolated object list. For option information, see the man
page.

By default, without specifying any option, Power Compiler only prints out the operand
isolation summary table.

An example of an operand isolation verbose report:

 Isolated Objects Report
--
 Parent Instance: <top_level>
 Isolated Object: add_14
 Object Type: operator
 Style: adaptive
 Method: user
 Control Signal: n36
 Gate Count : 16
 Original Data Net Isolated Pin Isolation
Gate Type
 --
 c[0] add_14/B[0] C34
AND
 c[1] add_14/B[1] C33
Chapter 9: Operand Isolation
Using Operand Isolation 9-17
Chapter 9: Operand Isolation
Using Operand Isolation 9-17

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
AND
 c[2] add_14/B[2] C32
AND
 c[3] add_14/B[3] C31
AND
 c[4] add_14/B[4] C30
AND
 c[5] add_14/B[5] C29
AND
 c[6] add_14/B[6] C28
AND
 c[7] add_14/B[7] C27
AND
 b[1] add_14/A[1] C25
AND
 b[2] add_14/A[2] C24
AND
 b[3] add_14/A[3] C23
AND
 b[4] add_14/A[4] C22
AND
 b[5] add_14/A[5] C21
AND
 b[6] add_14/A[6] C20
AND
 b[7] add_14/A[7] C19
AND
 b[0] add_14/A[0] C26
OR
--

Note that the -verbose option needs to be issued along with -all_objects or
-isolated_objects. Otherwise, you must provide the isolated object_list.

You can see more examples in “Operand Isolation Summary Report” on page 9-26.

Interoperability

The following sections show how operand isolation works with Power Compiler and other
Synopsys tools.

Operand Isolation and Clock Gating
Operand isolation works with clock-gated designs. Power Compiler is able to automatically
extract the control signal used for operand isolation.

Specify the following in the run script to enable clock gating and operand isolation:
Chapter 9: Operand Isolation
Interoperability 9-18

Power Compiler User Guide Version E-2010.12-SP2
set_clock_gating_style
insert_clock_gating
set do_operand_isolation true
set_operand_isolation_style -logic adaptive -verbose
compile_ultra

Operand Isolation and Testability
The testability issue is related to the isolation gate type implemented in the design. If the
isolation gate type is AND, the “stuck-at-1” fault of the control signal cannot be observed. As
shown in Figure 9-8, to detect the “stuck-at-1” fault at the control signal CTL, both inputs of
the AND gate U20 need to be 0, therefore, selB needs to be 1, and selA needs to be 0.
However, in this configuration, the output of the operator is not observable by the register. In
other words, we cannot observe “stuck-at-1” fault at CTL when isolation logic is AND style.

Similarly, if the isolation gate type is OR, the “stuck-at-0" fault of the control signal is not
observable.

To solve this problem, label the control signal as an explicit observation point for DFT
Compiler to generate the observation circuits.

Figure 9-8 Adding Observation Point to Activation Signal in AND Style Isolation Logic

 MuxA MuxB

Add_0 reg_0

D-Flip-Flop 01

Data2

U20
 C1

C2

CTL

SelA SelB

+

 0
Stuck-at-1

Add observation logic here
Chapter 9: Operand Isolation
Interoperability 9-19
Chapter 9: Operand Isolation
Interoperability 9-19

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Debugging Tips

This section describes the possible reasons why operand isolation is not implemented in
either automatic or user-driven mode.

• The operator does not have an observable don’t care condition. The outputs of the
operator (or combinational hierarchical cell) are always used.

• In automatic operand isolation mode, if there is no significant power reduction by
inserting operand isolation for the potential objects, no isolation is implemented. For
example, the size of the operator is too small or not complex enough or the output of the
operator is observed most of the time.

• In RTL netlist, if an input data net is tied to a constant value or there is zero switching
activity on the input data net, no isolation is implemented on that net.

• There are don’t touch attributes set on the parent instance of the operator.

• The object specified by the set_operand_isolation_cell command contains
sequential elements.

• There is a set_case_analysis constraint onto the control signal. Depending on the case
constraint, operand isolation might not be implemented.

If you specify the following constraint in the run script

set_case_analysis 0 [get_ports EN]

This command specifies the constant value 0 to port EN. In the Verilog netlist, if the
output of the operand is always observed under this configuration, no operand isolation
opportunity is available.

• Resource sharing occurs between the operators. In user-driven mode, some of user
directive operators (specified by set_operand_isolation_cell) don’t get isolated due
to the fact that the sharing resource of these operators might not have ODC condition
available.

In this Verilog netlist, there are three adders inferred, their ODC conditions are

Operator ODC

Inst2b/add_6 !en
Inst2c/add_6 en
Inst2d/add_6 clear + en

If we flatten the design and specify set_operand_isolation_cell onto these adders
during compile, and if there is a resource sharing for the three adders, the conjunction of
the individual operator’s ODC condition is an empty set. Therefore, no operand isolation
is implemented.
Chapter 9: Operand Isolation
Debugging Tips 9-20

Power Compiler User Guide Version E-2010.12-SP2
Examples

The following sections contain examples of operand isolation usage.

Verilog RTL With Observable Don’t Care Conditions
All the following Verilog RTL netlists infer observable don’t care control constructs at the
fanout of the arithmetic operators:

The following example shows the observable don’t care conditions at the adder output. The
observable don’t care sets are derived from inputs selA, selB, and clear.

module test(a,b,c,clk,clear,selA,selB,out);
 input [7:0] a,b,c;
 input clk;
 input clear,selA,selB;
 output [7:0] out;

 reg [7:0] out;

 wire [7:0] comb, reg_in;

assign comb = a +b ;
assign reg_in = selB ? c : selA ? comb : a ;

always @(posedge clk)
 begin
 if (~clear)
 out <= 8'b0;
 else
 out <= reg_in;

 end

endmodule

The following example shows observable don’t care conditions at the combinational module
output. observable don’t care sets are derived from inputs sel and EN.

module test(a,b,c,clk,EN,sel,out);
 input [7:0] a,b,c;
 input clk;
 input EN,sel;
 output [7:0] out;
 wire [7:0] comb_wire;

assign comb_wire = sel ? a : (b+c);
assign out = EN ? 8'b0 : comb_wire;
Chapter 9: Operand Isolation
Examples 9-21
Chapter 9: Operand Isolation
Examples 9-21

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
endmodule

The following example shows observable don’t care conditions at the adder output inferred
by enable type of flop. observable don’t care sets are derived from inputs sel and EN.

module test(a,b,c,clk,EN,out);
 input [7:0] a,b,c;
 input clk;
 input EN;
 output [7:0] out;
 wire [7:0] comb_wire;
 reg [7:0] out;

assign comb_wire = b+c ;

always @(posedge clk)

 begin
 if (EN)
 out<= comb_wire;
 end

endmodule

Report Operand Isolation Progress
The operand isolation progress is displayed when the -verbose option is specified with the
set_operand_isolation_style command.

Beginning Pass 1 Mapping

 Processing 'adder'
 Processing 'comb'
 Processing 'seq'
 Processing 'top'

 Updating timing information
Information: The target library(s) contains cell(s), other
than black boxes,
that are not characterized for internal power. (PWR-24)

 Beginning Implementation Selection

 Processing 'adder_0_DW01_add_9_0'
 Processing 'comb_0_DW01_add_8_0'
 Processing 'adder_1_DW01_add_9_0'
 Processing 'comb_1_DW01_add_8_0'
 Processing 'adder_2_DW01_add_9_0'
Information: Performing operand isolation on design 'top'
Information: Propagating switching activity (low effort zero
delay simulation).
Chapter 9: Operand Isolation
Examples 9-22

Power Compiler User Guide Version E-2010.12-SP2
(PWR-6)
Warning: Design has nonannotated primary inputs. (PWR-414)
Warning: Design has nonannotated sequential cell outputs.
(PWR-415)

 ISOL. ISOLATED UNISOLATED OI
 GATES OPER. HIER. OPER. HIER. APP PARENT INSTANCE
 ----- ----- ----- ----- ----- --- -----------------------
 0 0 0 0 1 N <top level>
 0 0 0 0 0 - seq_inst
 0 0 0 1 0 N top_inst_adder
 16 1 0 0 0 Y u2
 16 1 0 0 0 Y u1
 ----- ----- ----- ----- ----- ---
 32 2 0 1 1 Y

The following example shows the progress of a user-driven operand isolation flow. Note that
the PWR-519 warnings occur when Power Compiler cannot find the operand isolation
opportunity for the objects specified by the set_operand_isolation_cell command or
RTL pragma.

ISOL. ISOLATED UNISOLATED OI
GATES OPER. HIER. OPER. HIER. APP PARENT INSTANCE
 ----- ----- ----- ---- ----- --- -----------------------
 0 0 0 0 1 N <top level>
Warning: No operand isolation applied to cell 'inst2c/add_6'
because no
opportunity for isolation was found. (PWR-519)
 0 0 0 1 0 N inst2c
Warning: No operand isolation applied to cell 'inst2b/add_6'
because no
opportunity for isolation was found. (PWR-519)
 0 0 0 1 0 N inst2b
 32 0 1 0 1 Y inst2a
 0 0 0 0 0 - inst2a/inst3a
Warning: No operand isolation applied to cell 'inst2a/inst3a/
inst4a/add_6'
because no opportunity for isolation was found. (PWR-519)
 0 0 0 1 0 N inst2a/inst3a/inst4a
Warning: No operand isolation applied to cell 'inst2a/inst3a/
inst4b/add_6'
because no opportunity for isolation was found. (PWR-519)
 0 0 0 1 0 N inst2a/inst3a/inst4b
 ----- ----- ----- ----- ----- ---
 32 0 1 4 2 Y
Chapter 9: Operand Isolation
Examples 9-23
Chapter 9: Operand Isolation
Examples 9-23

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Examples of Using the Operand Isolation Commands
The following example illustrates the usage of the set_operand_isolation_cell and
set_operand_isolation_scope commands.

The Verilog netlist:

module test(a,b,c,clk,clear,sel_op,EN_1, EN_2,z);
 input [7:0] a,b,c;
 input clk;
 input sel_op,EN_1,EN_2;
 input clear;

 output [7:0] z;
 reg [7:0] z;

 wire [7:0] d1,d2;

 comb u1(a,b,EN_1,d1);
 comb u2(c,b,EN_2,d2);

 always @(posedge clk or negedge clear)
 begin
 if (~clear)
 z <= 8'b0;
 else
 z <= sel_op ? d1 : d2;
 end

endmodule

module comb(a,b,EN,z);
 input [7:0] a,b;
 input EN;
 output [7:0] z;

 assign z = EN ? (a + b) : b ;

endmodule

The user-driven mode is activated in this example. First, read the netlist in dc_shell and
perform the following:

dc_shell> current_design comb
Current design is 'comb'.
{comb}

dc_shell> get_cells *
{add_34, C16, B_0, B_1, I_0, B_2}

dc_shell> get_cell -hier *add*
Chapter 9: Operand Isolation
Examples 9-24

Power Compiler User Guide Version E-2010.12-SP2
{u1/add_34 u2/add_34}

If you want to isolate only u1/add_34, issue the following commands in the run script:

set_operand_isolation_scope [get_cell u2] false

set_operand_isolation_cell [get_cell u1/add_34] true

In this case, Power Compiler does not process the hierarchical cell u2 and anything
underneath u2 for operand isolation. Meanwhile, it inserts isolation only onto u1/add_34.
During the compile, u2 is excluded from the operand isolation process and it does not show
up in operand isolation status:

ISOL. ISOLATED UNISOLATED OI
GATES OPER. HIER. OPER. HIER. APP PARENT INSTANCE
 ----- ----- ----- ----- ----- --- -----------------------
 0 0 0 0 0 - <top level>
 16 1 0 0 0 Y u1
 ----- ----- ----- ----- ----- ---
 16 1 0 0 0 Y

You can verify from the final report that only u1/add_34 were isolated.

 Isolated Objects Report
--
 Parent Instance: u1
 Isolated Object: add_34
 Object Type: operator
 Style: adaptive
 Method: user
 Control Signal: EN
 Gate Count : 16
 Original Data Net Isolated Pin Isolation
Gate Type
 --
 a[0] add_34/A[0] C8
AND
 b[0] add_34/B[0] C16
AND
 b[3] add_34/B[3] C13
AND
 b[2] add_34/B[2] C14
AND
 a[2] add_34/A[2] C6
AND
 a[3] add_34/A[3] C5
AND
 b[5] add_34/B[5] C11
AND
 a[5] add_34/A[5] C3
AND
 b[1] add_34/B[1] C15
Chapter 9: Operand Isolation
Examples 9-25
Chapter 9: Operand Isolation
Examples 9-25

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
AND
 a[1] add_34/A[1] C7
AND
 b[4] add_34/B[4] C12
AND
 a[4] add_34/A[4] C4
AND
 b[6] add_34/B[6] C10
AND
 a[6] add_34/A[6] C2
AND
 b[7] add_34/B[7] C9
AND
 a[7] add_34/A[7] C1
AND
--
 Unisolated Objects Report
--
 Unisolated Object | Object Type
--
 u2 | hierarchical
 u1 | hierarchical
 u2/add_34 |operator

Operand Isolation Summary Report
report_operand_isolation
**
Report : isolation
Design : top
Version: W-2004.12
Date : Tue Oct 26 16:00:38 2004
**
Library(s) Used:
 slow (File: slow.db)
 Operand Isolation Summary

 | Isolation Style | adaptive |
 | | |
 | Isolation Method | automatic |
 | | |
 | Number of Isolation gates | 32 |
 | | |
 | Number of Isolated objects | 2 (20.00%) |
 | operators | 2 (20.00%) |
 | hierarchical cells | 0 (0.00%) |
 | | |
 | Number of Unisolated objects | 8 (80.00%) |
 | operators | 3 (30.00%) |
 | hierarchical cells | 5 (50.00%) |

Chapter 9: Operand Isolation
Examples 9-26

10
Gate-Level Power Optimization 10

Power Compiler optimizes your designs for power. During an optimization session, Power
Compiler performs additional steps to optimize your design for dynamic and leakage power.

This chapter contains the following sections:

• Overview

• General Gate-Level Power Optimization

• Leakage Power Optimization

• Dynamic Power Optimization

Power Compiler always works within the Design Compiler shell and is transparent to Design
Compiler users. This feature enables seamless integration of power optimization into your
synthesis environment. Working within the Design Compiler shell, Power Compiler can
optimize for power while monitoring time and area cost functions.

Before reading this chapter, familiarize yourself with the basic concepts of synthesis and
optimization as found in the Design Compiler documentation. Power Compiler optimizes
your design for power if you have set power constraint on your design.

Technology libraries characterized for power are required for power optimization. Using fully
characterized libraries that contain a variety of cells with different drive strength
characteristics, you can realize average dynamic power and leakage power reductions with
multivoltage threshold libraries compared to designs optimized for timing and area only.

10-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Overview

The speed of the transistor continues to improve. The most common technique used to
achieve the high performance is to reduce the geometry of the transistor as well as the
voltage to operate it. To maintain the speed and noise margin of the smaller transistor, the
threshold voltage needs to be lowered too. Since the threshold voltage has exponential
impact on the transistor leakage power, low threshold voltage transistors have high leakage
power. Minimizing the leakage power is one of the major challenges to be resolved,
especially in lower geometries.

In any design, there are critical and non-critical timing paths. Using a lower speed cell on
non-critical path does not affect the performance of a design. A slower cell allows higher
threshold voltage, which reduces leakage power dramatically. Optimizing the high speed
and low speed cells on different timing paths leads to a balanced design with high
performance and low leakage power.

Input and Output of Power Optimization
Figure 10-1 illustrates the flow for gate-level power optimization.

Figure 10-1 I/O Flow for Power Optimization

Power Constraints

Gate-Level Netlist

Libraries

Power Optimized

RTL or
Gate-Level
Netlist

Power
Optimization in
Logical
Synthesis

Switching
Activity
Chapter 10: Gate-Level Power Optimization
Overview 10-2

Power Compiler User Guide Version E-2010.12-SP2
The inputs for gate-level power optimization are:

• RTL or gate-level netlist and floor plan (optional)

This netlist is not power optimized.

• Power constraints

Power constraints set the target power value for optimization. Optimization options
specify different algorithms and conditions.

• Libraries

Power Compiler selects different library cells to rebuild the netlist with the optimized
power. Multivoltage threshold libraries are highly recommended for leakage optimization.

• Switching activity

This is required for dynamic and total power optimization, and is used for high accuracy
in leakage optimization.

The output of gate-level power optimization is a new gate-level netlist that has optimized
power. The optimization is implemented with the compile or compile_ultra commands.

Power Optimization in Synthesis Flow
Figure 10-2 on page 10-4 shows the steps involved in power optimization in the synthesis
flow.
Chapter 10: Gate-Level Power Optimization
Overview 10-3
Chapter 10: Gate-Level Power Optimization
Overview 10-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 10-2 Flow for Synthesis Power Optimization

Develop HDL Files

Specify libraries

Read design

Define
design environment

Set

Optimize the design

Save the
design database

link_library
target_library

symbol_library
synthetic_library

set_max_transitions
set_max_fanout
set_max_capacitance
create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainity
set_clock_transition
set_input_delay
set_output_delay
set_max_area

design constraints

compile

check_design
report_area
report_constraint
report_timing

write

analyze
elaborate
read_file

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load
set_min_library

physical_library

set_max_leakage_power
set_max_dynamic_power

 / physopt

Analyze and resolve
design problems

check_design
report_area
report_constraint
report_timing

Specify libraries

Read design

Define
design environment

Set

Optimize the design

Save the
design database

link_library
target_library

symbol_library

set_max_transitions
set_max_fanout
set_max_capacitance
create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainity
set_clock_transition
set_input_delay
set_output_delay
set_max_area

design constraints

compile

write

analyze
elaborate
read_file

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load
set_min_library

set_max_leakage_power

 /

Analyze and resolve
design problems

check_design
report_area
report_constraint
report_timing

Specify libraries

Read design

Define
design environment

Set

Optimize the design

Save the
design database

link_library
target_library

symbol_library

set_max_transitions
set_max_fanout
set_max_capacitance
create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainity
set_clock_transition
set_input_delay
set_output_delay
set_max_area

design constraints

compile

write

analyze
elaborate
read_file

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load
set_min_library

set_max_leakage_power

 / physopt

Analyze and resolve
design problems

check_design
report_area
report_constraint
report_timing

Specify libraries

Read design

Define
design environment

Set

Optimize the design

Save the
design database

link_library
target_library

symbol_library

set_max_transitions
set_max_fanout
set_max_capacitance
create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainity
set_clock_transition
set_input_delay
set_output_delay
set_max_area

design constraints

compile

write

analyze
elaborate
read_file

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load
set_min_library

 / physopt

Analyze and resolve
design problems

check_design
report_area
report_constraint
report_timing

Specify libraries

Read design

Define
design environment

Set

Optimize the design

Save the
design database

link_library
target_library

symbol_library

set_max_transitions
set_max_fanout
set_max_capacitance
create_clock
set_clock_latency
set_propagated_clock
set_clock_uncertainity
set_clock_transition
set_input_delay
set_output_delay
set_max_area

design constraints

compile

write

analyze
elaborate
read_file

set_operating_conditions
set_wire_load_model
set_drive
set_driving_cell
set_load
set_fanout_load
set_min_library

Analyze and resolve
design problems

check_design
report_area
report_constraint
report_timing

Develop HDL files

compile_ultra

read_file
Chapter 10: Gate-Level Power Optimization
Overview 10-4

Power Compiler User Guide Version E-2010.12-SP2
General Gate-Level Power Optimization

The following sections describe how to perform power optimization with Power Compiler and
how to use constraints.

Power Optimization Commands
Power optimization is performed together with other optimizations. Commands that start
optimizations include:

• compile and compile_ultra in Design Compiler

• compile_ultra in Design Compiler topographical

• compile_ultra -incremental in Design Compiler

When power constraints are specified, compile optimizes power together with timing and
area.

Power Constraints
Power constraints are set by the following commands:

• set_max_leakage_power

• set_max_dynamic_power

The set power constraint commands set attributes on the current design with the targeted
power value and unit, as follows:

• set_max_leakage_power adds the max_leakage_power attribute to the current design

• set_max_dynamic_power adds the max_dynamic_power attribute to the current design

The optimization commands check the above attributes on the current design to decide if
power optimization is performed. As long as the attributes exist, power optimization is
performed. To stop further power optimization, these attributes need to be removed.

You can view the attribute using the get_attribute command:

get_attribute max_leakage_power [current_design]

The attribute can be removed by the remove_attribute command:

remove_attribute [current_design] max_leakage_power
Chapter 10: Gate-Level Power Optimization
General Gate-Level Power Optimization 10-5
Chapter 10: Gate-Level Power Optimization
General Gate-Level Power Optimization 10-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Multiple power constraints can be set for the same optimization. In this case, the
optimization follows the cost priority rule. For more information, see “Cost Priority” on
page 10-6.

If multiple set_max commands are specified, Power Compiler optimizes only the constraint
with the highest priority. For example, if you specify both the set_max_dynamic_power and
set_max_leakage_power commands, Power Compiler optimizes dynamic power and uses
the leakage power constraint to ensure that the cost of optimizing leakage power remains
low if you’ve set optimization effort to high.

Scope of Power Constraints
Power optimization is performed only when the power constraint has been set to the current
design. Power constraint triggers the power optimization of the current design and all
sub-designs.

If the power constraint is not on the current design, for example, if it is on a sub-design, no
power optimization is performed on the current design and all its sub-designs. The constraint
is ignored.

Design Rule Constraints and Optimization Constraints
Design Compiler calculates two separate cost functions: one for design rule constraints and
one for optimization constraints. Design Compiler uses the cost functions to weigh the
relative benefit of potential optimization changes to your design.

Design rule constraints and optimization constraints set the limits within which the cost
functions assess potential optimization changes.

The Design Compiler documentation contains more information about design rule
constraints and optimization constraints.

Cost Priority
During the first phase of mapping, Design Compiler works to reduce the optimization cost
function and the design rule cost function. Each function is evaluated during compile to
determine whether a change to the design would improve the total cost. Although design
rule constraints are ultimately more important than delay constraints, Design Compiler and
Power Compiler consider delay constraints most important during the first phase of
mapping.
Chapter 10: Gate-Level Power Optimization
General Gate-Level Power Optimization 10-6

Power Compiler User Guide Version E-2010.12-SP2
The full optimization cost function takes into account the following factors, listed in order of
priority. Some of these components might not be active on a design:

• Design rule cost

• Maximum delay cost

• Minimum delay cost

• Maximum dynamic power cost

• Maximum static power cost

• Minimum porosity cost

• Maximum area cost

Cost function components are evaluated independently, in order of priority. An optimization
move is accepted if it decreases the cost of one component without increasing the cost of a
higher priority component.

For example,

• An optimization move that improves maximum delay cost is always accepted.

• An optimization move that improves leakage power is accepted only if maximum delay,
design rule, minimum delay, maximum total power and maximum dynamic power costs
do not increase.

• An optimization move that improves area is accepted only if no other costs increase.

Optimization stops when all costs are zero or no further improvements are made to the total
cost function. After the initial phase of mapping, Design Compiler increases the priority of
design rule costs.

Positive Timing Slack
Slack is the margin by which maximum or minimum path delay requirements are met.
Positive slack indicates that the requirement is met; negative slack indicates that the
requirement is violated. Power Compiler can use positive timing slack to decrease the power
of your design. The more positive slack that exists, the more delay Power Compiler can
accept in making choices for low-power cells.

Designs with excessively restrictive timing constraints have little or no positive slack to trade
for power reductions. If Design Compiler produces a design with large positive slack, Power
Compiler can often achieve a significant power reduction.
Chapter 10: Gate-Level Power Optimization
General Gate-Level Power Optimization 10-7
Chapter 10: Gate-Level Power Optimization
General Gate-Level Power Optimization 10-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Unmet Constraints
An incremental compile uses the existing gate structure as a starting point for continued
optimization. Usually, this ensures improvement of the circuit for timing, power, and area (or
for other active constraints you define).

You might, however, see situations in which your power or area cost increases, even during
an incremental compile. If you have a previously unmet design goal (violated constraint), a
subsequent optimization session attempts to meet the violated constraint by sacrificing
lower-priority design goals.

For example, you can have a violated timing constraint from a previous optimization session.
In your next optimization session, moves are accepted that increase power or area if the
moves improve the violated timing constraint. Power Compiler never violates a timing
constraint in order to optimize for power. For additional information, see “Incremental
Optimization” on page 10-8.

Design Rule Fixing
Design Compiler tries to meet optimization constraints and design rule constraints but gives
priority to design rule constraints because they are required for designs to function correctly.
During the first phase of mapping, Design Compiler works to reduce the optimization cost
function. During this phase, Design Compiler allows some optimization moves that create
design rule violations.

After optimization, Design Compiler makes an additional pass to correct design rule
violations. This pass is called design rule fixing.

During design rule fixing, Design Compiler can sacrifice optimization results to fix design
rule violations. In the design rule fixing phase, you might see delay, power, and area (or other
optimization results) increase in your design.

Incremental Optimization
It is recommended to run power optimization using incremental mode.

Incremental optimization uses the existing placement or netlist (in Design Compiler) as the
start point for a new run to achieve other design goal. Incremental power optimization
minimally disturbs the timing that has already been optimized. It usually produces better
overall QoR. Its runtime is shorter.
Chapter 10: Gate-Level Power Optimization
General Gate-Level Power Optimization 10-8

Power Compiler User Guide Version E-2010.12-SP2
Synthesizable Logic
Many designs have at least some elements that synthesis cannot affect. Examples of these
elements are black box cells, such as RAM and ROM, and customized subdesigns on which
you set the dont_touch attribute. Designs experience greater benefit from power
optimization when greater amounts of logic are accessible to Power Compiler.

Leakage Power Optimization

Leakage power optimization is an additional step to timing optimization. During leakage
power optimization the tool tries to reduce the leakage power of your design, without
affecting the performance. To reduce the overall leakage power of the design, leakage power
optimization is performed on paths that are not timing-critical. When the target libraries are
characterized for leakage power and contain cells characterized for multiple threshold
voltages, during the leakage power optimization, Power Compiler uses the library cells with
appropriate threshold voltages to reduce the leakage power of the design.

Power Compiler updates the cost of the leakage power frequently during leakage power
optimization. Power Compiler uses state-dependent information to improve the leakage
power optimization.

Enabling Leakage Optimization
Leakage power optimization is enabled by setting the leakage power constraint. You use
either a single threshold voltage or a multithreshold voltage library for leakage power
optimization. However, multithreshold voltage libraries are more effective. In topographical
mode, Power Compiler also supports leakage power optimization for multimode designs.

The set_max_leakage_power command sets the leakage power constraint and enables
leakage power optimization.

The syntax of this command is

set_max_leakage_power num [unit]

Here is an example of using the command:

set_max_leakage_power 0
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-9
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Using Multithreshold Voltage Libraries
Leakage power optimization can use single threshold voltage or multithreshold voltage
libraries. However, multithreshold voltage libraries can save more leakage power.

Leakage power is very sensitive to threshold voltage. The leakage power varies from 4 to 50
times for different threshold voltages. The higher the threshold voltage, the lower the
leakage power. On the other hand, timing varies from 5 to 30 percent. The lower the
threshold voltage, the faster the timing. For the single-voltage library, the variance of
threshold voltage and timing is of a similar magnitude.

Leakage power optimization is performed on the noncritical paths. The positive slacks are
used to swap low speed and low leakage power cells.

Due to the sensitivity of leakage power and the insensitivity of timing to threshold voltage,
optimization with multivoltage threshold libraries can result in much better leakage power
savings.

Library Threshold Voltage Attributes
To define threshold voltage groups in the technology libraries, use the set_attribute
command and add the following attributes:

• Library-level attribute:

default_threshold_voltage_group : “<string>” ;

• Library-cell-level attribute:

threshold_voltage_group : “<string>” ;

With these attributes, the threshold voltages are differentiated by the string you specify.
When your technology library has at least two threshold voltage groups or if you have
defined threshold voltage groups for your library cells using the set_attribute command,
the candidate cells are grouped by the threshold voltage.

Leakage Optimization for Designs with Easy Timing Constraints
For designs that have strict timing constraints that must be met, you optimize for leakage
power only on the non timing-critical paths, using the higher threshold-voltage cells from the
multithreshold voltage libraries. When your design has a relatively easy-to-meet timing
constraint, you might have a large number of low threshold-voltage cells in your design,
resulting in higher leakage power consumption. One way to avoid this situation without
having to change your target library settings is to use set_multi_vth_constraint
command to specify a very low percentage value for the lower threshold-voltage cells. For
optimum results you can start with an area of 1 to 5 percent of the design for the low
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-10

Power Compiler User Guide Version E-2010.12-SP2
threshold-voltage cells and gradually increase the percentage until the timing constraint is
met. With this technique, your design meets the timing constraint with minimal leakage
power consumption.

The set_multi_vth_constraint Command

The set_multi_vth_constraint command can be used to set the multithreshold voltage
constraint. This command has options to specify the constraint in terms of area or number
of cells of the low threshold voltage group. You can also specify whether this constraint
should have higher or lower priority than timing constraint.

Use the -lvth_percent option to specify the percentage value. The value can be a floating
point number between 0 and 100. This number represents the maximum percentage of the
low threshold voltage cells in the synthesized design, either by cell count or by area.

Specify cells, cell_count, or count with the -cost option to use the cell count while
calculating the percentage of low threshold-voltage cells in the design. Use -cost area to
specify that area of the low threshold-voltage cells should be used while calculating the
percentage of low threshold-voltage cells in the design. The default for the -cost option is
cells.

The -type option specifies whether the constraint is hard or soft. When you specify -type
hard, the tool tries to meet this constraint even if this results in timing degradation. If you
specify -type soft, the tool tries to meet this constraint, only if meeting this constraint does
not degrade the timing. The default value for the -type option is soft.

You cannot specify -type hard along with -cost cell. Similarly you cannot specify -type
soft along with -cost area. In both these cases, the tool does not set the multithreshold
voltage constraint. Table 10-1 on page 10-12 shows the compatibility of the combination of
the -type and the -cost options.

While calculating the percentage of low threshold voltage cells in the design, the tool does
not consider the black box cells. To let the tool consider the black box cells in the percentage
calculation, specify the -include_blackboxes option.

After synthesis, use the report_power or the report_threshold_voltage_group
commands to see the percentage of the total design area that is occupied by the low
threshold-voltage cells.

In the following example, the maximum percentage of low threshold voltage cells in the
design is set to 15 percent. While trying to meet this constraint, the timing constraint is not
compromised.

set_multi_vth_constraint \
 -lvth_groups {lvt svt} \
 -lvth_percentage 15 \
 -type soft \
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-11
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 -cost cell_count \
 -include_blackboxes

Note:
The constraint set by the set_multi_vth_constraint command is not compatible with
the constraints set by the set_max_leakage_power or set_max_dynamic_power
commands. See Table 10-1 for more details on the compatibility of this command with the
dynamic and leakage power settings.

For more details, see the set_multi_vth_constraint command man page.

Choosing the Leakage Power Calculation Model
To choose the model that the tool should use to calculate the leakage power of the design,
use the set_leakage_power_model command. The syntax of this command is as follows:

set_leakage_power_model [-type leakage | channel_width] \
 [-mvth_weights leakage | channel_wdith] \
 [-reset]

The default behavior is to use the leakage power attribute specified in the library
characterized for leakage power.

Table 10-1 The Compatibility of the Combination of the -type and -cost Options

Value of the
-type option

Value of the
-cost option

Support Compatibility with
leakage and dynamic
power constraints

soft cells Supported only in Design
Compiler topographical
mode

Remove leakage power
constraint that is already
set. Dynamic power
constraint that is already
set, is ignored

soft area Unsupported. Error is
issued

hard cells Unsupported. Error is
issued

hard area Supported It is necessary to specify
the leakage power
constraint before setting
this constraint. Dynamic
power that is already set is
ignored
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-12

Power Compiler User Guide Version E-2010.12-SP2
To use the channel-width model, your target library should have the library-level and
cell-level attributes for the threshold voltage groups and also the corresponding
channel-width attributes described in the section, “Channel-Width Based Leakage Power
Calculation” on page 3-6.

Calculating Leakage Power
Power Compiler calculates the leakage power of the design, using the following two
methods:

• Leakage values in the library

The libraries characterized for leakage power contain the leakage power values for each
library cell. Libraries can also contain the leakage values for all cells in the library. Power
Compiler computes the total leakage power of the design by summing the leakage power
of the library cells of the design. For more details see “Leakage Power Calculation” on
page 3-4.

• Using the channel-width values of threshold voltage groups in the library

The leakage power of a transistor is directly proportional to its channel-width. To optimize
for leakage power, Power Compiler chooses library cells such that the channel-widths for
the specific voltage threshold group is low. For more details see “Channel-Width Based
Leakage Power Calculation” on page 3-6.

Sample Scripts for Leakage Optimization
Note:

The report_power and report_constraint commands always use state-dependent
information to calculate leakage power. Dynamic and total power optimization always use
state- and path-dependent information.

Using the Default Usage Model
The following sample script uses the default usage model for multivoltage threshold leakage
optimization.

Specify all multivoltage threshold libraries in one place
set target_library “hvt.db nvt.db lvt.db”
set link_library “* $target_library”

Read the design
read_verilog rtl.v
link
Enable leakage power optimization
set_max_leakage_power 0
compile_ultra
report_power
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-13
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Using the Channel-Width Model

When the Technology Libraries Are Characterized With Channel-Width Attributes
The following sample scripts illustrate the use of channel-width based leakage power
calculation when the technology libraries are characterized with the channel-width
attributes, for the standard cells.

In the following example the channel-width weights specified at the library-level are used to
calculate the leakage power.

set_max_leakage_power 0
set_leakage_power_model -type channel_width
compile_ultra

In the following example the channel-width weights specified for the design are used to
calculate the leakage power. Specifying the channel-width weights for the design overrides
the library-level channel width weights specified in the technology library.

set_max_leakage_power 0
set_leakage_power_model -type channel_width \
-mvth_weights “lvt = 100 nvt = 300 hvt = 1”
compile_ultra

When the Technology Libraries Are Not Characterized With Channel-Width Attributes
When the technology library is not characterized with channel-width attributes you must
specify these attributes on all the standard cells in the library. You use the set_attribute
command to set the channel-width attribute on the standard cells. In the following example,
each standard cell in the library has one type of threshold voltage and this is specified using
the set_attribute command.

set_attribute -type string [get_lib_cell L1/BHVX10] \
vth_channel_widths "hvt = 12.4 "
set_attribute -type string [get_lib_cell L1/BNVX10] \
vth_channel_widths "nvt = 9.0 "
set_attribute -type string [get_lib_cell L1/BLVX10] \
vth_channel_widths "lvt = 5.3"
...
set_max_leakage_power 0
set_leakage_power_model -type channel_width \
 -mvth_weigths "lvt = 100 nvt = 10 hvt = 1"
compile_ultra
Chapter 10: Gate-Level Power Optimization
Leakage Power Optimization 10-14

Power Compiler User Guide Version E-2010.12-SP2
Power Critical Range
In Design Compiler topographical, during leakage power optimization, the reduction of
positive timing slack should be limited. This helps minimize problems during subsequent
changes such as routing, crosstalk, and so on. You set the positive timing slack limit using
the physopt_power_critical_range variable. The following example directs Power
Compiler to only optimize timing paths where the positive slack is 0.2 or more.

set physopt_power_critical_range 0.2

For more information, see the man page.

Dynamic Power Optimization

After RTL clock gating or operand isolation, gate-level dynamic power optimization further
reduces the dynamic power. Dynamic power optimization is an additional step to the timing
optimization. After the optimization, your design consumes less dynamic power without
affecting the performance.

Dynamic power optimization is activated by setting the dynamic power constraint.
Optimizing dynamic power incrementally provides better quality of results and take less
runtime. Dynamic power optimization depends on the switching activity. SAIF files affect the
results.

Running Dynamic Power Optimization
The set_max_dynamic_power command sets the dynamic power constraint and enables
dynamic power optimization. A sample script for dynamic power optimization can be found
in “Sample Scripts” on page 10-16.

The syntax of this command is

set_max_dynamic_power num [unit]

Here is an example of using the command with the default setting:

set_max_dynamic_power 0

The default setting has a well-balanced runtime and quality of result.
Chapter 10: Gate-Level Power Optimization
Dynamic Power Optimization 10-15
Chapter 10: Gate-Level Power Optimization
Dynamic Power Optimization 10-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Annotating Switching Activity
Dynamic power optimization depends on switching activity. Annotating a correct switching
activity file helps optimize dynamic power.

The common format of switching activity file is SAIF. The annotation can be performed in this
way:

read_saif -input <SAIF_file> -instance <path>

For more information, see the man page.

The set_switching_activity script can be used for the same purpose as well. If no
switching activity has been annotated, the default toggle rate is applied to the primary inputs
and outputs of black box cells. Power Compiler propagates the default toggle rate
throughout the design. The propagated toggles are used for dynamic power optimization.

Sample Scripts
This sample uses the default option setting. It is recommended for most designs.

setup general environment
set target_library "lib.db"
set link_library "* $target_library"

read_verilog design.v
link
compile_ultra

dynamic power optimization constraint
set_max_dynamic_power 0
read_saif -input my.saif -instance tb/top_inst

compile_ultra -inc
report_power
Chapter 10: Gate-Level Power Optimization
Dynamic Power Optimization 10-16

11
Multivoltage Design Concepts 11

In multivoltage designs, the subdesign instances operate at different voltages. In multisupply
designs, the voltages of the various subdesigns are the same, but the blocks can be
powered on and off independently. In this user guide, unless otherwise noted, the term
multivoltage includes multisupply and mixed multisupply-multivoltage designs.

This chapter contains the following sections:

• Multivoltage and Multisupply Designs

• Library Requirements for Multivoltage Designs

• Power Domains

• Voltage Area

11-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Multivoltage and Multisupply Designs

The logic synthesis tools support the following types of low-power designs:

• Multivoltage

• Multisupply

• Mixed multivoltage and multisupply

To reduce power consumption, multivoltage designs typically make use of power domains.
The blocks of a power domain can be powered up and down, independent of the power state
of other power domains (except where a relative always-on relationship exists between two
power domains).

Multivoltage designs have nets that cross power domains to connect cells operating at
different voltages. Some power domains can be always-on, that is, they are never powered
down, while others might be always-on relative to some specific power domain. Some power
domains shut down and power up independently, but might require isolation and other
special cells. In general, voltage differences are handled by level shifters, which step the
voltage up or down from the input side of the cell to the output side. The isolation cells isolate
the power domain. Note that an enable-type level shifter can be used as isolation cells.

Library Requirements for Multivoltage Designs

To synthesize your multivoltage design using Power Compiler, the technology libraries used
must conform to the Liberty syntax. It should also contain special cells such as clock-gating
cells, level-shifters, isolation cells, retention registers, and always-on buffers and inverters.
To support synthesis of multivoltage designs, the tool also supports multiple libraries
characterized at different voltages. The following sections describe the types of cells that
support multivoltage or low-power designs:

• Liberty PG Pin Syntax

• Level-Shifter Cells

• Isolation Cells

• Requirements of Level-Shifter and Isolation cells

• Retention Register Cells

• Power-Switch Cells

• Always-On Logic Cells
Chapter 11: Multivoltage Design Concepts
Multivoltage and Multisupply Designs 11-2

Power Compiler User Guide Version E-2010.12-SP2
Note:
The k-factors are not supported for multivoltage designs and are ignored if present in the
libraries.

Liberty PG Pin Syntax
In the traditional, non-multivoltage designs, all components of the designs are connected to
a single power supply at all times. So, the technology libraries used for synthesizing such
designs do not contain details of power supply and ground connections of cells because all
the cells are connected to the same type of VDD and VSS.

For the synthesis of multivoltage designs, it is necessary to specify the power supplies that
can be connected to specific power pins of a cell. The Liberty syntax supports the
specification of power rail connection to the power supply pins of the cells. This power and
ground (PG) pin information allows synthesis tool to optimize the design for power and to
analyze the design behavior where multiple supply voltages are being used. For specific
information about the PG pin syntax and the modeling of power supply pin connections, see
the Advanced Low Power Modeling chapter in the Library Compiler Modeling Timing, Signal
Integrity, and Power in Technology Libraries User Guide.

For an older library that does not contain PG pins, you can convert the library into PG pin
library format in Design Compiler. For more details, see “Converting Libraries to PG Pin
Library Format” on page 12-8.

Level-Shifter Cells
In a multivoltage design, a level shifter is required where a signal crosses from one power
domain to another. The level shifter operates as a buffer with one supply voltage at the input
and a different supply voltage at the output. Thus, a level shifter converts a logic signal from
one voltage level to another, with a goal of having smallest possible delay from input to
output.

Level shifter cells are of three types:

• Level shifters that convert from high voltage to low voltage (H2L)

• Level shifters that convert from low voltage to high voltage (L2H)

• Level shifter that can do both, high to low and low to high conversion

For more details on creating and using level-shifter cells, see the "Advanced Low-Power
Modeling" chapter in the Library Compiler Modeling Timing, Signal Integrity, and Power in
Technology Libraries User Guide.
Chapter 11: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 11-3
Chapter 11: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 11-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Isolation Cells
Isolation cells are required when a logic signal crosses from a power domain that can be
power down to a domain that is not powered down. The cell operates as a buffer when the
input and output sides of the cell are both powered up, but provides a constant output signal
when the input side is powered down.

A cell that can perform both level-shifting and isolation functions is called an enable
level-shifter cell.This type of cell is used where a signal crosses from one power domain to
another, where the two voltage levels are different and the first domain can be powered
down. For more details on creating and using isolation cells and enable level-shifter cells,
see the "Advanced Low-Power Modeling" chapter in the Library Compiler Modeling Timing,
Signal Integrity, and Power in Technology Libraries User Guide.

Requirements of Level-Shifter and Isolation cells

• Two power supplies

• Buffer-type and enable-type level-shifter library cells must have the is_level_shifter
library attribute set to true.

• Enable-type level shifters must also have the level_shifter_enable_pin library
attribute set on the enable pin.

• Isolation library cells must have the is_isolation_cell library attribute set to true.

• Isolation cells must have the isolation_cell_enable_pin library attribute set on the
enable pin.

• Level shifters and isolation cells are selected by the logic synthesis tool from the target
libraries. Therefore, at least one of the libraries must contain these required cells.

Retention Register Cells
In a design with power switching, one of the ways to save register states before power-down
and restore them upon power-up is to use retention registers. These registers can maintain
their state during power-down by means of a low-leakage register network and an always-on
power supply. Retention cells occupy more area than regular flip-flops. These cells continue
to consume power when the power domain is powered down.
Chapter 11: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 11-4

Power Compiler User Guide Version E-2010.12-SP2
Multithreshold-CMOS Retention Registers
Retention cells are sequential cells that can hold their internal state when the primary power
supply is shut down and that can restore the state when the power is brought up. So the
retention registers are used to save leakage power in power-down applications. During
normal operation, there is no loss in performance and during power-down mode, the register
state is saved. These features are possible with the addition of a “balloon” latch, which holds
the data from the active register. Example 11-1 on page 11-5 shows the basic elements of
the retention register.

Figure 11-1 Retention Register Components

The retention register consists of two separate elements:

• Regular Flip-Flop or Latch

The regular flip-flop or latch consists of low-threshold voltage MOS transistors for high
performance

• State-Saving or Retention Latch

The retention latch consists of a balloon circuit modeled with high-threshold voltage MOS
transistors. It is has a different power supply: VSLEEP

The behavior of these elements depends on the circuit mode. During active mode, the
regular register operates at speed and the retention latch does not add to the load at the
output. During sleep mode, the Q data is transferred to the retention latch, and the power
supply to the flip-flop is shut off, thus eliminating the high-leakage standby power. When the
circuit is activated with the wake-up signal, the data in the retention latch is transferred to the
regular register for continuous operation.

Along with the separate power supplies, additional signals such as SLEEP and WAKE are
required to enable the data transfer from the regular register to the retention latch and back
again, based on the mode of operation.

Regular Flip-Flop

or Latch (low voltage)
State-Saving

Latch (high voltage)

VDD VDDsleep

CLK SLEEP WAKE

QD
Chapter 11: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 11-5
Chapter 11: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 11-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Based on the application, different retention register types are available to address the
clocking of the data from the register to the latch and back again. Library Compiler supports
modeling of retention registers with two control pins as well as only one control pin.
Example 11-2 on page 11-6 shows a retention register that has two control signals, save
and restore, to save and restore the data.

Figure 11-2 Two Pin Retention Register

Power-Switch Cells
In a design with power switching, the power-switch cells provide the supply power for cells
that can be powered down. The library description of a power-switch cell specifies the input
signal that controls power switching, the pin or pins connected to the power rail, and the pin
or pins that provide the virtual or switchable power.

There are two types of power-switch cells, the header type and the footer type. A header
type power switch connects the power rail to the power supply pins of the cells in the
power-down domain. A footer type power switch connects the ground rail to the ground
supply pins of the cells in the power-down domain.

For more information on creating power-switch cells, see the "Advanced Low Power
Modeling" chapter in the Library Compiler Modeling Timing, Signal Integrity, and Power in
Technology Libraries User Guide.
Chapter 11: Multivoltage Design Concepts
Library Requirements for Multivoltage Designs 11-6

Power Compiler User Guide Version E-2010.12-SP2
Always-On Logic Cells
Multivoltage designs can contain some power domains that can be shut down during the
operation of the design. These are also called power-down domains. In some of the
power-down domains, logic cells need to remain powered on even when the power domain
is shut down. Such cells are called always-on cells.The control signals of the always-on cells
should also be powered on when the power domain is shut down. These control signal paths
are called always-on paths.

The always-on cells can be of two types:

• Single Power Standard Cell

Buffers and inverters from the standard cell libraries can be used as always-on cells. For
Power Compiler to use the standard cells as always-on cells, you must

• Define the power domain as a shutdown domain.

For more details on always-on logic, see “Shut-Down Blocks” on page 11-8.

• Set the always_on_strategy attribute to cell_type and single_power.

• Dual Power Special Cell

Special cells in the target library, such as buffers and inverters with dual power, can be
used for always-on logic. Power Compiler automatically infers the backup power supply
for these cells based on the supply load on these cells. For more details, see “Handling
Always-On Logic” on page 12-37.

For more information on always-on logic, see “Shut-Down Blocks” on page 11-8.

Power Domains

Multivoltage designs contain design partitions which have specific power behavior
compared to the rest of the design. A power domain is a basic concept in the Synopsys
low-power infrastructure, and it drives many important low-power features across the flow.

By definition, a power domain is a logical grouping of one or more logic hierarchies in a
design that share the same power characteristics, including:

• Primary voltage states or voltage range (that is, the same operating voltage)

• Process, voltage, and temperature (PVT) operating condition values (all cells of the
power domain except level shifters)

• Power net hookup requirements

• Power down control and acknowledge signals, if any
Chapter 11: Multivoltage Design Concepts
Power Domains 11-7
Chapter 11: Multivoltage Design Concepts
Power Domains 11-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Power switching style

• Same set or subset of nonlinear delay model (NLDM) target libraries

Thus, a power domain describes a design partition, bounded within logic hierarchies, that
has a specific power behavior with respect to the rest of the design.

Each power domain has a supply network consisting of supply nets and supply ports and
may contain power switches. The supply network is used to specify the power and ground
net connections for a power domain. A supply net is a conductor that carries a supply
voltage or ground. A supply port is a power supply connection point between the inside and
outside of the power domain. Supply ports serve as the connection points between supply
nets. A supply net can carry a voltage supply from one supply port to another.

When used together, the power domain and supply network objects allow you to specify the
power management intentions of the design.

Every power domain must have one primary power supply and one primary ground. In
addition to the primary power and ground nets, a power domain can have any number of
additional power supply and ground nets.

A power domain has the following characteristics:

• Name

• Level of hierarchy or scope where the power domain is defined or created

• The set of design elements that comprise the power domain

• Associated set of supply nets that are allowed to be used within the power domain

• Primary power supply and ground nets

• Synthesis strategies for isolation, level-shifters, always-on cells, and retention registers

Note:
A power domain is strictly a synthesis construct, not a netlist object. For more information
about the concept of Power Domain, see the "Power Intent Specification" chapter in the
Synopsys Low-Power Flow User Guide.

Shut-Down Blocks
Multivoltage designs typically have some power domains that are shut down and powered
up during the operation of the chip while other power domains are always powered up. The
always-on paths starting from an always-on block must connect to the specific pins of
always-on cells in the power-down block. These cells can be special, dual power cells
Chapter 11: Multivoltage Design Concepts
Power Domains 11-8

Power Compiler User Guide Version E-2010.12-SP2
(isolation cells, enable-type level shifters, retention registers, special RAMs, and so on) or
standard cells that when placed are confined to special always-on site rows within the
power-down block.

Specific commands are supported by the tool can be used to specify the always-on
methodology to be applied to a particular power-down block. If special cells are used, they
need to be marked appropriately so that the tool can determine the always-on paths and
correctly optimize these paths.

Only buffers and inverters can be used as dual-power, always-on cells. They must have two
rails connections: a primary rail that is connected to a shut-down power supply, and a
secondary rail that is connected to an always-on power supply.

Marking Pass-Gate Library Pins
In the current implementation, the tool has the ability to stop always-on cells from connecting
to cells with pass gate inputs. An always-on buffer should not drive a gate that has pass
transistors at the inputs (pass-gate). Pass-gate input cells should be driven by a standard
cell in a shut-down power domain. Therefore, if your library contains any of these cells, you
must mark them as pass-gates in each session.

For example, to mark the pin A of the mux cell MUX1, run the following command as part of
a Design Compiler script:

set_attribute [get_lib_pins lib_name/MUX1/A] pass_gate true

Voltage Area

Corresponding to the power domains of logic synthesis, you define voltage areas in physical
synthesis as placement areas for the cells of the power domains. Except for level shifter
cells, all cells in a voltage area operate at the same voltage.

There must be an exact one-to-one relationship between logical power domains and
physical voltage areas. Design Compiler and IC Compiler can align the logic hierarchies of
the power domains with their voltage areas with appropriate specifications. The power
domain name and the voltage area name should be identical.

If you do not make these specifications, you are responsible for ensuring that the logic
hierarchies are correctly aligned, as well as being correctly associated with the appropriate
operating conditions.

A voltage area is the physical implementation of a power domain. A voltage area is
associated with a power domain in a unique, tightly bound, one-to-one relationship. A
voltage area is the area in which the cells of specific logic hierarchies are to be placed. A
Chapter 11: Multivoltage Design Concepts
Voltage Area 11-9
Chapter 11: Multivoltage Design Concepts
Voltage Area 11-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
single voltage area must correspond to another single power domain, and vice versa. The
power domains of a design are defined first in the logical synthesis phase and then the
voltage areas are created in the physical implementation phase, in Design Compiler
topographical mode or in IC Compiler. The information that pertains to logic hierarchies,
which belongs to a voltage area boundary is derived from a corresponding power domain.
Also, all the cells that belong to a given voltage area have the power behavior described by
the power domain characteristics. For more information on creating voltage area, see
“create_voltage_area” on page 12-44.
Chapter 11: Multivoltage Design Concepts
Voltage Area 11-10

12
IEEE 1801 Flow for Multivoltage Design
Implementation 12

This chapter describes multivoltage design concepts and the use of the IEEE 1801 also
known as Unified Power Format (UPF), to synthesize your multivoltage designs in Power
Compiler. This chapter describes specifying your power intent in the UPF file, reading the
UPF file in Power Compiler, and using commands supported in UPF mode in the following
sections:

• Synthesizing Multivoltage Designs Using UPF

• Basic Library Requirements for Multivoltage Designs

• Defining Power Domains and the Supply Network in UPF

• Defining Multivoltage Design Strategies

• Defining Power States for the Components of a Supply Set

• Defining Power State Tables

• Multivoltage Power Constraints

• Handling Always-On Logic

• Using Basic Gates as Isolation Cells

• Inserting the Power Management Cells

• Writing Out the Power Information

12-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Additional Commands to Support Multivoltage Designs

• Reporting Commands for the UPF Flow

• Debugging Commands for Multivoltage Designs

• Methodology for UPF-Based Hierarchical Multivoltage Flow

• Defining Power Intent Using Design Vision GUI

• Debugging Power Intent Using Design Vision GUI
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
12-2

Power Compiler User Guide Version E-2010.12-SP2
Synthesizing Multivoltage Designs Using UPF

The Unified Power Format (UPF) is a standard set of Tcl-like commands used to specify the
low-power design intent for electronic systems. UPF provides the ability to specify the power
intent early in the design process. Also, UPF supports the entire design flow. For more
information about the low-power flow and the various Synopsys tools that support UPF, see
the Synopsys Low-Power Flow User Guide.

Multivoltage Design Flow Using UPF
To synthesize your multivoltage design, the recommended method is to use the top-down
approach. With your power intent defined in the UPF file, follow these steps to synthesize
your multivoltage design:

1. Read your RTL file.

Use the analyze and elaborate commands to read the RTL source file. Use the
-format option to specify the Verilog, SystemVerilog or VHDL file format.

You can also read an elaborated design with the read_ddc command. To get best results,
read the design that is elaborated using the latest version of the tool.

2. Read the power definitions for your multivoltage design with the load_upf command.

In the UPF flow, the RTL file cannot have power definitions. Power Compiler issues an
error message if it encounters power definitions in the RTL file. All the power definitions
must be specified in the UPF file. This file can be used for synthesis, simulation,
equivalence checking, and sign off.

By default, the load_upf command executes the commands in the associated UPF file
in the current level of hierarchy. If the identifiers do not adhere to the naming rules
specified in the UPF standard, the following error message is issued.

Error: Symbol symbol_name violates the UPF naming conventions

(UPF-200).

The Design Compiler commands and variables, and the UPF commands and variables,
defined in the UPF file, share the same namespace. While executing the load_upf
command, the tool checks for namespace conflicts for the commands and variables
already defined, and those in the UPF file being read.

If you have modified the UPF file after reading it, you can use the remove_upf command
to remove the UPF constraints. However, if you use the remove_upf command after
synthesizing the design or after reading in the synthesized design, the tools issues the
following error message:

Error: remove_upf command cannot be used once a UPF design has been
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Synthesizing Multivoltage Designs Using UPF 12-3
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Synthesizing Multivoltage Designs Using UPF 12-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
compiled (MV-234).

After updating or removing a UPF file, use the load_upf command to reload the file.

Note:
The Design Vision GUI supports the Visual UPF dialog box in the Power menu. Using
the Visual UPF dialog box, you can generate a UPF script to define the power
domains, their supply network, connections with other power domains, and
relationships with elements in the design hierarchy.

For more details see “Defining Power Intent Using Design Vision GUI” on page 12-60.

3. Specify the set of target libraries to be used.

Your target library must comply with the power and ground pin Liberty library syntax. The
target library should also support special cells such as isolation cells and retention
registers.

 For more details on the target library requirement for multivoltage implementation see
“Basic Library Requirements for Multivoltage Designs” on page 12-6. For additional
information about the PG pin Liberty library syntax, see the Advanced Low-Power
Modeling chapter in the Library Compiler Modeling Timing, Signal Integrity, and Power in
Technology Libraries User Guide.

4. Use the set_operating_condition command to set the operating condition on the top
level of the design hierarchy and to derive the process and temperature conditions for the
design. Use the set_voltage command to set the current operating voltage value for the
power and the ground supply nets. For more details see “Multivoltage Power Constraints”
on page 12-35.

5. Specify your power optimization requirements.

Use the read_saif command to read the SAIF file containing the switching activity
information. If you do not specify the toggle rate, a default value of 0.1 is used for
propagating the switching activity.

Use the set_max_leakage_power or set_max_dynamic_power commands to optimize
your design for leakage and dynamic power respectively.

When you use any of these power optimization constraints in the Design Compiler
topographical technology, the tool also enables power prediction using the clock tree
estimation. For more details about power prediction, see “Performing Power Correlation”
on page 6-10.

6. Compile your multivoltage design with the compile_ultra command.

Use the -gate_clock option to insert the clock-gating logic during optimization.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Synthesizing Multivoltage Designs Using UPF 12-4

Power Compiler User Guide Version E-2010.12-SP2
Note:
If you are synthesizing your design for the first time, and you are using Design
Compiler topographical mode, it is recommended that you use the compile_ultra
-check_only command. The -check_only option checks your design and the
libraries for all the data that is required by the compile_ultra command to
successfully synthesize your design. For more details, see the Design Compiler User
Guide.

7. Use the check_mv_design command to check for multivoltage violations in your design.

This command checks your design for inconsistencies in your design and the target
libraries, and violations related to power management cells and their strategies. Use the
-verbose option to get the details of the violations. The -max_messages option controls
the number of violations being reported. For more details, see the command man page.

8. Write the synthesized design by using the write -format command. If you are writing
the design in the ASCII format, use the change_names command before you write out the
design.

By default the write command writes the design in the .ddc (Synopsys logical database
format) binary file format. You can write the design in Verilog and VHDL (ASCII) formats
for use in subsequent Design Compiler sessions. In the Design Compiler topographical
mode, you can use the write_milkyway and write_parasitics commands to write
the synthesized design in the Milkyway and SPEF formats; these can be used in the IC
Compiler flow.

To write the design constraints, use the write_sdc or the write_sdf command.

To generate the multivoltage reports, use the various reporting commands such as
report_power_domain. For more details on multivoltage reporting commands, see
“Reporting Commands for the UPF Flow” on page 12-45.

9. Use the save_upf command to save the updated power constraints in another UPF file.

After completing the synthesis process, the UPF file written by Design Compiler is used
as input to the downstream tools, such as IC Compiler, PrimeTime or PrimeTime PX, and
Formality. This file is similar to the one read into Design Compiler but with the following
additions:

• An additional comment on the first line of the UPF file generated by Design Compiler.
An example is as follows:

#Generated by Design Compiler(B-2008.09) on Thu Aug 7 14:26:58 2008

• Explicit power connections to special cells such as level-shifter cells and dual supply
cells.

• Any additional UPF commands that were specified at the command prompt in the
Design Compiler session.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Synthesizing Multivoltage Designs Using UPF 12-5
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Synthesizing Multivoltage Designs Using UPF 12-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
If you have specified UPF commands at the Design Compiler command prompt during
synthesis, update the UPF file along with your RTL design with these commands.
Without this update to the UPF file, Formality will not be able to successfully verify the
design.

Basic Library Requirements for Multivoltage Designs

To synthesize your multivoltage design using Power Compiler, the target libraries you use
must conform to the Liberty open library rules. The target libraries should also support
special cells such as clock-gating cells, level-shifters, isolation cells, retention registers, and
always-on buffers and inverters. To support synthesis of multivoltage designs, the tool also
supports multiple libraries characterized at different voltages.

Note:
The k-factors are not supported for multivoltage designs and are ignored if present in the
libraries.

Target Library Subsetting
During synthesis, Power Compiler selects the cells from the target library cells based on the
matching operating conditions between library cells and the power domain. The selection of
these cells can be further restricted by using the set_target_library_subset command.
Use this command to restrict the target library cells eligible for optimizing the hierarchical
cells of a block. The command syntax is as follows:

set_target_library_subset {library_list} -object_list {cell_list} -top

• library_list is a list of target library file names, all of which must also be listed in the
target_library variable.

• cell_list is a list of hierarchical cells (blocks or top level) for which the target library
subset is used.

To use this command at the top level, you must include the -top option.

Using this command on a hierarchical cell or on the top-level design enforces the library
restriction on all lower cells in the hierarchy, except for those cells that have a different library
subset constraint explicitly set on them.

To remove a target library subset constraint, use the remove_target_library_subset
command with the appropriate library list and cell list.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Basic Library Requirements for Multivoltage Designs 12-6

Power Compiler User Guide Version E-2010.12-SP2
To check for errors and conflicts introduced by target library subsetting, use either the
check_mv_design -target_library_subset command or the
check_target_library_subset command. Both these commands check and report the
following types of inconsistencies:

• Conflicts between target library subsets and the global target_library variable

• Conflicts between the operating condition of the current hierarchical block and the PVT
values of the target library subset

• Conflicts between the library cell of a mapped cell and target library subset

Use the report_target_library_subset command with the appropriate library cell list to
find the target library subsets that have been defined both for the hierarchical cells and at the
top level.

Fine-Grained Switch Cell Support
Power Compiler supports macro cells with fine-grained switches that have the following
attribute settings in the PG pin definition, in the library:

• The direction attribute is internal.

• The pg_type attribute is either internal_power or internal_ground.

• The pg_function attribute is defined.

• The switch_function attribute is defined.

• The switch_cell_type attribute of the macro is fine_grain.

• The switch_pin attribute is set to true for the control port.

For more details on specifying the operating voltage on these cells, see “Specifying the
Operating Voltage” on page 12-36.

Power and Ground Pin Syntax
If the target library that you specify complies with the power and ground (PG) pin Liberty
library syntax, Power Compiler uses this information during the synthesis process. However,
if your target library does not contain PG pin information, you can convert it into PG pin
library format. For more information, see “Converting Libraries to PG Pin Library Format” on
page 12-8.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Basic Library Requirements for Multivoltage Designs 12-7
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Basic Library Requirements for Multivoltage Designs 12-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Converting Libraries to PG Pin Library Format
If the libraries that you specify do not contain PG pin information, you can define them in the
library to conform to PG pin Liberty syntax. These are discussed in detail in the following
sections:

• Using FRAM View

• Using Tcl Commands

• Tcl Commands for Low-Power Library Specification

For more details, you can also see SolvNet article 029641.

Using FRAM View
In the Design Compiler topographical mode, you can use the FRAM view as the reference
for the converting your library to PG pin library format. You must set the
mw_reference_library variable to the location of the Milkyway reference libraries. Use the
update_lib_model command to convert your library to PG pin library format. The tool uses
the PG pin definitions available in the FRAM view of the Milkyway library for the conversion.
This is the default behavior. Figure 12-1 shows the steps involved in converting non-PG pin
library to a PG pin library.

Figure 12-1 Conversion of a Non-PG Pin Library to a PG Pin Library Using FRAM View

To ensure that the newly created PG pin library is complete, use the check_library and
report_mv_library commands. If the newly created PG pin library is not complete, run the
library specification Tcl commands to complete the library specification. For more details,
see “Tcl Commands for Low-Power Library Specification” on page 12-10.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Basic Library Requirements for Multivoltage Designs 12-8

Power Compiler User Guide Version E-2010.12-SP2
Using Tcl Commands
When your library files are not in the PG pin library syntax and you do not have the FRAM
view of Milkyway library, you can use the following Tcl commands to specify the necessary
information required for deriving the PG pin details, as shown in Figure 12-2 on page 12-9.

• update_lib_voltage_model

This command sets the voltage map for the specified library.

• update_lib_pg_pin_model

This command sets the PG pin map for the specified library cell.

• update_lib_pin_model

This command sets the pin map for the specified library cell.

Figure 12-2 Conversion of Non-PG Pin Library to PG Pin Library Using Tcl Commands

These Tcl commands specify the library requirements that are used while converting the
libraries to PG pin format.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Basic Library Requirements for Multivoltage Designs 12-9
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Basic Library Requirements for Multivoltage Designs 12-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Run the update_lib_model -reference_mode TCL command to convert your libraries to
PG pin library format. To check if your newly created PG pin library is complete, run the
check_library and report_mv_libraries commands. If your newly created PG pin
library contains conflicts or is incomplete, you can run the library specification Tcl
commands to complete the library specification. For more details, see “Tcl Commands for
Low-Power Library Specification” on page 12-10.

Tcl Commands for Low-Power Library Specification
When you convert your library to PG pin format, if the newly created library file is complete,
you can start using the library for the low-power implementation of your design. However, if
your library contains power management cells and the modeling is not complete, you can
use the following Tcl commands to complete your library specifications. These commands
specify the library voltage and PG pin characteristics.

• set_voltage_model

This command sets the voltage model on the specified library by updating the voltage
map in the library.

• set_pg_pin_model

This command defines the PG pins for the specified cell.

• set_pin_model

This command defines the related power, ground, or bias pins of the specified pin of the
library.

For more details, see the command man page and the Library Checking Chapter in the
Library Quality Assurance System User Guide.

Defining Power Domains and the Supply Network in UPF

The following sections discuss in detail creation and use of power domains, supply nets,
supply sets, supports ports, and so on, that define the supply network.

Hierarchy and Scope
The scope of the power domain is the logic hierarchy where the power domain is created.
Design elements that belong to a power domain are said to be in the extent of the power
domain. For more information, see the Power Intent Specification chapter in the Synopsys
Low-Power Flow User Guide.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-10

Power Compiler User Guide Version E-2010.12-SP2
Use the set_scope command to specify the scope or level of hierarchy. The set_scope
command sets the scope or the level of hierarchy to the specified scope. When no instance
is specified, the scope is set to the top level of the design hierarchy. Alternatively, you can
use the current_instance command to specify the current scope. However, in the power
context, the set_scope command is preferred.

You should explicitly specify the scope using the set_scope or the current_instance
command. Unless explicitly specified, Design Compiler uses the current scope or current
level of hierarchy when you define objects. For more information about scope, see the Power
Intent Specification chapter in the Synopsys Low-Power Flow User Guide.

Creating Power Domains
Use the create_power_domain command to create a power domain with the specified
name.

Use the -element option to specify the list of hierarchical, I/O, or pad cells that are added to
the extent of the power domain. The -include_scope option specifies that all the elements
in the current scope share the primary supply of the power domain but are not necessarily
added to the extent of the power domain. Use the -scope option to specify the logic
hierarchy or the scope at which the power domain is to be defined.

Figure 12-3 Defining a Power Domain and Scope

Block1

chipA

Block2

U1

U2

U3

U4

U5

U6

PD1 PD2

Power domain PD1
 Scope: Block1
 Extent: U1, U2, U3

PD3

U9

U7

U8
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-11
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The following example creates power domains PD1 and PD2, as specified in Figure 12-3 on
page 12-11:

create_power_domain -elements {U1 U2 U3} -scope Block1 PD1
create_power_domain -elements {U4 U5 U6} -scope Block1 PD2

Alternatively, you can use the set_scope command to first set to the desired scope and
then to create the power domain, as mentioned in the following example:

set_scope Block1
create_power_domain -elements {U1 U2 U3} PD1
create_power_domain -elements {U4 U5 U6} PD2

You can use the -include_scope option to include all the elements in the specified scope
to share the supply of the power domain. However the elements in the specified scope are
not necessarily added to the power domain.

create_power_domain -elements {U7 U8} -include_scope Block2 PD3

In this case, the element U9 shares the supply of power domain PD3, though U9 is not
explicitly mentioned to be part of the power domain PD3.

Creating Supply Sets
A supply set is a collection of supply nets. A supply set can be considered as a unified and
progressively defined bundle of supply nets that are not specific to a power domain. Supply
sets can be used only within the scope in which it is defined and in scopes under it.

The supply set concept eliminates the need to define the supply nets and ports in the design
in the synthesis tool. The supply sets must be associated with the supply nets and ports
before performing physical synthesis.

A supply set consists of the following two functions:

• Power

• Ground

You can access the functions of the supply set by using the name of the supply set and the
name of the function. To access the power function of a supply set, specify
supply_set.power. To access the ground function of a supply set, specify supply_set.ground.
These are also known as implicit supply nets.

Supply sets are always domain independent and can only be updated with domain
independent nets. The domain-independent supply nets must be created in the same scope
as the supply set with which the nets are created. However, you can restrict the supply set
available for optimization in a power domain by using the extra_supplies_# keyword
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-12

Power Compiler User Guide Version E-2010.12-SP2
(extra_supplies followed by a number suffix) with the -supply option of the
create_power_domain command. For more details, see, “Restricting Supply Sets to a
Power Domain” on page 12-13.

Note:
You cannot refer to a supply set defined in a scope that is higher in the hierarchy than the
scope from which you referring.

To create a supply set, use the create_supply_set command. You can use the supply set
to define the power network. The supply set is created in the current logic hierarchy or the
scope.

Using the -function option, you can associate a supply net or port to the specified function
of the supply set.

The following example shows how you create a supply set and associate it with the primary
power supply of a power domain:

create_supply_set primary_supply_set
create_power_domain PD_TOP
set_domain_supply_net PD_TOP \
 -primary_power_net primary_supply_set.power \
 -primary_ground_net primary_supply_set.ground

Note:
When you use implicit supply nets, the power and ground supply nets that you specify
with the set_domain_supply_net command must belong to the same supply set.
Otherwise, Power Compiler issues an error message.

Restricting Supply Sets to a Power Domain
To restrict specific supply sets to a power domain use the extra_supplies_# keyword with
the -supply option of the create_power_domain command as shown in the following
example:

dc_shell> create_power_domain SUB_DOMAIN \
 -supply {extra_supplies_1 supply_set1} \
 -supply {extra_supplies_2 supply_set2} -elements mid1/PD_MID

The extra_supplies_# keyword is written in the UPF file written out by Power Compiler.
Alternatively, if you do not want the power domain to use extra supply nets other than those
that are already defined in other strategies, specify extra_supplies “” (without the index)
with the -supply option. Power Compiler issues error message if you use both
extra_supplies_# and extra_supplies “” simultaneously.

By default, a power domain can use supply nets defined in the power domain or domain
independent supply nets. When you define supply sets with extra_supplies_# keyword,
the power domain is restricted to use only the following supplies:
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-13
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• Primary supply of the power domain

• Supplies specified in the isolation strategies of the power domain

• Supplies specified in the retention strategies of the power domain

• Domain-dependent supplies defined or reused in the power domain

Updating a Supply Set
You can redefine the functions of a supply set using the -update option. When you use the
-update option, you must use the -function option to associate the function names with
the supply nets or ports.

The following example shows how you use the -update option to associate supply nets to
the functions of the supply set:

create_power_domain PD_TOP
create_supply_net TOP_VDD
create_supply_net TOP_VSS
create_supply_set supply_set \
 -function {power TOP_VDD} \
 -function {ground TOP_VSS} \
 -update

Follow these rules while updating a supply set with a supply net:

• Voltage rule

The voltage of the supply set handle must match with the voltage of the supply net with
which the supply set is updated.

If voltage is not specified for the supply net, then after the update, the voltage on the
supply set handle will be inferred as the voltage of the supply net.

• Function rule

The supply set function must match with the function of the supply net with which the
supply set is updated.

Power Compiler issues an error message when,

• The ground handle of a supply set is used to update power handle of another supply
set and vice versa.

• The supply net updated with the ground handle of a supply set is connected to a power
supply port or pin of a power object, such as a power domain, and vice versa.

• Scope rule

The scope of supply set must match with the scope of the explicit supply net with which
the supply set is updated.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-14

Power Compiler User Guide Version E-2010.12-SP2
• Availability rule

The explicit supply net with which the supply set is updated, must be domain
independent.

• Connection rule

The explicit supply net with which the supply set is updated, should not be connected to
a driver port when the supply set handle is connected to a driver port unless a resolution
function is defined for the explicit supply net.

• Conflicting supply state names rule

A supply set handle cannot be updated with an explicit supply net or a supply set if their
power states causes a conflict.

• Valid PST rule

A supply set can be updated only if the update does not create a user defined PST with
different supplies in the same netgroup.

Defining Supply Sets While Creating Power Domains
While creating a power domain, you can associate a supply set with the power domain by
using the -supply option of the create_power_domain command. You must specify the
type of the supply set, also referred as the supply set handle, with the -supply option. You
can use the -supply option multiple times to associate multiple supply sets with a power
domain. The supply set handles supported are primary, default_retention,
default_isolation and extra_supplies_#. For more details on using the
extra_supplies_# keyword, see “Restricting Supply Sets to a Power Domain” on
page 12-13.

The following example shows how you create a power domain and associate a supply set
with the power domain:

Create the supply sets
create_supply_set primary_supply_set

Create power domain and associate it with the supply set

create_power_domain PD1 -supply {primary primary_supply_set}

Creating Supply Ports
To create the power supply and ground ports, use the create_supply_port command.

The syntax of the create_supply_port command is as follows:
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-15
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
create_supply_port supply_port_name \
 [-domain domain] \
 [-direction in|out]

The supply_port_name specified should be unique at the level of hierarchy it is defined.
The name of the supply port should be a simple (non-hierarchical) name. Unless the
-domain option is specified, the port is created in the current scope or level of hierarchy and
all power domains in the current scope can use the created port. By default the direction of
the port is in or input port.

The following example shows how to create the ports shown in Figure 12-4 on page 12-17.

To create the supply ports VDD1, VDD2 and VDD3 and GND at the top level of design
hierarchy or power domain PD_TOP use the command as follows:

create_supply_port VDD1
create_supply_port VDD2
create_supply_port VDD3
create_supply_port GND

To create the supply ports VDD1, VDD1g and GND in the power domain PD1, use the
create_supply_port command as follows:

create_supply_port VDD1 -domain PD1
create_supply_port VDD1g -domain PD1
create_supply_port GND -domain PD1

To create the supply ports VDD2 and GND in the power domain PD2 and VDD3 and GND
in power domain PD3, use the create_supply_port command as follows:

create_supply_port VDD2 -domain PD2
create_supply_port GND -domain PD2
create_supply_port VDD3 -domain PD3
create_supply_port GND -domain PD3
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-16

Power Compiler User Guide Version E-2010.12-SP2
Figure 12-4 Power Intent Specification

Note:
Connectivity is not defined when the supply port is created. To define connectivity use the
connect_supply_net command.

Creating Supply Nets
A supply net connects supply ports or supply pins. Use the create_supply_net command
to create a supply net. The syntax of the create_supply_net command is as follows:

create_supply_net
 [-domain domain_name]
 [-reuse]
 supply_net_name

PD1
Switched

(power-down)
domain

External multivoltage power supply

Retention
register

Power-
down

controller
block

VDD1 VDD2 VDD3 GND

PD3
Always-on

power
domain

PD2
Always-on

power
domain

save

restore

Enable
level shifter

Enable
level shifter

Level
shifter

VDD1g

PD_TOP
Always-on
power
domain

switch

Top level (chip level)

Block1 Block2 Block3
Scope B1

Scope B3Scope B2
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-17
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-17

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The supply net is created in the same scope or logic hierarchy as the specified power
domain. When the -reuse option is used, the specified supply net is not created; instead an
existing supply net with the specified name is reused.

create_supply_net GND_NET -domain PD1
create_supply_net GND_NET -domain PD2 -reuse

When a supply net is created it is not considered a primary power supply or ground net. To
make a specific power supply or ground net of a power domain, as primary supply or ground
net, use the set_domain_supply_net command.

Connecting Supply Nets
The connect_supply_net command connects the supply net to the specified supply ports
or pins. The connection can be within the same level of hierarchy or to ports or pins down
the hierarchy. The syntax of the connect_supply_net command is as follows:

connect_supply_net \
 [-ports list] \
 supply_net_name

The following example shows the use of the connect_supply_net command to connect
supply nets to various supply ports in different levels of hierarchy or power domains.

connect_supply_net GND_NET -ports GND
connect_supply_net GND_NET -ports {B1/GND B2/GND B3/GND} GND

You can also use the function of a supply set with the connect_supply_net command, as
shown in the following example:

create_supply_set ss \
connect_supply_net ss.ground -ports {B1/GND}

Note:
The connect_supply_net command ignores connections to the pins of the physical-only
cells.

Specifying Primary Supply Nets for a Power Domain
Use the set_domain_supply_net command to define the primary power supply net and
primary ground net for a power domain. The syntax of the set_domain_supply_net
command is as follows:

set_domain_supply_net \
 -primary_power_net supply_net_name \
 -primary_ground_net supply_net_name \
 domain_name
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-18

Power Compiler User Guide Version E-2010.12-SP2
Every power domain must have one primary power and one ground connection. When a
supply net is created it is not a primary supply net. You must use the
set_domain_supply_net command to designate the specific supply net the primary supply
net for the power domain. All cells in a power domain are assumed to be connected to the
primary power and ground net of the power domain to which the cells belong. If the power
or ground pins of a cell in a power domain, is not explicitly connected to any supply net, the
power or ground pin of the cell is assumed to be connected to the primary power or ground
net of the power domain to which the cell belongs.

When in the scope of Top, you can use the following command to designate VDD and GND
nets as the primary power and ground net, respectively, of the power domain PD_TOP.

set_domain_supply_net
 -primary_power_net VDD \
 -primary_ground_net GND PD_TOP

Note:
If you use supply sets to define the primary supply and ground, the supply nets that you
specify must belong to the same supply set. Otherwise Power Compiler issues an error
message. For more details see, “Creating Supply Sets” on page 12-12.

Creating Power Switch
The create_power_switch command creates a virtual instance of power switch in the
scope of the specified power domain. The power switch has at least one input supply port
and one output supply port. When the switch is off, the output supply port is shut down and
has no power. The syntax of the create_power_switch command is as follows:

The create_power_switch command lets the tool know that a generic power switch
resides in the design at a specific scope or level of hierarchy. The off state of the power
switch output is used in the power state table Power Compiler does not perform power switch
insertion, but the information is passed to IC Compiler for implementation.

Following is a simple power switch definition for the power switch in Figure 12-4 on
page 12-17.

create_power_switch SW1 \
 -domain PD_TOP \
 -output_supply_port {SWOUT VDD1g} \
 -input_supply_port {SWIN1 VDD1} \
 -control_port {CTRL swctl} \
 -on_state {ON VDD1 {!swctl}}
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-19
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Domains and the Supply Network in UPF 12-19

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Adding Port State Information to Supply Ports
The add_port_state command adds state information to a supply port. This command
specifies the name of the supply port and the possible states of the port. The first state
specified is the default state of the supply port. The port name can be a hierarchical name.
Each state is specified as a state name and the voltage level for that state. The voltage level
can be specified as a single nominal value, set of three values (minimum, nominal, and
maximum), or 0.0, or the keyword off to indicate the off state. The state names are also used
to define all possible operating states in the Power State Table. The syntax of the
add_port_state command is as follows:

add_port_state \
 -state {name nom| min nom max | off} \
 supply_port_name

A power switch supply port is considered a supply port because it is connected by a supply
net, so it can be specified as the supply port in the add_port_state command. Note that
supply states specified at different supply ports are shared within a group of supply nets and
supply ports directly connected together. However, this sharing does not happen across a
power switch.

Example 12-1 shows the definition of states for the power nets:

Example 12-1 Defining the States of the Power Nets
add_port_state header_sw/VDD \
 -state {HV 0.99} \
 -state {LV 0.792} \
 -state {OFF off}

Example 12-2 shows the definition of states for the ground nets:

Example 12-2 Defining the States of the Ground Nets
add_port_state footer_sw/VSS \
 -state {LV 0.0} \

 -state {OFF off}

Defining Multivoltage Design Strategies

To make the best use of multivoltage implementation techniques, the design requires
fundamental enhancements, such as the use of special cells to handle the voltage
differences and multiple power supplies. In UPF, insertion of the special cells is based on
strategies that you define for each type of special cell.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-20

Power Compiler User Guide Version E-2010.12-SP2
When defining strategies on power domains, the strategy names have to be unique in the
scope or the level of hierarchy in which the strategies are defined. Similarly, when Power
Compiler inserts a special cell in the design, it assigns an instance name to the new cell by
adding a prefix or a suffix to the name of the object that is being isolated or level-shifted -
that can be a port, pin, or net. Use the UPF name_format command to specify the prefix or
suffix to be used for the level-shifter, isolation cells and retention cells.

If the name generated conflicts with another previously defined name in the same name
space, the generated name is further extended by an underscore character followed by a
positive integer. An empty string is a valid value for any prefix or suffix option. When the
prefix and suffix are both an empty string, only the underscore and the number string
combination are used as a suffix to create the new instance name for the isolation or
level-shifter cell.

The following section describes how you specify the strategies for the various types of
special cells that are required in multivoltage design implementation:

• Defining the Level-Shifter Strategy

• Defining the Isolation Strategy

• Defining the Retention Strategy

Defining the Level-Shifter Strategy
The level-shifter commands let you specify the strategy for inserting level-shifter cells
between power domains that operate at different voltages. Level shifters are also inserted
automatically by the tool during execution of the compile or compile_ultra commands.

Power Compiler inserts the level-shifter cells only on the power domain boundaries. For
level-shifter cells to be inserted, a power domain must be defined on the logic hierarchy of
the design. Boundaries of power domains that operate at different voltages are the possible
locations of level-shifter cells.

You use the set_level_shifter command to specify a strategy for inserting level shifters
during the compile_ultra command. Power Compiler inserts level shifters on signals that
have sources and sinks that operate at different voltages, following the specified strategy. If
a level-shifter strategy is not specified for a particular power domain, the default level-shifter
strategy applies to all elements in the power domain. The syntax of the set_level_shifter
command is as follows:

set_level_shifter strategy_name
 -domain domain_name
 [-elements port_pin_list]
 [-applies_to inputs | outputs | both]
 [-threshold float]
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-21
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-21

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
 [-rule low_to_high | high_to_low | both]
 [-location self | parent | automatic]
 [-no_shift]

The -elements option specifies a list of ports and pins in the domain to which the strategy
applies, overriding any -threshold or -rule settings.

The -threshold option defines how large the voltage difference must be between the driver
and sink before level shifters are inserted, overriding any such specification in the cell library.
The -rule option can be set to low_to_high, high_to_low or both. If low_to_high is
specified, signals going from a lower voltage to a higher voltage get a level shifter when the
voltage difference exceeds the -threshold value. Similarly if high_to_low is specified,
signals going from higher voltage to lower voltage get a level shifter when the voltage
difference exceeds the -threshold value. The default behavior is both, which means that
a level-shifter cell is inserted in either situation.

The -location option specifies where the level-shifter cells are placed in the logic
hierarchy:

• self - The level-shifter cell is placed inside the domain whose interface port is being
shifted.

• parent - The level-shifter cell is placed in the parent of the domain whose interface port
is being shifted.

• automatic - Power Compiler is free to choose the appropriate location. This is the default
behavior.

Figure 12-5 Level-Shifter Insertion on Power Domain Boundaries

Specifying a strategy does not force a level-shifter cell to be inserted unconditionally. Power
Compiler uses the power state table and the specified rules, such as threshold, to determine
where level shifters are needed. When the tool identifies a potential voltage violation, it tries
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-22

Power Compiler User Guide Version E-2010.12-SP2
to resolve the violation by inserting multiple level-shifters or a combination of level-shifter
and isolation cells. As shown in Figure 12-5, when the tool finds a global net that has an
isolation constraint, it inserts a level-shifter and an enable level-shifter cell. The tool issues
a warning message if it determines that a level shifter is not required.

The following strategies have decreasing order of precedence, irrespective of the order in
which they are executed:

set_level_shifter -domain -elements
set_level_shifter -domain -applies_to <input/output>
set_level_shifter -domain (with optional -applies_to both)

It is an error to specify a strategy of the same precedence level explicitly on the same power
domain or design elements as the previous strategy specification.

Associating Specific Library Cells With the Level-Shifter Strategy
When you specify the level-shifter strategy for a power domain, by default the tool maps the
level-shifter cells to any suitable level-shifter cells in the technology library. Use the
map_level_shifter_cell command to limit the set of library cells to be used for the
specified level-shifter strategy. This command does not force the insertion of the level-shifter
cells. Instead, when the tool inserts the level-shifter cell, it chooses the library cells that are
specified with the -lib_cells argument of the map_level_shifter_cell command. This
command has no effect on instantiated level-shifter cells that have a dont_touch attribute
set on them. For more details, see the command man page.

Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets
By default, Power Compiler does not insert level-shifter cells on clock nets. Set the
auto_insert_level_shifters_on_clocks variable to specific clock nets, for the tool to
insert level-shifter cells. Set this variable to all, for the tool to insert level-shifter cells on all
clock nets that need level shifters.

Similarly, by default Power Compiler does not insert level-shifter cells on ideal nets.
However, you can allow the tool to insert level-shifter cells on ideal nets by setting the
mv_insert_level_shifters_on_ideal_nets variable to all. The default value of this
variable is an empty string (“”).
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-23
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-23

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Defining the Isolation Strategy
Use the set_isolation command to define the isolation strategy for a power domain and
the elements in the power domain where the strategy is applied. Definition of an isolation
strategy contains specification of the enable signal net, the clamp value, and the location:
inputs, outputs, or both. The set_isolation command has the following syntax:

set_isolation isolation_strategy_name
 -domain power_domain
 [-isolation_power_net isolation_power_net]
 [-isolation_ground_net isolation_ground_net]
 [-isolation_supply_set isolation_supply_set]
 [-source source_supply_set_name]
 [-sink sink_supply_set_name]
 [-diff_supply_only true | false]
 [-clamp_value 0 | 1 | latch]
 [-applies_to inputs | outputs | both]
 [-elements objects]
 [-no_isolation]

-isolation_power_net

Specifies the isolation power net to be created for the isolation cells.

The isolation power and ground nets must operate at the same voltage as the primary
power and ground nets of the power domain where the isolation cells will be located.

-isolation_ground_net

Specifies the isolation ground net to be created for the isolation cells.

If you specify only the -isolation_power_net argument, the primary ground net is used
as the isolation ground supply. If you specify only the -isolation_ground_net
argument, the primary supply net is used as the isolation power supply. If you use both
arguments, the specified supply nets are used as the isolation power and ground nets.
The isolation power and ground nets are automatically connected to the implicit isolation
circuit.

-isolation_supply_set

Specifies the power and ground functions of the same supply set that should be used as
the isolation power and isolation ground nets respectively. The -isolation_supply_set
option is mutually exclusive with the -isolation_power_net and the
-isolation_ground_net options.

When you specify the power and ground supply for the isolation strategy, using the power
and ground functions of a supply set, either by using the -isolation_supply_set option
or by using the -isolation_power_net and the -isolation_ground_net options, the
power and ground functions should belong to the same supply set. Otherwise, Power
Compiler issues UPF-205 error message as follows:

Error: Power and ground nets must belong to the same supply set
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-24

Power Compiler User Guide Version E-2010.12-SP2
(UPF-205)

When you do not specify the -isolation_supply_set option, but you have defined the
supply set handle as default_isolation while creating the power domain, Power
Compiler uses the default isolation. For more details on defining supply sets while
creating power domains, see “Defining Supply Sets While Creating Power Domains” on
page 12-15.

-applies_to

Specifies the parts of the power domain that are isolated: inputs, outputs or both. The
default is outputs.

-source

Filters the set of elements specified with the set_isolation command. This option
filters the ports connected to a net that is driven by the supply set.

-sink

Filters the set of elements specified with the set_isolation command. This option
filters the ports driving a net that fans out to the logic driven by the supply set.

When you specify either the -sink or the -source option, but not both, the isolation is
applied to all the inputs and output ports of the power domain. When both the options are
specified, isolation is applied to only those ports that have the specified source and sink.

-diff_supply_only

Determines the isolation behavior between the driver and the receiver supply sets or
supply nets. The default value is false. Power Compiler does not restrict the insertion of
isolation cell in the path from the driver to receiver.

When the -diff_supply_only option is set to true, and the same supply set connects
the driver and the receiver of a port on the interface of the reference power domain,
isolation cell is not added in the path from the driver to the receiver.

Note:
Power Compiler does not support using the -source, -sink, and
-diff_supply_only options simultaneously.

-clamp_value

Specifies the constant value in the isolation output: 0, 1, latch. The latch setting causes
the value of the non-isolated port to be latched when the isolation signal becomes active.

Note:
Power Compiler does not support the value z for the -clamp_value option. The only
supported values are 0,1, and latch.

-elements

Specifies the elements for isolation, in cases where there are multiple isolation strategies
within a given power domain. The listed elements (input or output ports on the domain
boundary) must be within the specified power domain. If the -elements option directly
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-25
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-25

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
specifies a port name (not implicitly, by specifying the port’s instance or an ancestor of
that instance), then the isolation strategy applies to that port regardless of whether that
port’s mode matches the one specified with the -applies_to option. Without the
-elements option, the isolation strategy applies to the whole power domain.

-no_isolation

Specifies that the elements in the -elements list should not be isolated.

At least one of the -isolation_power_net or -isolation_ground_net or
-isolation_supply_set arguments must be specified unless -no_isolation option is
used

Note:
The -sink and the -source options are mutually exclusive with the -diff_supply_only
option.

Although the power state table can potentially reduce the number of isolation cells required,
isolation synthesis is entirely based on directives set with the set_isolation and
set_isolation_control commands.

Power Compiler performs certain optimizations on isolation circuits, that do not affect the
functionality. For example, if you have signals going from block A to block B, you specify
output isolation on block A (in the parent) and input isolation on block B (in the parent). If the
strategy results in two back-to-back isolation cells with no fan out in between, Power
Compiler merges the isolation cells. It can merge the isolation cells based on the enable
signal, power or ground signals.

Every isolation strategy defined by a set_isolation command must have a corresponding
set_isolation_control command, unless the strategy is -no_isolation.

Order of Precedence of Isolation Strategies

The isolation strategies have the following decreasing order of precedence, irrespective of
the order of execution:

1. Pins or ports specified with the -elements option.

2. Domain-level strategy matching the -source, -sink and -applies_to options.

3. Domain-level strategy matching the -source, -applies_to inputs, and
-diff_supply_only options; or the -sink, -applies_to outputs, and
-diff_supply_only options.

4. Domain-level strategy specified using the -source and -applies_to inputs or by using
the -sink and -applies_to outputs.

5. Domain-level strategy matching the –source, –applies_to outputs, and
–diff_supply_only or the -sink, –applies_to inputs, and –diff_supply_only
options.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-26

Power Compiler User Guide Version E-2010.12-SP2
6. Domain-level strategy matching the -source and -applies_to outputs or by using the
-sink and -applies_to inputs options.

7. Domain-level strategy specified with the -applies_to both, -diff_supply_only and a
matching -source or -sink options.

• For the input pins of the domain, the -source option has higher precedence than the
-sink option.

• For the output pins of the domain, the -sink option has higher precedence than the
-source option.

8. Domain-level strategy specified with the -applies_to both and a matching -source or
-sink option.

• For the input pins of the domain, the -source option has higher precedence than the
-sink option.

• For the output pins of the domain, the -sink option has higher precedence than the
-source option.

9. Domain-level strategy specified with the -applies_to and -diff_supply_only options
but without using the -source or -sink option.

10. Domain-level strategy specified with the -applies_to option but without using the
-source or -sink option.

set_isolation_control

The set_isolation_control command allows the specification of the isolation control
signal and sense separately from the set_isolation command. The command identifies
an existing isolation strategy and specifies the isolation control signal for that strategy. The
syntax of the set_isolation_control command is as follows:

set_isolation_control isolation_strategy_name
 -domain power_domain
 -isolation_signal isolation_signal
 [-isolation_sense 0 | 1]
 [-location self | parent]

The tool can identify isolation cells in the power domain across the design hierarchy and
associate them with UPF strategies. To identify the isolation cells, the tool uses the location
value you specify using the -location option of the set_isolation_control command.
When the value you specify is self, the tool starts the search from the port on the boundary
of the power domain and traverses inside the power domain until it encounters either a cell,
a multiple fanout net, or the boundary of another power domain. When the location you
specify is parent, the tool starts the search from the port on the boundary of the power
domain and traverses outside the power domain until it encounters a cell, a multiple fanout
net, or the boundary of another power domain.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-27
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-27

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
When the tool encounters an isolation cell that is not already associated with an isolation
strategy, it associates the cell with an appropriate isolation strategy. This association is
based on the values you specified with the -clamp_value option of the set_isolation
command and the -isolation_sense option of the set_isolation_control command.
If the cell encountered is not an isolation cell, the tool does not treat the port as an isolation
port, and during the next optimization step, the tool inserts an isolation cell.

The -isolation_sense option specifies the logic state of the isolation control signal that
places isolation cells in the isolation mode. The possible values for this option are 0 or 1. The
default is 1. The isolation signal specified by the -isolation_signal option can be for a net
or a pin or port, with the net having higher precedence. The isolation signal need not exist in
the logic hierarchy where the isolation cells are to be inserted; the synthesis or
implementation tool can perform port-punching as needed to make the connection.
Port-punching means automatically creating a port to make a connection from one
hierarchical level to the next. These punched ports are not considered for isolation or
level-shifting, even though after the port creation, these ports reside within the coverage of
an isolation or level-shifter strategy.

Existing ports are isolated and level-shifted according to the applicable isolation and
level-shifter strategy, even if they reside on an always-on path, a logic path marked as
always-on relative to the receiving end.

Mapping Isolation Strategies to Specific Library Cells
When you define an isolation strategy, by default the tool associates the isolation strategy
with any suitable isolation cell in the technology library. Using the map_isolation command
you can associate a specified set of library cells with the isolation strategy. The
map_isolation_cell command can also be used to associate normal cells used as
isolation cells with the isolation strategy.

When designs contain instantiated isolation cells that are associated with an isolation
strategy, the map_isolation_cell command remaps these library cells to the cells
specified with the -lib_cells argument of the command. If the instantiated isolation cells
have dont_touch attribute set on them, the command does not remap these cells. The
command has no impact on the instantiated isolation cells that are not, or cannot be
associated with an isolation strategy. For more details see the command man page.

Setting Isolation Attributes on Ports
Power Compiler supports the set_port_attributes command to specify a collection of
ports where the attributes must be set for the source or sink, for the power domains, when
used with the set_isolation command. The set_port_attributes command has the
following syntax:

set_port_attributes
 -ports port_list
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-28

Power Compiler User Guide Version E-2010.12-SP2
 -attribute name value

-ports

Specifies a collection of ports that are set as the source or sink for the set_isolation
command.

-attributes

Specifies the name and value of an attribute that is set on the ports. The name can be
either iso_source or iso_sink. The value is a list of supply sets or supply-net pairs. The
iso_source attribute is set on the input ports and the iso_sink attribute is set on the
output ports. For more details, see “Characterization of Supply Sets” on page 12-56.

Setting Isolation Attributes on Cells
Power Compiler supports the set_design_attributes command to specify a collection of
cells where the attributes must be set for the source or sink, for the power domains, when
used with the set_isolation command. The set_design_attribute command has the
following syntax:

set_design_attributes
 [-elements element_list]
 -attribute name value

-elements

Specifies a collection of cells or supply sets, where the attributes must be set.

-attributes

Specifies the name and value of the attributes to be set on the cells specified with the
-elements option. The name is external_supply_map, derived_external, and
merge_domain. The value is the reference name of a supply set or a supply-net pair.
When the -elements option is not used, the attribute is set on the current top-level
design.

The source or sink property of a net for isolation corresponds to all net segments connected
together, including the nets that connect to the level-shifters and isolation cells. The dangling
isolation and level-shifter cells are also treated as source or sink.

Isolation and Level-Shifter Cells Connected Back-to-Back
Power Compiler supports eight different combinations of isolation and level-shifter cells
connected back to back, on the same side of the power domain boundary. It is required that
the source power is more or equally always-on than the destination power. When an enable
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-29
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-29

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
level-shifter cell is available in the library, the tool replaces the level-shifter and isolation cell
combination with an enable level-shifter cell. Table 12-1shows each of the combinations of
the isolation and level-shifter locations supported by Power Compiler.

Defining the Retention Strategy
The retention commands specify the strategy for inserting retention cells inside the
power-down domains.

The set_retention command specifies which registers in the power-down domain are to
be implemented as retention registers and identifies the save and restore signals for the
retention functionality.

The syntax of the set_retention command is as follows:

set_retention retention_strategy_name
 -domain power_domain
 [-retention_power_net retention_power_net]
 [-retention_ground_net retention_ground_net]
 [-retention_supply_set retention_supply_set]
 [-no_retention]
 [-elements objects]

The -elements option specifies the objects in the specified power domain to which the
retention strategy applies. The objects can be hierarchical cells, leaf-level cells, HDL blocks,
and nets. If a design element is specified, then all registers within the design element

Table 12-1 Combination of Isolation and Level-Shifter Cells Connected Back to Back

Target power
domain

Isolation
location

Level-shifter
location

Isolation
power

Replaced by an enable
level-shifter cell?

source self self source no

source self self destination yes

source parent parent source no

source parent parent destination yes

destination parent parent source no

destination parent parent destination yes

destination self self source no

destination self self destination yes
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-30

Power Compiler User Guide Version E-2010.12-SP2
acquire the specified retention strategy. If a process is specified, then all registers inferred
by the process acquire the specified retention strategy. If a register, signal, or variable is
specified and that object is a sequential element, then the implied register acquires the
specified retention strategy. Any specified register, signal, or variable that does not infer a
sequential element is not affected by this command. If the -elements option is not used, the
retention strategy is applied to all unmapped sequential cells in the specified power domain
unless the -no_retention option is used. Power Compiler marks the size_only attribute
on all the elements on which it applies the retention strategy.

The -retention_power_net and -retention_ground_net options specify the supply
nets to be used as the retention power and ground nets. The retention power and ground
nets are automatically connected to the implicit save and restore processes and shadow
register. If you specify only the -retention_power_net option, the primary ground net is
used as the retention ground supply. If you specify only the -retention_ground_net
option, the primary supply net is used as the retention power supply.

The -retention_supply_set option specifies the supply set whose power and ground
functions have to be associated as the retention power and retention ground nets
respectively. If you specify the -retention_supply_set option, the power and ground
functions of the same supply set should be used as the retention power and retention
ground nets respectively. If the power and ground functions specified belong to different
supply sets, Power Compiler issues an error message. The -retention_supply_set
option is mutually exclusive with the -retention_power_net and
-retention_ground_net options.

When specific objects in the power domain do not require retention capabilities, you can
specify them with the -no_retention option. Power Compiler maps these objects to library
cells that do not have retention capability or functionality.

The following strategies have decreasing order of precedence, irrespective of the order in
which they are executed:

set_retention -domain -elements
set_retention -domain

The power and ground nets of the retention registers can operate at voltage levels different
from the primary and ground supply voltage levels of the power domain where the retention
cell is located.

Every retention strategy defined by a set_retention command must have a corresponding
set_retention_control command. The set_retention_control command allows the
specification of the retention control signal and sense separately from the set_retention
command. The command identifies an existing retention strategy and specifies the save and
restore signals and senses for that strategy. The syntax of the set_retention_control
command is as follows:
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-31
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-31

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
set_retention_control retention_strategy_name
 -domain power_domain
 -save_signal { save_signal high | low }
 -restore_signal { restore_signal high | low }

The -save_signal setting specifies the existing net, port, or pin in the design used to save
data into the bubble register prior to power-domain; and the logic state of the signal, either
low or high, that causes this action to be taken.

Similarly, the -restore_signal setting specifies the existing net, port, or pin in the design
used to restore data from the bubble register prior to power-up; and the logic state of the
signal, either low or high, that causes this action to be taken.

Each control signal can be either a net or a pin or port, with net having higher precedence.
The retention signal need not exist in the logic hierarchy where the retention cells are to be
inserted. The synthesis or implementation tools perform port-punching, as needed, to make
the connection. Port-punching means automatically creating a port to make a connection
from one hierarchical level to the next. These punched ports are not considered for isolation,
even though after the port creation, these ports reside within the coverage of an isolation
strategy.

Mapping Retention Strategies to Specific Library Cells
The map_retention_cell command provides a mechanism for constraining the
implementation choices for retention registers. The command must specify the name of an
existing retention strategy and power domain. The syntax of the map_retention_cell
command is as follows:

map_retention_cell retention_strategy_name
 -domain power_domain
 [-lib_cells lib_cells]
 [-lib_cell_type lib_cell_type]

The -lib_cells option specifies a list of target library cells to be used for retention
mapping.

The -lib_cell_type option directs the tool to select a retention cell that has the specified
cell type in the implementation model. Note that this option setting does not change the
simulation semantics specified by the set_retention command.

The retention_cell attribute on the library cells in the target library defines the retention
styles of the library cells.

Retention Strategy and Clock-Gating Cells
When you define retention strategy for a power domain, by default, Power Compiler does not
apply the retention strategy to the clock-gating cells in the power domain. The tool does not
issue warning or information message. However, if you set the
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Multivoltage Design Strategies 12-32

Power Compiler User Guide Version E-2010.12-SP2
upf_use_additional_db_attributes variable to false, the tool issues a UPF-117
warning message for every power domain that has a retention strategy defined and contains
clock-gating cells. Formal verification also flags a failure in this situation. The following
example shows the UPF-117 warning message:

Warning: The retention strategy RET_1 for power domain PD_1 has not been

applied to clock gate cells in the power domain. (UPF-117)

Defining Power States for the Components of a Supply Set

Power states are attributes of a supply set. The supply nets of a supply set can be at different
power states at different times. Using the add_power_state command, you can define one
power state for all those supply nets of the supply set that always occur together. For each
power state of the supply set, you must use one add_power_state command. By default,
the undefined power states are considered illegal states.

Use the -state option to specify the name of the power state of the supply set.

Use the -supply_expr option to specify the power state and the voltage value for the
various supply net components of the supply set as shown in the following example:

add_power_state supply_set_name \
 -state state_name \
 -supply_expr { supply_net_function == \
 {legal_state, [voltage_1, \
 [voltage_2, \
 [voltage_3]]]}}

The expression specified with the -supply_expr option is used to determine the legal
states of the supply nets of the supply set during the synthesis of the design. You can specify
only the following allowed states:

• FULL_ON

• OFF

For each state of the supply net component you can specify up to three voltage values which
are floating point numbers. When the state is FULL_ON you must specify at least one voltage
value.

The voltage values that you specify with power state are interpreted by the tool as follows:

• When you specify a single voltage value, this value is considered as the nominal voltage
of the associated state.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power States for the Components of a Supply Set 12-33
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power States for the Components of a Supply Set 12-33

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• When you specify two voltage values, the first value is considered the minimum voltage
and the second as the maximum voltage. The average of the two values is considered as
the nominal voltage of the power state.

• When you specify three voltage values, the first value is considered as the minimum
voltage, the second as the nominal and the third as the maximum voltage of the power
state.

Note:
The tool issues an error if the second value is less than the first and the third value is
less than the second.

The add_power_state command supports the-logic_expr option which is parsed but
ignored by Power Compiler.

The following example shows the usage of the add_power_state command to define the
power states HVp and HVg for the components of the supply set, PD1_primary_supply_set:

dc_shell> add_power_state PD1_primary_supply_set -state HVp \
 { -supply_expression {power == {FULL_ON, 1.08, 2.05, 3.0}}}

dc_shell> add_power_state PD1_primary_supply_set -state HVg \

 { -supply_expression {ground == {FULL_ON, 0.0}}}

Defining Power State Tables

A power state table (PST) defines the legal combination of states that can exist
simultaneously during the operation of the design. A PST is a set of power states of a design
in which each power state is represented as an assignment of power states to individual
power nets. A PST of a design captures all the possible operational modes of the design in
terms of power supply levels. Given a PST, a power state relationship (including voltage and
relative always-on relations) can be inferred between any two power nets. The PST is used
by the synthesis tool for analysis, synthesis, and optimization of the multivoltage design.

Creating Power State Table
The create_pst command creates a new power state table and assigns a name to the
table. The command lists the supply ports or supply nets in a particular order. The
add_port_state defines the name of the possible states for each supply port.

The power switch supply ports are considered supply ports because they are connected by
supply nets, so they can be listed as supply nets in create_pst command. A supply port
and a supply net can have the same name, even when they are unconnected. If such a
name is listed in the create_pst command, it is assumed to represent the supply port and
not the supply net. The syntax of the create_pst command is as follows:
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power State Tables 12-34

Power Compiler User Guide Version E-2010.12-SP2
create_pst table_name -supplies list

Defining the States of Supply Nets
The add_pst_state command defines the states of each of the supply nets for one possible
state of the design. The command must specify the name of the state, the name of the power
state table previously created by the create_pst command, and the states of the supply
ports in the same order as listed in the create_pst command.

The listed states must match the supply ports or nets listed in the create_pst command in
the corresponding order. For a group of supply ports and supply nets directly connected
together, the allowable supply states are derived from the shared pool of supply states
commonly owned by the members of the group.

The following example creates a power state table, defines the states of the supply ports,
and lists the allowed power states for the design.

create_pst pt -supplies { PN1 PN2 SOC/OTC/PN3, FSW/PN4 }
add_port_state PN1 -state { s88 0.88 }
add_port_state PN2 -state { s88 0.88 } -state { s99 0.99 }
add_port_state SOC/OTC/PN3 -state { s88 0.88 } -state { pdown off }
add_port_state FSW/PN4 -state { s0, 0.0 } -state {pdown off }
add_pst_state s1 -pst pt -state { s88 s88 s88 s0 }
add_pst_state s2 -pst pt -state { s88 s88 pdown s0 }
add_pst_state s3 -pst pt -state { s88 s99 pdown s0}

add_pst_state s4 -pst pt -state { s88 s99 s88 pdown }

Using State of the Supply Sets in Power State Tables
You can use the component supply nets of a supply set to define a Power State Table. This
is because, the state of every component of a supply set can be unambiguously determined,
when you define a supply expression for the supply set.

Multivoltage Power Constraints

Power Compiler supports commands to specify the multivoltage power constraints. These
are described in the following sections:

• Specifying the Operating Voltage

• Exceptions to the Mapping of the UPF Constraints
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Multivoltage Power Constraints 12-35
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Multivoltage Power Constraints 12-35

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Specifying the Operating Voltage
Use the set_operating_condition command to set the operating conditions for the top
level of your multivoltage design. To specify the maximum and minimum operating voltage
for the supply nets or internal supply ports, use the set_voltage command.

The set_voltage command has the following syntax:

set_voltage
 [-min min_voltage]
 -object_list list_of_net_or_ports
 max_voltage

-min

Specifies the operating voltage for the minimum or best case.

-object_list

Specifies the list of supply nets or internal supply ports.

max_voltage

Specifies the maximum voltage.

You can use the set_voltage command to set the operating voltage on the internal PG pins
of the macro cells with fine-grained switches. If you do not set the voltage on the internal PG
pin of the macro cell, the value of the voltage_name attribute of the PG pin is used as the
operating voltage. For details about the library requirements for macro cells with fine-grained
switches, see “Fine-Grained Switch Cell Support” on page 12-7.

All supply nets including the ground, must be assigned a operating voltage value. If any
supply net does not have an assigned operating voltage, Power Compiler issues UPF-057
error message during the execution of the compile_ultra command. Before compiling the
design, use the check_mv_design -power command to ensure that operating voltages are
defined for all the supply nets. For more details, see “Debugging Commands for Multivoltage
Designs” on page 12-48

The operating voltage that you have already set cannot be removed. However, you can
override the existing settings by using the set_voltage command again.

Exceptions to the Mapping of the UPF Constraints
The UPF constraints are mapped during the execution of the compile_ultra command.
However following are the two exceptions:

• Power switches are not mapped during the compilation process because Design
Compiler does not use power switches. Power Compiler passes on power switch
commands in the input UPF file to its output UPF file.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Multivoltage Power Constraints 12-36

Power Compiler User Guide Version E-2010.12-SP2
• If you have not used the map_retention_cell command before compiling the design,
the retention registers are not mapped to the sequential elements.

Handling Always-On Logic

Multivoltage designs typically have power domains that are shut down and powered up
during the operation of the chip while other power domains remain powered up. The control
nets that connect cells in an always-on power domain to cells within the shut-down power
domain must remain on during shutdown. These paths are referred to as always-on paths.

Marking Pass-Gate Library Pins
In its current implementation, the tool has the ability to prevent always-on cells from
connecting to cells with pass-gate inputs. An always-on buffer should not drive a gate that
has pass transistors at the inputs (pass-gate). Pass-gate input cells should be driven by a
standard cell in a shut-down power domain. Therefore, if your library contains any of these
cells, you must mark them as pass-gates in each session.

For example, to mark pin A of the multiplexer cell MUX1, run the following command:

dc_shell> set_attribute [get_lib_pins lib_name/MUX1/A] pass_gate true

Marking Library Cells for Always-On Optimization
Design Compiler performs always-on buffering only when the target library contains an
always-on inverter and an always-on buffer. To use a specific library cell in the optimization
of always-on paths within the shut-down power domains, you mark the cell with the
always_on attribute. The tool uses only always-on cells to optimize the always-on paths
within the shut-down power domains. The cells that are not marked as always-on are used
outside the shut-down power domains.

Note:
When you set the always-on attribute on a library cell, the tool does not use that library
cell for optimization of other types of paths. If you want to use a library cell in both
always-on paths and shut-down paths, you must set the always-on attribute only on the
instances of the library cell that are present in the shut-down power domains.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Handling Always-On Logic 12-37
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Handling Always-On Logic 12-37

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Automatic Always-On Optimization
Power Compiler performs automatic constraining, marking and optimization of always-on
nets, including the feedthrough nets, by default. The tool uses the related supply net of the
load or the driver pin as the supply net for the inserted always-on buffers or inverters. The
tool also ensures that no additional isolation or level-shifting violations are introduced by the
automatic always-on synthesis.

To select the supply nets for the inserted buffers and inverters used in the always-on
synthesis, the tool applies the following rules, in the specified order:

1. For a load net, when the related supply net of the load is in the same power domain as
the net, the related supply net of the load is used.

2. For a driver net, when the related supply net of the driver is in the same power domain as
the net, the related supply net of the driver is used.

3. For feedthrough nets with multiple choices of nets, related supply net of the load has
precedence over the related supply net of the driver.

The tool marks the selected nets based on the following rules:

• When the related supply net is in the same power domain as the net and it is not the
primary power net of the power domain, the tool marks the net as always-on.

• When the related supply net is not in the same power domain as the net, the tool marks
the net as dont_touch.

• When the related supply net is in the same power domain as the net, and it is the primary
power net of the power domain, the tool inserts a regular buffer or inverter, and the net is
not specifically marked.

Performing Always-On Optimization on Top-Level Feedthrough
Nets
To perform always-on optimization on top-level feedthrough nets, you must specify the
related supply net information on the output port that is driven by the feedthrough net. Power
Compiler derives the power and ground net information for the always-on buffering based on
the related supply net that you specify for the output port driven by the feedthrough net. If the
tool detects a level-shifter violation or an isolation violation on a feedthrough net, it sets a
dont_touch attribute on the feedthrough net. This is done to prevent the shifting of the
violation from one power domain to another.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Handling Always-On Logic 12-38

Power Compiler User Guide Version E-2010.12-SP2
Support for Disjoint Voltage Area and Always-On Synthesis
Power Compiler can insert always-on buffers on long nets that span physically distant
voltage areas. Consider a long net as shown in Figure 12-6 on page 12-39. Logically, the net
and the buffer are in the same hierarchy Mid, which is an always-on domain. However,
physically, the net and the buffer are in two disjoint voltage areas.

Figure 12-6 Always-On Buffer Insertion in Disjoint Voltage Areas

If your library supports dual rail always-on buffers and the primary supply defined in the
power domain for subdesign Mid is available in the power domain for Top, Power Compiler
inserts dual rail always-on buffers in the subdesign Mid that physically belongs to the Top
design.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Handling Always-On Logic 12-39
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Handling Always-On Logic 12-39

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Power Compiler follows these steps to support always-on synthesis across disjoint voltage
areas:

1. Create a dummy logic hierarchy inside the existing hierarchy Mid as shown in Figure 12-7
on page 12-40.

2. Create two hierarchical ports P1 and P2 on the dummy hierarchy and connect the buffer
inside the dummy hierarchy to these ports.

3. Associate the dummy hierarchy to the already existing voltage area, to which the buffer
belongs.

Figure 12-7 Creating Dummy Hierarchy to Support Always-On Buffer Insertion in Disjoint
Voltage Areas

The creation of the dummy logic hierarchy and port punching on the dummy hierarchy allows
the tool to perform always-on synthesis and legalization of always-on synthesis. The tool
also supports associating the dummy hierarchy to the default voltage area as well if the
buffer belongs to the default voltage area.

Using Basic Gates as Isolation Cells

When your target library does not contain a complete set of isolation cells, you can use the
basic two-input AND, OR, NAND, and NOR gates as isolation cells. This flexibility allows you
to use these basic cells for their usual logic as well as for isolation logic. Only the following
types of basic gates can be used as isolation cells:

• Two-input AND, OR, NAND, and NOR gates

• Two-input AND, OR, NAND, and NOR gates with one of the inputs inverted

To enable this feature, you must set the mv_use_std_cell_for_isolation variable to
true. You must then set the following attributes using the set_attribute command.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Using Basic Gates as Isolation Cells 12-40

Power Compiler User Guide Version E-2010.12-SP2
• Set the library cell-level attribute ok_for_isolation to true on the library cell.

This attribute denotes that the library cell can be used as a standard logic cell as well as
an isolation cell. The following example shows how to set the ok_for_isolation
attribute on the library cell A:

set_attribute [get_lib_cells lib_name/A] ok_for_isolation true

• Set the isolation_cell_enable_pin attribute to true on the library cell pin. This
attribute specifies the pin to be used as the control pin of the isolation cell.

The following example script shows how to set the isolation_cell_enable_pin
attribute to true on the in pin of the library cell A:

dc_shell> set_attribute [get_lib_pins lib_name/A/in] \
isolation_cell_enable_pin true

Inserting the Power Management Cells

Power management cells such as level shifters and isolation cells are not usually part of the
original design description. They are inserted during the logic synthesis flow. Buffer-type
level shifters can be inserted either automatically as part of compilation or manually by using
specific commands that insert level shifters. Similarly Isolation cells and enable-type level
shifters can be instantiated at the RTL level of the design description or inserted manually
by using commands that insert isolation cells.

You can also insert these cells by using the insert_mv_cells command. This command
use the strategies defined in the UPF file, when inserting these cells. Using the various
options of the insert_mv_cells command, you can choose to insert only the isolation cells
or only the level shifter cells, or both. By default, the command inserts both isolation and
level-shifter cells. You can use this command on both RTL and gate-level designs.

The insert_mv_cells command inserts the power management cells in the following
order:

1. Isolation cells

2. Level-shifter cells

3. Enable level-shifter cells. Based on the requirement, replace the isolation cells by enable
level-shifter cells.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Inserting the Power Management Cells 12-41
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Inserting the Power Management Cells 12-41

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Table 12-2 summarizes the command option and command sequences that can result in the
insertion of enable level-shifter cells.

Note:
You must uniquify your design by using the uniquify command before inserting the
power management cells. Otherwise, Power Compiler issues the OPT-124 error
message as follows:

Error: Use the uniquify command to fix multiply instantiated designs.

(OPT-124)

Writing Out the Power Information

After completing the synthesis, the power information updated by the tool during synthesis
can be written out with the save_upf command. This UPF file written by Design Compiler is
referred to as the UPF’ file, to distinguish it from the UPF file that you read in to synthesize
the design. The UPF’ file is used as input to the downstream tools, such as IC Compiler,
PrimeTime, PrimeTime PX, and Formality.

The additional information in the UPF’ file are,

• A comment on the first line, as shown in the following example:

#Generated by Design Compiler(E-2010.12) on Thu Oct 28 14:26:58 2010

Table 12-2 Command Sequences and Enable Level-Shifter Cell Insertion

Command option and sequence Enable level-shifter cell inserted?

insert_mv_cells -all yes

insert_mv_cells -isolation -level_shifter yes

insert_mv_cells -isolation
insert_mv_cells -level_shifter

yes

insert_mv_cells -level_shifter
insert_mv_cells -isolation
insert_mv_cells -level_shifter

yes

insert_mv_cells -level_shifter no

insert_mv_cells -isolation no

insert_mv_cells -level_shifter
insert_mv_cells -isolation

no
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Writing Out the Power Information 12-42

Power Compiler User Guide Version E-2010.12-SP2
• Explicit power connections to special cells such as level shifters and dual supply cells.

• Additional UPF commands specified at the command prompt in the Design Compiler
session.

If you specify UPF commands at the command prompt, along with the RTL file, update
the UPF file with these commands. This update is required for Formality to verify the
design successfully.

Preserving the Command Order in the UPF’ File
To improve the readability and clarity of the UPF’ file, you can use the mv_upf_tracking
variable. When the mv_upf_tracking variable is set to true, the tool

• Writes the user-specified UPF commands and tool inserted UPF commands in separate
sections.

• Lists the commands in the user-specified section in the order they were specified.

By default the mv_upf_tracking variable is set to false.

To distinguish the user-specified UPF command section from the tool-generated UPF
command section, the sections are separated by the derived_upf variable setting.

The beginning of the tool-generated section is marked by the following setting:

set derived_upf true
#Design Compiler added commands

The end of the tool-generated section is marked by the following variable setting:

set derived_upf false

Do not explicitly set the derived_upf variable to either true or false. Use of this variable
is restricted to the tool.

With the mv_upf_tracking variable set to true, the UPF’ file written out can be read into
Power Compiler. If you write another UPF’ file after synthesis, the newer UPF’ file contains
UPF commands in the same order that you previously specified. The file contains
user-specified UPF command and tool generated UPF commands in separate sections.

Note:
This feature is not supported in the UPF based hierarchical flow. If you use this feature in
the hierarchical flow, Power Compiler issues UPF-401 information message.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Writing Out the Power Information 12-43
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Writing Out the Power Information 12-43

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Example 12-3 shows the UPF’ file written out when the mv_upf_tracking variable is set to
true.

Example 12-3 UPF’ File Generated With the mv_upf_tracking Variable Set to true
#Generated by Design Compiler

create_power_domain PDT
create_supply_net SN1 –domain PDT
create_supply_net SN2 –domain PDT

set derived_upf true
#Design Compiler added commands
connect_supply_net SN1 –ports {PORT1}
set derived_upf false

create_power_domain PDC –elements {ABC}
create_supply_net SN3 –domain PDC

set derived_upf true
#Design Compiler added commands
connect_supply_net SN3 -ports {PORT2}
set derived_upf false

Additional Commands to Support Multivoltage Designs

This section describes commands that are not part of the UPF standard. However, these
commands are supported for multivoltage design implementation and checking.

create_voltage_area
In the Design Compiler topographical mode, you can use the create_voltage_area
command to create a voltage area at the specified region for providing placement
constraints of cells associated with the region. The create_voltage_area command has
the following syntax:

create_voltage_area
 [-name voltage_area_name]
 [-coordinate {llx1 lly1 urx1 ury1 llx2 lly2 urx2 ury2 ...}]
 [-guard_band_x integer_value]
 [-guard_band_y integer_value]
 [-power_domain power_domain_name]
 [-is_fixed]
 [-target_utilization float_value]
 [-color value]
 [-cycle_color]
 [hierarchical_cell_list]
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Additional Commands to Support Multivoltage Designs 12-44

Power Compiler User Guide Version E-2010.12-SP2
-coordinate

Specifies the geometry of the voltage area. This option defines a target placement area
for the voltage area. The geometry of the voltage area can be a rectangle or a rectilinear
polygon.

-power_domain

Specifies that the voltage area should be created from an existing power domain. All the
hierarchical cells in the power domain are included in the voltage area. However, you
cannot create a voltage area from the top-level power domain.

The -power_domain and the -name option are mutually exclusive. When you use the
-power_domain option, the name of the voltage area created is identical to the name of
the power domain.

Design Compiler topographical also supports commands to report and query the voltage
areas. For more details, see Using Design Compiler Topographical Technology chapter in
the Design Compiler User Guide.

hookup_retention_register
This command hooks up the save and restore pins of the retention register to the save and
restore signals respectively of the retention register. The save and restore signals are the
signals specified using the set_retention_control command. This command works on
the entire design. Power Compiler finds all the retention registers in the design and hooks up
the restore and save pins to the appropriate control signals.

You use this command only in the bottom-up approach when your retention registers are
already connected to the ports of your hierarchical block and you need to extend this
connection to the top-level ports while synthesizing your top-level design.

Reporting Commands for the UPF Flow

The following reporting commands and checks are supported in Power Compiler. These are
not UPF standard specified commands.

report_dont_touch
The report_dont_touch command reports the dont_touch attributes on the cells and nets
of the current design and the reason for the dont_touch attribute on these objects. A design
object can have dont_touch attribute for several reasons: explicit attribute setting by using
the set_attribute command, it is part of the dont touch network, the isolation cell is at the
power domain boundary, and the level-shifter cell is at the power domain boundary.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Reporting Commands for the UPF Flow 12-45
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Reporting Commands for the UPF Flow 12-45

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
report_power_domain
The report_power_domain command reports the details of the specified power domain.
The syntax of the report_power_domain command is as follows:

report_power_domain [domain_name]

When the power domain name is not specified, all power domains in the design are
reported.

report_level_shifter
The report_level_shifter command reports the details of the level-shifter cells in the
specified power domain. The details include the level-shifter cell names, the input and output
power net information, violating level-shifter cells, and so on. With the -verbose option, this
command reports the level-shifter strategy.

report_power_switch
The report_power_switch command reports all the power switches in the specified power
domain. The syntax of the report_power_switch command is as follows:

report_power_switch -domain domain_name

Use the -domain option to specify the power domain for which power switches are to be
reported. If the specified power domain does not exist in the current scope, the
report_power_switch command fails.

report_pst
The report_pst command reports the power state tables in the current design. The syntax
of the report_pst command is as follows:

report_pst
 [-width line_width]
 [-significant_digits significant_digits]
 [-column_space column_space]
 [-tace_name]
 [-verbose]
 [-compress]
 [-power_nets supply_nets]
 [supplies supply_list]
 [-scope instance_name]
 [-derived]
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Reporting Commands for the UPF Flow 12-46

Power Compiler User Guide Version E-2010.12-SP2
The report_pst command reports the current power state tables. The report contains all
the legal states of the power state table. The -power_nets option lists the supply nets to be
included in the report. The order in which power nets are reported is determined by the order
in which the nets are specified to the -power_nets option. When this option is not used all
supply nets in the current design are reported. When you use the -compress option one
entry of the report contains several power states combined together using wildcard
character. For more information, see the report_pst command man page.

report_isolation_cell
The report_isolation_cell command reports all the isolation cells in the current scope.
With the -verbose option, this command reports the details of the isolation strategy.

report_retention_cell
The report_retention_cell command reports the retention cells in the design. With the
-verbose option, this command reports the list of the retention cells, the save and restore
signals, and the retention strategy.

report_supply_net
The report_supply_net command reports the detailed information about the specified
supply nets. The -include_exception option reports exceptional pins on the power net, if

any.

report_supply_port
The report_supply_port command reports details of all the specified supply ports or all
the supply ports in the current scope. The details of the supply port includes its full name,
the scope it is created in, its direction, its supply state, and the supply net to which it is
connected. Supply ports that are present on the power switches can also be reported.

report_target_library_subset
Use this command to find out the target library constraints, that is, to determine or confirm
which target library subsets are assigned to which design instances.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Reporting Commands for the UPF Flow 12-47
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Reporting Commands for the UPF Flow 12-47

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
report_mv_library_cells
The report_mv_library_cells command reports all the power management cells, such
as the level-shifter cells, isolation cells and so on, that are available in the target library. The
report also contains the multivoltage attributes of these cells. For more details, refer to the
command man page.

Debugging Commands for Multivoltage Designs

Power Compiler supports the following commands that perform multivoltage-specific
checks. You can use these commands at various stages of synthesis of your multivoltage
designs:

• check_mv_design

• analyze_mv_design

In addition, the Library Compiler command check_library is enhanced to support specific
checks that are useful in the UPF Flow. For more details, see the Library Checking chapter
in the Library Quality Assurance System User Guide.

check_mv_design
Use this command to check for design errors, including multivoltage constraint violations,
electrical isolation violations, connection rules violations, and operating condition
mismatches. Two switches, -verbose and -max_messages, let you control the level of
information detail and limit the number of messages printed to the log file. Other switches,
such as -power_nets, -isolation, -level_shifters, -connection_rules,
-opcond_mismatches, and -target_library_subset, let you select among the available
checking reports.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Commands for Multivoltage Designs 12-48

Power Compiler User Guide Version E-2010.12-SP2
Table 12-3 describes the arguments supported by the check_mv_design command.

For more details refer to the command man page.

Table 12-3 Arguments Supported by the check_mv_design Command

Argument Description

-verbose Optional. Provides a detailed report. If you do not use
this option, a summary of any violations is reported.

-max_messages
 message count

Optional. Sets a limit, given by message count, on the
number of messages per checker printed in the log file. If
no checkers are specified, this is the message limit for all
checkers. If you do not use this option, all messages are
printed.

-isolation Optional. Provides a report on electrical isolation errors
with respect to power domains.

-level_shifters Optional. Provides a report on all existing level shifters
and connecting nets. Checks against the specified
level-shifter strategy and threshold.

-connection_rules Optional. Reports violations in always-on synthesis and
pass-gate connections.

-opcond_mismatches Optional. Reports incompatible operating conditions
between instantiated technology cells and the cells’
parent design.

-target_library_subset Optional. Reports inconsistent settings among target
libraries, target library subsets, and operating conditions.

-power_nets Optional. Reports summary of power and ground
connection; power and ground connections that cannot
be derived and the reason for the same. Power and
ground connections that do not match with the derived
power and ground connection of the power domain.

-clock_gating_style Optional. Reports the feasibility of clock-gate insertion
on different hierarchical blocks considering the clock
gating style you set, the availability of the clock-gating
cells in the target library, the operating condition of the
hierarchical block and the trigger edge of the registers.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Commands for Multivoltage Designs 12-49
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Commands for Multivoltage Designs 12-49

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
analyze_mv_design
The analyze_mv_design command reports path-based design details of a multivoltage
design that can be useful in debugging multivoltage design issues. The report contains
details of the variable settings for level-shifter insertion and always-on buffering, relevant
power state tables, the driver-to-load pin connections, the pin-to-pin information on specified
paths, the target libraries used for insertion of power management cells, and other useful
debugging information. You can also run this command in the Power Compiler GUI and see
the issues identified, in the schematic. For more details, see “Debugging Power Intent Using
Design Vision GUI” on page 12-78.

Table 12-4 shows the arguments supported by the analyze_mv_design command.

For more details, see the analyze_mv_design command man page.

Table 12-4 Arguments Supported by the analyze_mv_design Command

Argument Description

-level_shifter Performs the level-shifter analysis based on the load and
the driver specified with the -from_pin and -to_pin
arguments

-always_on Performs net based analysis to retrieve context
information that is relevant for always-on buffering on the
specified net

-from_pin from_pin_list Specifies a driver pin to be analyzed. This can either be
a leaf-level cell-pin or top-level port

-to_pin to_pin_list Specifies a load pin to be analyzed. This can be a
leaf-level pin or top-level port

-net Specifies the net segment to be analyzed. This option
can be used only with the -always-on option

-verbose Provides a detailed report. If you do not use this option,
a summary of any violations is reported.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Commands for Multivoltage Designs 12-50

Power Compiler User Guide Version E-2010.12-SP2
 Methodology for UPF-Based Hierarchical Multivoltage Flow

Design Compiler topographical mode supports flat, top-down, and bottom-up hierarchical
UPF design flows. These flows are also supported by Synopsys tools such as IC Compiler,
PrimeTime, and Formality. This section describes the UPF portion of the hierarchical design
methodology. For basic information on the hierarchical design methodology, see the Design
Compiler User Guide.

When you synthesize your design using the UPF-based hierarchical flow, specify the voltage
for each supply net. Also specify the timing constraints as recommended in the Design
Compiler Hierarchical Reference Methodology SolvNet article 026172

In the hierarchical implementation of a design, you first determine the physical partition.
Follow these guidelines while partitioning your design:

• The scopes of all power domains within a partition must be contained inside the partition.

• For all supply connections inside a partition, supply nets must be specified within the
partition.

• The partitions should not be nested.

Steps in the Hierarchical UPF Design Methodology
To implement your design using the Design Compiler hierarchical UPF design methodology,
follow these two steps:

1. Block-Level Implementation

2. Top-Level Implementation

Each of these steps is described in detail in the following sections:

Block-Level Implementation

Creating the Blocks
Create the block-level and top-level UPF files for the design. To create the blocks, you can
use either the top-down approach or the bottom-up approach. The bottom-up approach is
preferable because this determines the smallest block that can be compiled independently.

When the individual blocks and the top are synthesized, you can assemble the design either
in Design Compiler or in IC Compiler. To assemble the design using IC Compiler, the tool
requires the complete design database for the design planning stage. For more details, see
“Assembling Your Design” on page 12-55.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-51
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-51

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Generating the Block-Level UPF Constraints
To use the hierarchical UPF methodology, your constraint specification in the UPF file must
also be hierarchical. You can choose one of the following two ways to create the block-level
and top-level UPF files.

• Write the power intent manually in the UPF file for all the blocks, including the top. If
required, write the boundary constraints for the blocks.

• Use the characterize command to create the block-level UPF constraints as well as the
boundary constraints from the full chip UPF description. It is important to remember the
following points when you use the characterize command to generate the block-level
UPF constraints:

• If your design does not have the control signals at the block-level interfaces and you
cannot modify your block level interfaces, you must use the characterize command
to generate the block-level UPF constraints.

• By default, the characterize command translates the UPF constraints in the top
design to the subblock.

However, if you use this approach, you will be able to perform equivalence checking
only on the entire design, and not on each hierarchical block.

Note:
All necessary power management control signals should be created manually. They also
have to be manually brought into the appropriate block-level interfaces. This is the
recommended approach.

Using Manually Created Block-Level UPF Files
When you create the blocks manually, each block and its power intent in the UPF file must
be written such that each block can be simulated and synthesized independently. You might
have to write the boundary constraints for the blocks to capture any port that does not
operate at the same voltage as the rest of the block. If a block contains a power domain, the
UPF constraints refer to objects and power supplies only within the block.

Using Design Compiler Generated Block-Level UPF files
If you use the top-down approach to write your design or if your UPF file is nonmodular,
Design Compiler can generate the block-level UPF using the characterize command. For
the tool to correctly generate the block-level UPF file, your power domain definition and
partitioning should comply with the guidelines mentioned in “Methodology for UPF-Based
Hierarchical Multivoltage Flow” on page 12-51. The UPF objects in the block should not refer
to any object that is above the block in the hierarchy. You should follow these steps to
synthesize your design using the hierarchical UPF design methodology:

1. Read the design and the UPF constraints for the entire design.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-52

Power Compiler User Guide Version E-2010.12-SP2
2. Specify the operating voltages for the supply nets and specify the timing constraints.

3. For each subblock in the design, perform the following tasks:

a. Run the characterize command.

This command pushes the appropriate timing and power constraints from the top-level
to the specified block. The block-level power constraints and the boundary constraints
that are specified by the set_related_supply_net command are set on the
specified block. For more details, see “Characterization of Supply Sets and
Domain-Independent Supply Nets” on page 12-55.

The characterize command can also automatically set the related supply net on the
ports of the block-partition. To avoid voltage violations at the boundary, that can be
caused by the automatic setting of related supply net, you must define level-shifter
strategies at the block-partition boundary. If you do not want certain ports to be level
shifted, use the set_level_shifter -no_shift command. For more details see
“Automatic Inference of Related Supply Net” on page 12-56.

While setting the related supply net, additional checks are performed for voltage
violations, availability of the supply net, and so on, and appropriate error and warning
messages are issued.

b. Save the characterized block and the design data.

Set the characterized block as the current instance and use the write command to
save the characterized block. The command sequence is shown in the following
example.

characterize BlockA
set current_instance BlockA
write -format ddc -hierarchy -output BlockA.characterized.ddc

c. Remove the block from the top level using the remove_design -hierarchical
command. When you remove the block, the UPF constraints associated with the block
are also removed.

4. When all the subblocks have been characterized, saved in .ddc format, and removed,
save the top-level design in .ddc format.

Synthesizing the Blocks
To synthesize each subblock of the hierarchical design, you can read the design in one of
the following two methods:

• The RTL file and the manually written UPF file for each block

• GTECH netlist in the .ddc file for each block, written after the characterization step.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-53
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-53

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The difference between the two is the readability of the block-level UPF and the automatic
inclusion of boundary constraints when you use the .ddc file generated after the
characterization step and the ability to perform hierarchical verification using Formality. The
power intent created by the characterize command is the same as the manually created
UPF file. If you use the RTL design and the manually written UPF file, you should create
appropriate boundary constraints.

You then use either the top-down or bottom-up synthesis flow options supported in Design
Compiler topographical mode to perform block-level synthesis. For more details, see the
SolvNet article 021034, Hierarchical Flow Support in Design Compiler Topographical Mode.

Top-Level Implementation
Follow these steps to perform the top-level synthesis:

1. Read the block-level designs.

The block-level design can either be a .ddc file, a synthesized block-level design, or an
ILM created in Design Compiler or Design Compiler topographical mode. You can also
read an ILM created in IC Compiler. If you read an ILM created in IC Compiler, you must
set the mw_reference_library and link_library variables to point to the design
library of the block.

2. Read the top design.

Read the top design in any one of the following formats or ways.

• The RTL design and the UPF files. Use the load_upf command to read the UPF file.

• The GTECH netlist in .ddc file format, obtained after removing all the characterized
subblocks.

3. Run the propagate_constraints -power_supply_data command.

This command gets all the block-level constraints to the top-level, including the ILMs
created in IC Compiler, that contain UPF data.

4. Synthesize the top-level design.

5. Save the synthesized design and the UPF constraints. When you save the design in .ddc
format, the UPF constraints are also saved in the .ddc file. You can also save the UPF
constraints separately, in ASCII format for equivalence checking.

Completing these steps completes the synthesis of your design using the Design Compiler
hierarchical UPF flow. Using the synthesized design, you can continue the flow in IC
Compiler. For more details on assembling your design for the subsequent steps in IC
Compiler, see “Assembling Your Design” on page 12-55.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-54

Power Compiler User Guide Version E-2010.12-SP2
Assembling Your Design
To continue with the hierarchical flow in IC Compiler, you can assemble your design either in
Design Compiler or in IC Compiler. Note that you must explicitly ensure that the block-level
UPF constraints are available in the top-level design during the optimization step of the
top-level. You do this using the propagate_constraints -power_supply_data command.
Use the following steps to assemble your design in Design Compiler for use in the further
flow in IC Compiler:

1. Read all the synthesized subblocks.

2. Set the top-level design as the current design.

3. Link the design using the link command.

4. Use the propagate constraints -power_supply_data command for all the
block-level UPF constraints to be available at the top-level.

5. Save the design. This saved design is the full chip design database that you can use to
start the design planning step in IC Compiler.

For more details, see the SolvNet article 026172, IEEE 1801 (UPF) based Design Compiler
Topographical Technology and IC Compiler Hierarchical Design Methodology.

Characterization of Supply Sets and Domain-Independent Supply
Nets
The following sections describe criteria for characterization of the supply sets and
domain-independent supply nets and how they are characterized during the hierarchical
UPF flow.

Criteria for Characterization
A supply set or a domain-independent supply net of a block is characterized when it is,

• The primary, default retention, default isolation supply of the power domain of the block

• The supplies specified in the retention or isolation strategies of the power domain of the
block

• A supply that is specified for the power switch of the power domain of the block

• An exception supply that is connected to the cells in the power domain of the block

• An extra supply of the power domain, defined by using the extra_supplies_# keyword

• A supply set that is connected to the supply ports that are defined inside the block

• A supply set that is the related supply for the ports of the block
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-55
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-55

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Note:
In this case, the supplies are characterized even if they are the restricted supplies in
the top-level power domain of the block being characterized. This is because, the
block can contain an unrestricted feedthrough supply that passes through power
domains.

Characterization of Supply Sets
While characterizing a block, the supply sets defined in the block and in lower levels of
hierarchy are moved to the block. The characterization of supply sets and
domain-independent supply nets are performed similarly by the characterize command
because, supply sets are also inherently domain independent.

The following updates are done to the supply sets and the ports that they connect to, during
the characterization step. Even when more than one supply sets are characterized, the tool
performs updates only for one supply set.

Updates at the Block Level
During characterization, at the block level,

• Two supply ports and a supply set are created. The supply ports are connected to the
power and ground functions of the supply set.

• To distinguish the supply ports created by the characterize command, the
newly-created supply ports are marked with the snps_derived UPF attribute. So, each
supply port created by the characterize command has an associated
set_port_attributes command in the block-level UPF file.

• If you have defined power states for the supply sets for the block-level, using the
add_power_state command, during characterization, the tool writes the
add_port_state command for the created port.

Updates at the Top Level
At the top level, and in the UPF file for the top level, two ports are created, which are
connected to the power and ground functions of the supply set.

Automatic Inference of Related Supply Net
In the top-down hierarchical flow, when you characterize a block, the block-level power
constraints as well as the boundary constraints that are specified by the
set_related_supply_net command are set on the specified block.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-56

Power Compiler User Guide Version E-2010.12-SP2
The characterize command can also automatically set the related supply net on the ports
of the block-partition, using the following criteria:

• The direction of the port.

• The location constraint of the isolation and level-shifter strategies.

• Related supply net of the driver or the load cells.

The characterize command can also infer the driver or load to be inserted at the
boundaries.

Note:
For the characterize command to appropriately infer and set the related supply net, you
must explicitly define the level-shifter and isolation strategies before running the
characterize command, if you have voltage violations.

Table 12-5 shows the related supply net inferred by Power Compiler when you define only
the level-shifter strategy, and not the isolation strategy, to overcome the voltage violations at
the boundary pins.

Table 12-5 Only Level-Shifter Strategy Defined for the Voltage Violations at the Boundary Pins

Port
direction

Level-shifter
strategy

Related supply net inferred by Power Compiler

Input self Outside or driver supply net. If supply net is not available, related supply
net is not set and UPF-208 error message is issued.

Input parent Inside or load supply net.

Output self Outside or load supply net. If supply is not available, related supply net is
not set and UPF-208 error message is issued.

Output parent Inside or driver supply net.

Input or
Output

none or auto Not supported. UPF-206 error message is issued.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-57
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-57

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Table 12-6 shows the related supply net inferred by Power Compiler when you define both
level-shifter and isolation strategies.

Table 12-7 shows the related supply net inferred by Power Compiler when there are no
voltage violations at the boundary pins.

Table 12-6 Both Level-Shifter and Isolation Strategies Defined for the Voltage Violations at the
Boundary Pins

Port
direction

Level-shifter
strategy

Isolation
strategy

Related supply net inferred by Power Compiler

Input self self Outside or driver supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Input self parent Isolation power supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Input parent self Related supply net is not set and UPF-207 error message is
issued.

Input parent parent Inside or load supply net.

Input none or auto self or
parent

Not supported. UPF-206 error message is issued.

Output self self Outside or load supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Output self parent Related supply net is not set and UPF-207 error message is
issued

Output parent self Isolation power supply. If supply net is not available, related
supply net is not set and UPF-208 error message is issued.

Output parent parent Inside or driver supply.

Output none/auto self or
parent

Not supported. UPF-206 error message is issued.

Table 12-7 No Voltage Violations at the Boundary Pins and No Level-Shifter Strategy

Port
direction

Isolation
strategy

Related supply net inferred by Power Compiler

Input self Outside or driver supply. If supply net is not available, related supply net is
not set and UPF-208 error message is issued.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-58

Power Compiler User Guide Version E-2010.12-SP2
Note:
If voltage violations are across two blocks that have to be characterized, define the
level-shifter strategies for both the blocks. To avoid level-shifter redundancy, use the
-no_shift option of the set_level_shifter command. If the violations are across
multiple blocks, specify the list of pins while defining the level shifter strategy with the
-no_shift option.

Top-Level Design Integration
After the blocks are characterized, these blocks can be integrated into the top-level designs,
multiple times. Use the propagate_constraints command to integrate the characterized
blocks to the top level.

While merging the power domain to the top level, the propagate_constraint command
ensures that equivalent supply sets, nets, and ports are present at the top level. In addition,
their connectivity should be equivalent at the top level. The tool issues an error message
when the equivalence is not found.

During integration, for the block-level ports that have the snps_derived UPF attribute, these
ports are substituted by their equivalent top-level ports and supply nets or supply sets. The
block-level supply net or supply sets are deleted.

When the port is not marked with the snps_derived UPF attribute, the ports are not
deleted. The block continues to use the block-level supply net or supply set.

Input parent Isolation power supply. If supply net is not available, use the inside or load
supply.

Input none Outside or driver supply. If supply net is not available, use the inside or load
supply.

Output self Isolation power supply. If supply net is not available, related supply net is not
set and UPF-208 error message is issued.

Output parent Inside or driver supply.

Output none Outside or load supply. If supply net is not available, use the inside or load
supply.

Table 12-7 No Voltage Violations at the Boundary Pins and No Level-Shifter Strategy(Continued)

Port
direction

Isolation
strategy

Related supply net inferred by Power Compiler
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-59
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Methodology for UPF-Based Hierarchical Multivoltage Flow 12-59

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Defining Power Intent Using Design Vision GUI

The Design Vision tool is the graphical user interface (GUI) for the Synopsys logic synthesis
environment. Design Vision supports menu and dialog boxes for the most commonly used
synthesis features. This section describes how you use the Design Vision GUI for defining
the power intent for your multivoltage design using UPF. For more details on the general
usage of Design Vision, see the Design Vision User Guide.

The Power menu in the GUI allows you to specify, modify, and review your power
architecture. It also lets you view the UPF diagram and examine the UPF specification
defined in your design. These are discussed in detail in the following sections:

• Defining the Power Intent

• Reviewing the Power Intent

• Applying the Power Intent Changes

Defining the Power Intent
The Visual UPF dialog box in the Design Vision GUI allows you to define, edit, and review
your power intent. You can also generate the UPF script for your power intent.

To open the Visual UPF dialog box,

• Choose Power > Visual UPF

When you open the Visual UPF dialog box, the Visual UPF appears, as shown in
Figure 12-8.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-60

Power Compiler User Guide Version E-2010.12-SP2
Figure 12-8 Logic Hierarchy View of the Visual UPF

If you have not yet defined the power intent for your design, use the Power Domains and
Power Domain Properties sections to create more power domains and various other
components such as the power-switch, level-shifter and so on. For the first power domain
that you create, the tool assigns the name TOP by default.

If you have already defined the power intent for your design, the Visual UPF displays the
details of your power specification. Using the Power Domains and Power Domain Properties
sections, you can edit the power definitions: add new components, redefine the association
of the hierarchical cells with the power domains, delete a power domain, and so on.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-61
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-61

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Reviewing the Power Intent
You can review the modifications that you made to the power intent of your design, using the
various views supported by Visual UPF. The Power Domains and the Power Domain
Properties sections are always visible, so that you can simultaneously review and modify
your power intent. Also, the modifications are instantaneously reflected in all the views.

The views in the Visual UPF that support viewing your power intent are

• Design or Logic Hierarchy View

Use the Design Hierarchy tab to view the logic hierarchy of your design, as shown in
Figure 12-8 on page 12-61.

• Diagram view

Use the Diagram tab to view the pictorial representation of your power definitions.

• Power Hierarchy view

Use the Power Hierarchy tab to see the power hierarchy of your design. Figure 12-9 on
page 12-63 shows the Power Hierarchy view of a design.

The Power Hierarchy view has two sections. The section on the top shows the hierarchy
tree with the connections between different power objects. The section at the bottom
shows more details and properties of the object that you select in the top section.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-62

Power Compiler User Guide Version E-2010.12-SP2
Figure 12-9 Power Hierarchy View of the Visual UPF

• UPF Script view

Use the UPF script tab to view the UPF script for your power definitions. Figure 12-10 on
page 12-64 shows the UPF Script view. The various colors used in the script help in
differentiating the UPF commands and the power objects.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-63
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-63

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 12-10 UPF Script View of the Visual UPF

• Error/Warning view

The Error/Warning tab in the Visual UPF view becomes active when your modifications
cause errors or warnings. When there are no errors or warnings, this tab is greyed. You
can see the details of the error and warning messages in this view.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-64

Power Compiler User Guide Version E-2010.12-SP2
Figure 12-11 Error/Warning View of the Visual UPF
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-65
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-65

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Applying the Power Intent Changes
When you have completed the power intent modifications, you have the following two
alternatives, to use the modified power intent:

• Save the power intent as a UPF script

Click the Save Script As button to save the modified power intent script in a file. The file
is saved in the ASCII format, as a UPF file, but the modifications are not applied to the
design database of the tool. You can run this script either in the batch mode or
interactively, to apply the changes.

This feature can be useful when your changes are not yet complete, and you have to save
it for a later use. It can also be useful when you have to edit the file before running it. For
example, when you create a power state table, all the possible power states are
populated in the table. Before running the script, you must edit the script to remove or
comment the states that are not required.

• Apply the power intent to the design database

Click the OK button to apply or reflect the updated power intent in the Power Compiler
design database. Until you click the OK button, all the changes that you made are specific
to the Visual UPF view and do not affect the design database.

UPF Diagram View
You can use the UPF diagram view to examine the power intent of your design.

To open the UPF diagram view

• Choose Power > New UPF Diagram View.

When the UPF diagram view appears, Design Vision displays a tab at the bottom of the
workspace area, as shown in Figure 12-12 on page 12-68. You can use this tab to return to
the UPF diagram view after working with other views.

The UPF diagram view displays the UPF power intent as it is defined in the design database.
When you change the database, for example, by entering a UPF command, the tool reflects
the updates in the UPF diagram immediately. You can view the UPF diagram at any point in
the design flow.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-66

Power Compiler User Guide Version E-2010.12-SP2
The UPF diagram uses default colors to differentiate the various types of power objects, as
shown in Table 12-8. You can customize the diagram by using the View Settings panel, to
change object colors or apply a color theme. For more details, see “Changing UPF Diagram
Display Properties” topic in the Design Vision online Help.

Each power object is represented by a unique symbol in the UPF diagram. For more details
about the symbols used for the objects, see “Representation of Power Objects in the UPF
Diagram” on page 12-68

Table 12-8 Colors Used to Represent Types of Net Segments

Color Net segment

Red Primary power net

Blue Primary ground net

Yellow All other net segments
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-67
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-67

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 12-12 UPF Diagram View

Representation of Power Objects in the UPF Diagram
The UPF diagram uses unique symbols for representing the various power objects. It also
uses different colors for different types of nets as shown in Table 12-8 on page 12-67. This
increases the clarity and helps you understand the power intent of the design. More details
are described in the following sections:

• Power Domain

• Scope

• Supply Nets

• Supply Ports
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-68

Power Compiler User Guide Version E-2010.12-SP2
• Power Switch

• Isolation Strategy

• Retention Strategy

• Level-Shifter Strategy

Power Domain
The UPF diagram displays all power domains that are defined in the current design and its
subdesigns. The power domains are organized hierarchically, such that each power domain
is located inside its parent power domain.

A power domain is represented by a rectangular bounding box, as shown in Figure 12-13.
The default color of the bounding box is green. The name of the power domain is mentioned
inside the bounding box.

Figure 12-13 Power Domain Symbol in the UPF Diagram

The size of the power domain symbol varies according to the number and size of the objects
that reside within the power domain. The symbol is big enough to contain all the objects that
are contained in it. Figure 12-14 shows power domain INST and all the objects contained in
the power domain.

Figure 12-14 An Example of a Power Domain Representation in the UPF Diagram

Scope
A scope is represented by a rectangular bounding box, as shown in Figure 12-15 on
page 12-70. The default color is blue.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-69
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-69

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 12-15 Scope Symbol in the UPF Diagram

In the UPF diagram, the scope appears within the hierarchy of the power domains. The
bounding box of the scope surrounds the top-most child domain in the scope.

Figure 12-16 shows an example of how power domains and scopes appear within the UPF
diagram.

Figure 12-16 Representation of Power Domains and Scopes in the UPF Diagram

Supply Nets
The UPF diagram displays all the supply nets in the current design and the current design’s
subdesigns and their connectivity. It also identifies the primary power and primary ground
nets for each power domain, as shown in Figure 12-17 on page 12-71. A net is represented
by a line or a segment in the UPF diagram. Table 12-8 on page 12-67 shows the colors used
for representing various types of net segments.

The location of the supply nets in the diagram is based on the location of the power domains
to which they belong and also on the type of the supply net. Each power domain that a
supply net belongs to contains a segment indicating that supply net.

Horizontal segments represent supply nets inside the power domain. Vertical segments
represent nets that are reused in multiple power domains and that are connected to another
object, such as a supply port or a power switch.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-70

Power Compiler User Guide Version E-2010.12-SP2
Power supplies extend down from the top of the power domain, and ground nets extend up
from the bottom of the power domain.

Figure 12-17 Representation of Various Types of Power Supply Nets in the UPF Diagram

 As you can see in Figure 12-17, the net VDD_1 is the primary supply net of power domain
PD1. However, it is not the primary supply net of the power domain TOP. Similarly, VSS is
the primary ground net of power domain PD1.

Supply Sets
A supply set does not appear visually in the diagram. Only the supply nets of a supply set
appear in the diagram. Supply nets of a supply set and domain-independent supply nets are
implicitly available anywhere from their scope downward in the design.

Supply Ports
A supply port is represented by a bounding box. A letter in the bounding box indicates the
direction of the port, as shown in Figure 12-18 on page 12-72. The UPF diagram displays all
the supply ports in the current design and its subdesigns. It also shows the connectivity of
the supply ports with the supply nets, their location, the power domain to which they belong.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-71
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-71

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 12-18 Representation of Power Supply Port in the UPF Diagram

Supply ports are located on the border of the power domain to which they belong. They are
located at the top or at the bottom boundary of the power domain, depending on the supply
net to which the supply ports are connected. In addition, input ports are located on the left
side, and the output ports are located on the right side.

Power Switch
A power switch is represented by a circle with a “X” inside it, as shown in Figure 12-19. The
symbol indicates the input and output supply ports, the control ports and the control signals.
The arrows represent the direction of the ports. The default color of the symbol is green.

Figure 12-19 Representation of a Power Switch

As shown in Figure 12-19, a power switch can have single or multiple control signals. The
power switches are located within the boundaries of their parent power domain. Because
power switches have supply nets, as input and output, they are located between the power
supply nets as shown in Figure 12-20 on page 12-73.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-72

Power Compiler User Guide Version E-2010.12-SP2
Figure 12-20 Location of the Power Switches in the Power Domain

Isolation Strategy
Figure 12-21 shows the various symbols used to represent an isolation strategy. The symbol
used is similar to an AND gate and the clamp value is shown inside. The symbol also
includes pins for power and ground, a segment representing the isolation signal, and a
segment representing the inputs or outputs that the strategy isolates. When the
-no_isolation option is specified, a straight line is used to show the continuation of the
inputs.

Figure 12-21 Representation of Various Types of Isolation Cells in the UPF Diagram

The symbol is located adjacent to the boundary of its parent power domain. The location
also depends on whether the strategy isolates inputs or outputs.

The symbol appears to the left edge of the power domain boundary if the strategy applies to
the input ports. The symbol appears to the right edge of the boundary if the strategy applies
to the output ports.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-73
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-73

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
If the strategy applies to both input and output ports, the symbol appears at both left and
right edges of the boundary.

While defining the isolation strategy, if you specify the location as self, the symbol appears
inside the power domain boundary. If you specify the location as parent, the symbol
appears outside the power domain boundary.

 Figure 12-22 shows all possible combinations of isolation strategy symbols and locations,
based on the value of the -applies_to option of the set_isolation command and the
value of the -location option of the set_isolation_control command used in defining
isolation strategy.

Figure 12-22 Representation of Various Types of Isolation Strategies in the UPF Diagram

Note:
If you specify a list of elements using the set_isolation -elements command, the
UPF diagram ignores the -applies_to option and positions the isolation symbol relative
to the left or right edge of the power domain boundary, based on whether the list contains
input elements or output elements or both.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-74

Power Compiler User Guide Version E-2010.12-SP2
Retention Strategy
The retention symbol is a green bounding box as shown in Figure 12-23. The symbol
includes pins for power and ground and segments for save and restore signals. The
no-retention symbol contains a “X” inside the bounding box.

Figure 12-23 Representation of Retention Cells in the UPF Diagram

All retention symbols are located at the center of their parent power domains. The diagram
displays the supply nets connected to the retention strategy, the domains to which the
strategy belongs and their save and restore signals.

Level-Shifter Strategy
The level-shifter symbol looks like a buffer and includes a segment representing the inputs
that are shifted as shown in Figure 12-24. The location-fanout symbol looks like several
buffers bundled together and indicates that the level-shifter cells occur on all fanout locations
(sink) of the port that they are shifting. The no-shift symbol is a line that shows the
continuation of the inputs.

Figure 12-24 Representation of Level-Shifter Cells in the UPF Diagram

The symbol for each level-shifter strategy is located adjacent to the boundary of its parent
power domain. The location depends on whether it shifts inputs or outputs.

The symbol appears at the left edge of the boundary if the strategy applies to input ports. It
appears to the right edge of the boundary if the strategy applies to the output ports. If the
strategy applies to both inputs and outputs, symbols appear at both left and right edges of
the boundary.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-75
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-75

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
While defining the level-shifter strategy, if you specify the location as self, the symbol
appears inside power domain boundary. If you specify the location as parent, the symbol
appears outside the power domain boundary.

Figure 12-25 shows all possible combinations of level-shifter symbols and locations, which
are based on the values of the -applies_to and -location options of the
set_level_shifter command.

Figure 12-25 Representation of Various Level-Shifter Strategies in the UPF Diagram

Note:
If you specify a list of elements to the level-shifter strategy by using the
set_level_shifter -elements command, the UPF diagram ignores the -applies_to
option and positions the symbol relative to the left or right edge of the power domain
boundary, based on whether the list contains input elements, output elements, or both.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-76

Power Compiler User Guide Version E-2010.12-SP2
Expanding and Collapsing Power Domains
In the UPF diagram view, you can collapse or expand a selected power domain. This is
useful when you have large designs with several power domains. When you open the UPF
diagram view, by default the power domains are expanded, as shown in Figure 12-12 on
page 12-68. When you collapse a power domain, all its internal details disappear from the
view, and only its name is displayed, as shown in Figure 12-26. When you expand a power
domain, all its internal details are displayed in the view.

Figure 12-26 UPF Diagram with Collapsed Power Domains

You can use either of the following methods to expand or collapse a power domain.

After selecting one or more power domains that you want to expand,

• Choose Power > UPF Diagram > Expand Selected Domains.

• Right-click on the diagram and choose Expand Selected Domains.

After selecting one or more power domains that you want to collapse,

• Choose Power > UPF Diagram > Collapse Selected Domains.

• Right-click on the diagram and choose Collapse Selected Domains.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-77
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Defining Power Intent Using Design Vision GUI 12-77

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Debugging Power Intent Using Design Vision GUI

Use the Analyze MV Design dialog box to analyze your design for multivoltage-specific
connectivity issues. The analyze_mv_design command runs internally and displays the
result in a new view.

To open the Analyze MV Design view, choose Power > Debugging > Analyze MV Design.
The Analyze MV Design dialog box appears as shown in Figure 12-27.

Figure 12-27 Analyze MV Design Window

Use the dialog box to choose the type of analysis to perform, either level shifter or
always-on. You can also specify the From Pin and the To Pin, where the checks have to be
performed. When you click OK, the tool runs the analyze_mv_design command.

The report of the analyze_mv_design command is displayed in a new view, as shown in
Figure 12-28 on page 12-79. The report contains details of level-shifter violations.
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Power Intent Using Design Vision GUI 12-78

Power Compiler User Guide Version E-2010.12-SP2
Figure 12-28 Report View of the Analyze MV Design Window

The report also contains a hyperlink to the schematic; when you follow the link, the
schematic shows design objects that are specific to the reported issue, as shown in
Figure 12-29 on page 12-80. In the schematic, you can

• Create a collection of the power supply nets connected to one or more pins

• View a list of the ground supply net connections for one or more pins

• View a report of power pin information for one or more cells

• View a report of PG pin library information for one or more cells
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Power Intent Using Design Vision GUI 12-79
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Power Intent Using Design Vision GUI 12-79

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure 12-29 Schematic View of Analyze MV Design Window
Chapter 12: IEEE 1801 Flow for Multivoltage Design Implementation
Debugging Power Intent Using Design Vision GUI 12-80

13
Multicorner-Multimode Optimization 13

This chapter describes the support for multicorner-multimode technology in Design
Compiler Graphical, in the following sections:

• Basic Multicorner-Multimode Concepts

• Basic Multicorner-Multimode Flow

• Setting Up the Design for a Multicorner-Multimode Flow

• Handling Libraries in the Multicorner-Multimode Flow

• Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells

• Scenario Management Commands

• Using ILMs in Multicorner-Multimode Designs

• Power Optimization Techniques

• Reporting Commands

• Supported SDC Commands

• Multicorner-Multimode Script Example

13-1

Basic Multicorner-Multimode Concepts

Present-day designs are often required to operate under multiple operating conditions or
corners and in multiple modes. Such designs are referred to as multicorner-multimode
designs. Design Compiler Graphical extends the topographical technology to analyze and
optimize these designs across multiple modes and multiple corners concurrently. The
multicorner-multimode feature also provides ease-of-use and compatibility between flows in
Design Compiler and IC Compiler.

A corner is defined as a set of libraries characterized for process, voltage and temperature
variations. Corners are not dependent on functional settings; they are meant to capture
variations in the manufacturing process, along with expected variations in the voltage and
temperature of the environment in which the chip will operate.

A mode is defined by a set of clocks, supply voltages, timing constraints, and libraries. It can
also have annotation data, such as SDF or parasitics files. Multicorner-multimode designs
can operate in many modes such as the test mode, mission mode, standby mode and so on.

Scenario Definition
A scenario is a mode or a corner or a combination of both that can be analyzed and
optimized. Optimization of multicorner-multimode design involves managing the scenarios
of the design. For more details on scenario management, see “Scenario Management
Commands” on page 13-15.

Multicorner-Multimode Optimization
The multicorner-multimode feature in Design Compiler Graphical provides compatibility
between flows in Design Compiler and IC Compiler.

Supported Features
The following are the important points about the support of this features:

• Multicorner-multimode technology is supported only in topographical mode with the
DC-Extension license.

• Dynamic and leakage power optimizations are supported.

• Only the UPF flow is supported for the multivoltage designs.

• All options of the compile_ultra command are supported.

13-2

Unsupported Features
The following features are not supported in Design Compiler Graphical for
multicorner-multimode designs:

• Power-driven clock gating is not supported. However, if you use the compile_ultra
-gate_clock or the insert_clock_gating commands, clock-gate insertion is
performed on the design, independent of the scenarios.

• Clock tree estimation is not supported in the power reports. So power reports such as
those generated by the report_power command do not include details of estimated
clock tree power.

• k-factor scaling. Because multicorner-multimode design libraries do not support the use
of k-factor scaling, the operating conditions that you specify for each scenario must match
the nominal operating conditions of one of the libraries in the list of the link libraries.

• The set_min_library command is not scenario specific. This command applies to all
scenarios. Therefore, if you use this command to relate a minimum library to a specific
maximum library, the relationship applies to all scenarios.

Concurrent Multicorner-Multimode Optimization and Timing
Analysis
Concurrent multimode optimization works on the worst violations across all scenarios,
eliminating the convergence problems observed in sequential approaches.

Timing analysis is carried out on all scenarios concurrently, and costing is measured across
all scenarios for timing and DRC. As a result, the timing and constraint reports show
worst-case timing across all scenarios.

Timing analysis can be performed using, one of the following two methods:

• Traditional minimum or maximum methodology

• Early-late analysis, such as that in PrimeTime, utilizing the on-chip variation (OCV)
switch in the set_operating_conditions command.

13-3

Basic Multicorner-Multimode Flow

Figure 13-1 shows the basic multimode flow.

Figure 13-1 Basic Multicorner-Multimode Flow

Set up design

Read design

Create scenario

Set TLUPlus

Set operating conditions

Set constraints

Analyze

Optimize

... additional commands...

per scenario

13-4

Multicorner-multimode optimization involves managing the scenarios. You use the
create_scenario command to create the scenarios. You can create multiple scenarios,
and for each scenario, you can set constraints specific to the mode and operating conditions
specific to the corner. After you configure the scenarios, you can optionally activate a subset
of these scenarios, using the set_active_scenarios command.

As shown in Figure 13-1 on page 13-4, a scenario definition usually includes commands
that specify the TLUPlus libraries, operating conditions, and constraints. However, other
commands can be included. For example, you can use the set_scenario_options
command to control leakage power on a per-scenario basis or the read_sdf command to
set the correct net RC and pin-to-pin delay information in the respective scenarios.

Setting Up the Design for a Multicorner-Multimode Flow

To set up a design for a multicorner-multimode flow, you must specify the TLUPlus files,
operating conditions, and Synopsys Design Constraints as shown in Figure 13-1 on
page 13-4. Design Compiler uses the nominal process, voltage, and temperature (PVT)
values to group the libraries into different sets. Libraries with the same PVT values are
grouped into the same set. For each scenario, the PVT of the maximum operating condition
is used to select the appropriate set. Setup considerations are described in the following
sections:

• Specifying TLUPlus Files

• Specifying Operating Conditions

• Specifying Constraints

Specifying TLUPlus Files
Use the set_tlu_plus_files command to specify the TLUPlus file settings explicitly for
each scenario. If a TLUPlus setup is not correct, the tool issues the following error message:

Error: TLU+ sanity check failed (OPT-1429)

To allow for temperature scaling, the TLUPlus files must contain the
GLOBAL_TEMPERATURE, CRT1, and (optionally) CRT2 variables. The following example
is an excerpt from a TLUPlus file:

TECHNOLOGY = 90nm_lib
GLOBAL_TEMPERATURE = 105.0
CONDUCTOR metal8 {THICKNESS= 0.8000
 CRT1=4.39e-3 CRT2=4.39e-7
...

13-5

The TLUPlus file settings, which you specify by using the set_tlu_plus_files command,
must be made explicitly for each scenario. If a TLUPlus setup is not correct, an error similar
to the following message is issued:

Error: tlu_plus files are not set in this scenario s1.

RC values will be 0.

Specifying Operating Conditions
The operating condition of the design must be set for each scenario. You can specify
different operating conditions for different scenarios using the set_operating_condition
command.

dc_shell-topo> set_operating_conditions SLOW_95 -library

max_vmax_v95_t125

If an operating condition is not defined for a particular scenario, MV-020 and MV-21
warnings are issued.

Specifying Constraints
In a multicorner-multimode design, you are required to specify Synopsys Design Constraints
(SDC) specific to a scenario after you have created the scenario. Any scenario-specific
constraints that existed before are discarded, as shown in the following example:

dc_shell-topo> create_scenario s1
Warning: Any existing scenario-specific constraints

are discarded. (MV-020)
dc_shell-topo> report_timing
Warning: No operating condition was set in scenario s1 (MV-021)

Handling Libraries in the Multicorner-Multimode Flow

The following sections discuss how to handle libraries properly in multicorner-multimode
designs:

• Link Libraries With Equal Nominal PVT Values

• Distinct PVT Requirements

• Unsupported k-factors

• Automatic Detection of Driving Cell Library

13-6

• Relating the Minimum Library to the Maximum Library

• Unique Identification of Libraries Based on File Names

Link Libraries With Equal Nominal PVT Values
The link library lists all of the libraries that are to be used for linking the design for all
scenarios. Furthermore, because several libraries are often intended for use with a
particular scenario, such as a standard cell library and a macro library, Design Compiler
automatically groups the libraries in the link library list into sets and identifies which set must
be linked with each scenario.

Library grouping is based on their PVT values. Libraries with the same PVT values are
grouped into the same set. The tool uses the PVT value of a scenario’s maximum operating
condition to select the appropriate set for the scenario.

If the tool finds no suitable cell in any of the specified libraries, an error is reported as shown
in the following example,

Error: cell TEST_BUF2En_BUF1/Z (inx4) is not characterized
for 0.950000V, process 1.000000,
temperature -40.000000. (LIBSETUP-001)

You should verify the operating conditions and library setup. If you do not correct this error,
optimization is not performed.

Link Library Example

Table 13-1 shows the libraries in the link library list, their nominal PVT values, and the
operating condition (if any) specified in each library. The design has instances of
combinational, sequential, and macro cells.

Table 13-1 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions
in library (PVT)

Combo_cells_slow.db 1/0.85/130 WORST (1/0.85/130)

Sequentials_fast.db 1/1.30/100 None

Macros_fast.db 1/1.30/100 None

Macros_slow.db 1/0.85/130 None

13-7

To create a scenario s1 with the cell instances linked to the Combo_cells_slow,
Macros_slow, and Sequential_slow libraries, you run:

dc_shell-topo> create_scenario s1
dc_shell-topo> set_operating_conditions -max WORST -library slow.db:slow

Note that providing the -library option in the set_operating_conditions command
merely helps the tool identify the correct PVT for the operating conditions. The PVT of the
maximum operating condition is used to find the correct matches in the link library list during
linking.

Using this linking scheme, you can link libraries that do not have operating condition
definitions. The scheme also provides the flexibility of having multiple library files (for
example, one for standard cells, another for macros).

Inconsistent Libraries Warning

When you use multiple libraries, if the library cells with the same name are not functionally
identical or do not have identical sets of library pins (same name and order), a warning is
issued, stating that the libraries are inconsistent.

You should run the check_library command before running a multicorner-multimode flow,
as shown in the following example:

set_check_library_options -mcmm
check_library -logic_library_name {a.db b.db}

When you use the -mcmm option with the set_check_library_options command, the
check_library command performs multicorner-multimode specific checks such as the
operating condition or power-down consistencies. When inconsistencies are detected, the
tool generates a report. In addition, the tool also issues the following summary information
message:

Information: Logic library consistency check FAILED for MCMM.
(LIBCHK-360)

Combo_cells_fast.db 1/1.30/100 BEST (1/1.3/100)

Sequentials_slow.db 1/0.85/130 None

Table 13-1 Link Libraries With PVT and Operating Conditions (Continued)

Link library (in order) Nominal PVT Operating conditions
in library (PVT)

13-8

Power Compiler User Guide Version E-2010.12-SP2
To overcome the LIBCHK-360 messages, you must check the libraries and the report to
identify the cause for the inconsistency. The man page of the LIBCHK-360 information
message describes possible causes for the various library inconsistencies.

Setting the dont_use Attribute on Library Cells
When you set the dont_use attribute on a library cell, the multicorner-multimode feature
requires that all characterizations of this cell have the dont_use attribute. Otherwise, the
tool might consider the libraries as inconsistent. You can use the wildcard character to set
the dont_use attribute as follows:

set_dont_use */AN2

Note:
Note that you do not have to issue the command multiple times to set the dont_use
attribute on all characterizations of a library cell.

Distinct PVT Requirements
If the maximum libraries associated with each corner (scenario) do not have distinct PVT
values, the cell instances are linked incorrectly, which results in incorrect timing values. This
happens because the nominal PVT values that are used to group the link libraries into sets,
group the maximum libraries of different corners into one set. Consequently, the cell
instances are linked to the first cell with a matching type in that set (for example, the first
AND2_4), even though the -library option is specified for each of the scenario-specific
set_operating_conditions commands. That is, the -library option locates the
operating condition and its PVT values but not the library to link.

The following two tables and the following script demonstrate the problem:

Table 13-2 shows the libraries in the link library, listed in order; their nominal PVT values;
and the operating condition that is specified in each library.

Table 13-2 Link Libraries With PVT and Operating Conditions

Link library (in order) Nominal PVT Operating conditions
in library (PVT)

Ftyp.db 1/1.30/100 WORST (1/1.30/100)

Typ.db 1/0.85/100 WORST (1/0.85/100)

TypHV.db 1/1.30/100 WORST (1/1.30/100)

Holdtyp.db 1/0.85/100 BEST (1/0.85/100)
Chapter 13: Multicorner-Multimode Optimization
Handling Libraries in the Multicorner-Multimode Flow 13-9
Chapter 13: Multicorner-Multimode Optimization
Handling Libraries in the Multicorner-Multimode Flow 13-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Table 13-3 and the script commands that follow show the operating condition specification
for each of the scenarios.

create_scenario s1
set_operating_conditions WORST -library Typ.db:Typ
create_scenario s2
set_operating_conditions WORST -library TypHV.db:TypHV
create_scenario s3
set_operating_conditions WORST -library Ftyp.db:Ftyp
create_scenario s4
set_operating_condition \

-max WORST -max_library Typ.db:Typ \
-min BEST -min_library HoldTyp.db:HoldTyp

The tool groups the Ftyp.db, and TypHV.db libraries into a set with Ftyp.db as the first library
in the set. Therefore, the cell instances in scenario s2 are not linked to the library cells in
TypHV.db, as intended. Instead, they are linked to the library cells in the Ftyp.db library,
assuming that all the libraries include the library cells required to link the design.

Ambiguous Libraries Warning

When you use multiple libraries, if any of the libraries with same-name cells have the same
nominal PVT, a warning is issued, stating that the libraries are ambiguous. The warning also
states which libraries are being used and which are being ignored.

Unsupported k-factors
Multicorner-multimode design libraries do not support the use of k-factor scaling. Therefore,
the operating conditions that you specify for each scenario must match the nominal
operating conditions of one of the libraries in the link library list.

Table 13-3 Scenarios and Their Operating Conditions

Scenarios

s1 s2 s3 s4

Maximum
Operating
Condition
(Library)

WORST
(Typ.db)

WORST
(TypHV.db)

WORST
(Ftyp.db)

WORST
(Typ.db)

Minimum
Operating
Condition
(Library)

None None None BEST
(HoldTyp.db)
Chapter 13: Multicorner-Multimode Optimization
Handling Libraries in the Multicorner-Multimode Flow 13-10

Power Compiler User Guide Version E-2010.12-SP2
Automatic Detection of Driving Cell Library
In multicorner-multimode flow, the operating condition setting is different for different
scenarios. To build the timing arc for the driving cell, different technology libraries are used
for different scenarios. You can specify the library using the -library option of the
set_driving_cell command. But specifying the library is optional because the tool can
automatically detect the driving cell library.

When you specify the library using the -library option of the set_driving_cell
command, the tool searches for the specified library in the link library set. If the specified
library exists, it is used. If the specified library does not exist in the link library, the tool issues
the UID-993 error message as follows:

Error: Cannot find the specified driving cell in memory.(UID-993)

When you do not use the -library option of the set_driving_cell command, the tool
searches all the libraries for the matching operating conditions. The first library in the link
library set, that matches the operating condition is used. If no library in the link library set
matches the operating condition, the first library in the link library set, that contains the
matching library cell is used. If no library in the link library set contains the matching library
cell, the tool issues the UID-993 error message.

Relating the Minimum Library to the Maximum Library
The set_min_library command is not scenario-specific. This implies that if you use this
command to relate a minimum library to a particular maximum library, that relationship
applies to all scenarios.

For example, you could not relate two different minimum libraries–for example, Fast_0yr.db
and Fast_10yr.db – with the maximum library, Slow.db, in two separate scenarios. The first
minimum library that you specify would apply to both scenarios. Table 13-4 shows the
unsupported configuration.

Table 13-4 Unsupported Multiple Minimum Library Configuration

Scenarios

s1 s2

Maximum library Slow.db Slow.db

Minimum library Fast_0yr.db Fast_10yr.db
Chapter 13: Multicorner-Multimode Optimization
Handling Libraries in the Multicorner-Multimode Flow 13-11
Chapter 13: Multicorner-Multimode Optimization
Handling Libraries in the Multicorner-Multimode Flow 13-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Note, however, that a minimum library can be associated with multiple maximum libraries.
As shown in the example in Table 13-5, the minimum library Fast_0yr.db is paired with both
the maximum library Slow.db of scenario 1 and the maximum library SlowHV.db
of scenario 2.

Unique Identification of Libraries Based on File Names
Two libraries with the same name can be uniquely identified if their file names, which
precede the library names, which are colon-separated, are unique. For example, the library
ABC.db:stdcell (where ABC.db is the library file name and stdcell is the library name) is
identifiable with respect to the library DEF.db:stdcell.

However, two libraries that have the same file name and library name but reside in different
directories are not uniquely distinguishable. The following two libraries are not uniquely
distinguishable:

/remote/snps/testcase/LIB/fast/ABC.db

/remote/snps/testcase/LIB/slow/ABC.db

Automatic Inference of Operating Conditions for Macro, Pad and
Switch Cells

In multivoltage and multicorner-multimode designs, as designs increase in size and
complexity, manually specifying the operating conditions and linking them with the
appropriate library cells with matching operating conditions becomes tedious and time
consuming. So in such designs it is useful to automatically infer the operating conditions,
especially for the multi-rail pad cells, macro cells and switch cells. When the operating
condition set on the design does not match the operating condition of the cell rails or when
the design operating condition does not have rails at all, Power Compiler issues a
LIBSETUP-001 error message.

Table 13-5 Supported Minimum-Maximum Library Configuration

Scenarios

s1 s2

Maximum Library Slow.db SlowHV.db

Minimum Library Fast_0yr.db Fast_0yr.db
Chapter 13: Multicorner-Multimode Optimization
Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells 13-12

Power Compiler User Guide Version E-2010.12-SP2
Power Compiler can infer the operating conditions for macro cells, pad cells, and switch cells
in both UPF and non-UPF modes. However, you have to set the following variables
appropriately for the tool to infer the operating conditions:

libsetup_pad_opcond_inference_level
libsetup_macro_opcond_inference_level
libsetup_switch_opcond_inference_level

Note:
Power Compiler does not perform automatic operating condition inference for standard
cells. The operating conditions of the standard cells should match exactly with the
operating conditions of the design.

The value of these variables determine the degree to which the inferred operating condition
can deviate from the operating condition of the design. When you permit higher deviation,
the probability of automatic inference of operating condition is higher, resulting in a lesser
number of LIBSETUP-001 error messages. The values that you can specify with these
variables determines the level of deviation that you permit to the tool. The following table
summarizes the values that you can specify and its impact on the automatic inference:

Power Compiler automatically infers the operating condition for each instance of a macro,
pad or switch cell that does not have an explicitly specified operating condition. The
automatic inference is performed when the operating condition on a macro, pad or switch
cell does not match the operating condition set on the design and the tool detects a potential
LIBSETUP-001 error.

Value specified with the
variable

Degree of deviation in the inferred operating
condition and its impact

EXACT Operating condition inferred is exact. This will result in no
inference at all. Timing is exact

UNIQUE_RESOLVED The library cell whose name matches exactly with the
cell is inferred. You cannot choose a different library cell.
Timing will be incorrect. You do not encounter
LIBSETUP-001 error messages

CLOSEST_RESOLVED This is the default value. If multiple library cells are
available, library cell whose operating condition is
closest to the design is chosen. Choosing this operating
condition can cause inaccurate timings

CLOSEST_UNRESOLVED Similar to CLOSEST_RESOLVED. The library cell
chosen can be less closer than when you set the value to
CLOSEST_RESOLVED.
Chapter 13: Multicorner-Multimode Optimization
Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells 13-13
Chapter 13: Multicorner-Multimode Optimization
Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells 13-13

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The details of the behavior of the tool when you set a specific value to these variables are
described in this section:

• EXACT

When you set the value to EXACT, the automatic operating condition inference is not
performed.

• UNIQUE_RESOLVED

The tool performs a name based search in the target libraries. If multiple library cells
match with the cell name, the tool does not perform the inference. However, if the cell is
present in a unique library file and no other library contains the cell, the operating
condition is inferred. If the library cell has explicit power and ground connections, and if
the rail voltage matches the explicit power connection rail voltages, the operating
condition is inferred. Otherwise, operating condition is not inferred on the cell and a
LIBSETUP-001 error message is issued.

• CLOSEST_RESOLVED

This is the default value used when you do not use the variables.

For each macro, pad or switch cell instance, the tool finds the set of library cells with the
same name. If multiple library cells match with the instance name, these library cells are
filtered to choose a single library cell. Also, if the matching cells are connected to power
nets, cells whose rail voltages do not match the explicit power connection rails are
eliminated from further filtering. Within this set, the tool groups the library cells, taking into
account these conditions, in the order of priority in which they are listed:

1. The PVT values of the library cell match the PVT values of the design.

2. The process, temperature and voltage values from one of the rails match the PVT
values of the design.

3. The voltage and temperature values of the library cell match the process and voltage
values of the design.

4. The temperature and voltage value of the library cell matches the temperature and
voltage value of the design.

5. The process and voltage value of the library cell matches the process and voltage
value of the design.

6. The voltage value of the library cell matches the voltage value of the design.

7. The voltage value from one of the rails matches the voltage value of the design.

8. The process and temperature value of the library cell matches the process and
temperature value of the design.
Chapter 13: Multicorner-Multimode Optimization
Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells 13-14

Power Compiler User Guide Version E-2010.12-SP2
9. None of process, voltage, and temperature values of the library cell matches with the
process, voltage, and temperature values of the design.

After the library cells are grouped, the tool inspects each group in the order mentioned
above. The inference is terminated in the following situations:

• None of the groups contain exactly one cell.

• None of the groups contain any library cell.

When Power Compiler finds a group that contains exactly one cell the tool chooses the
library cell and uses the PVT values of that cell as the operating condition of the
associated macro cell, switch cell or the pad cell.

• CLOSEST_UNRESOLVED

When you set the value of the variables to CLOSEST_UNRESOLVED, the tool groups
the library cells based on the matching names, as in CLOSEST_RESOLVED. The tool
then picks the first library cell from the first non-empty group of library cells. It then set the
operating condition of the operating condition of the library cell on the specific cell
instance and links the cell instance to he library cell.

The automatic inference of operating conditions is supported in both IEEE 1801™ (UPF)
and non-UPF modes. You can disable the automatic inference of operating conditions by
explicitly setting the operating conditions. The tool issues a LIBSETUP-751 information
message when operating conditions are successfully inferred on a cell instance.

Scenario Management Commands

You use the following commands to create and manage scenarios:

• create_scenario

• current_scenario

• all_scenarios

• all_active_scenarios

• set_active_scenarios

• set_scenario_options

• set_preferred_scenarios

• check_scenarios

• remove_scenario

• report_scenarios
Chapter 13: Multicorner-Multimode Optimization
Scenario Management Commands 13-15
Chapter 13: Multicorner-Multimode Optimization
Scenario Management Commands 13-15

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• report_scenario_options

For more details on the use of these commands, see the Design Compiler Topographical
Technology chapter in the Design Compiler User Guide.

Using ILMs in Multicorner-Multimode Designs

An interface logic model (ILM) is a structural model of a circuit that is modeled as a smaller
circuit representing the interface logic of the block. The model contains cells whose timing is
affected by or affects the external environment of a block. ILMs enhance capacity and
reduce runtime for the optimization of the top-level design. For more details, see Using the
Interface Logic Model chapter of the Design Compiler User Guide.

ILMs are compatible with multicorner-multimode scenarios. You can apply
multicorner-multimode constraints to an ILM and use the ILM in a top-level design.

The following requirements apply to using ILMs with multicorner-multimode scenarios:

• For each scenario in the top-level design, an identically named scenario must exist in
each of the ILM blocks used in the top-level design. An ILM can have additional scenarios
that are not used at the top-level design.

• If a top-level design does not have multicorner-multimode scenarios defined in it, the
ILMs also cannot have multicorner-multimode scenarios defined in it.

• For each TLUPlus file that is used, the ILM stores the extraction data and the specified
operating condition. In the top-level design, you cannot use additional TLUPlus files or
define additional temperature corners for the existing TLUPlus files.

ILM Checks for Scenario Management
When an ILM has scenario information, to use the ILM at the top-level, follow these steps:

1. Set the current design to the top-level design.

2. Remove all scenarios.

remove_scenarios -all

3. Define scenarios for the top level design.

The scenarios defined in the top-level design must be the same or subset of the
scenarios defined in the ILM blocks. All the scenario definitions in the top level must be
completed before the next step.

4. Perform optimization.
Chapter 13: Multicorner-Multimode Optimization
Using ILMs in Multicorner-Multimode Designs 13-16

Power Compiler User Guide Version E-2010.12-SP2
compile_ultra

At the beginning of compilation, the compile_ultra command performs the following
sanity checks to ensure that there are no scenario mismatches between the top-level
design and the ILMs. The compilation is terminated when any of the following
mismatches are encountered:

• The number of scenarios in the top-level design must be the same or subset of the
number of scenarios in the ILM blocks.

ILM-70 error message is issued and compilation is terminated when the top-level
design has more scenarios than the ILM blocks.

Error: Scenario S6 is not available in ILM Block1. (ILM-70)

• The scenario information in the top-level design is consistent with the scenario
information in the ILM blocks.

If scenarios are not defined in the top-level design and the ILM blocks have scenario
definitions, ILM-73 error message is issued and compilation is terminated.

Error: Inconsistent use of of ILM BlockInit in the
multicorner-multimode flow. ILM BlockInit has scenarios defined while
top design Top does not have scenarios defined. (ILM-73)

You can also use the check_scenarios command to check consistency between scenarios.
For more details, see the command man page.

Power Optimization Techniques

Design Compiler Graphical supports power optimization for multicorner-multimode designs.
You set the -leakage_power and -dynamic_power options of the set_scenario_options
command to true to set the leakage and dynamic power constraints on specific scenarios
of a multicorner-multimode design. The following sections describe how you perform
different types of power optimization on multicorner-multimode designs.

Optimizing for Leakage Power
Figure 13-2 on page 13-18 shows how to set various constraints on different scenarios of a
multicorner-multimode design.

Typically, in a multicorner-multimode design, leakage power optimization and timing
optimization are done on different corners. Therefore, the worst case leakage corner can be
different from a worst case timing corner. To perform leakage power optimization on specific
corners, set the leakage power constraint on specific scenarios of the
multicorner-multimode design by using the set_scenario_options command as follows:
Chapter 13: Multicorner-Multimode Optimization
Power Optimization Techniques 13-17
Chapter 13: Multicorner-Multimode Optimization
Power Optimization Techniques 13-17

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
set_scenario_options -scenarios S1 -setup false -hold false

-leakage_power true -dynamic_power false

Note:
The get_dominant_scenarios command is not supported in Design Compiler
Graphical.

Figure 13-2 Setting Different Constraints on Different Scenarios

Note the following points when you optimize for leakage power in multicorner-multimode
designs:

• Define the leakage power constraint on specific scenarios targeted for leakage power
optimization.

• Leakage and timing optimizations can be performed concurrently across multiple
scenarios.

• The worst case leakage corner is different from the worst case timing corner.

The following example script shows how to create a scenario and set the leakage power
constraint on the scenario:

Example 13-1 Performing Leakage Power Optimization in a Multicorner-Multimode Flow
read_verilog top.v
current_design top
link
Chapter 13: Multicorner-Multimode Optimization
Power Optimization Techniques 13-18

Power Compiler User Guide Version E-2010.12-SP2

create_scenario s1
set_operating_conditions WCCOM -library slow.db:slow
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s1.sdc
set_switching_activity -toggle_rate 0.25 -clock p_Clk -static_probability
0.015 -select inputs
set_scenario_options -scenarios s1 -setup false -hold false \
-leakage_power true -dynamic_power false

create_scenario s2
set_operating_conditions BCCOM -library fast.db:fast
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s2.sdc

create_scenario s3
set_operating_conditions TCCOM -library typ.db:typ
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s3.sdc

create_scenario s4
set_operating_conditions NCCOM -library typ2.db:typ2
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
read_sdc ./s4.sdc
set_scenario_options -scenarios s4 -setup false -hold false \
-leakage_power true -dynamic_power false

report_scenarios
compile_ultra -scan -gate_clock
report_power –scenario [all_scenarios]
report_timing -scenario [all_scenarios]
report_scenarios
report_qor
report_saif

Optimizing for Dynamic Power
To perform dynamic power optimization for a multicorner-multimode design, you must use
the set_scenario_options command on every scenario of the design as follows:

set_scenario_options -scenarios S1 -setup false -hold false \
-leakage_power false -dynamic_power true

Do not specify the dynamic power constraint only on certain scenarios. If you do so, Power
Compiler issues an error message.

Note:
Unlike leakage power optimization where you specify the leakage constraint on specific
scenarios, for dynamic power optimization, the dynamic power constraint must be
specified on every scenario of the multicorner-multimode design.
Chapter 13: Multicorner-Multimode Optimization
Power Optimization Techniques 13-19
Chapter 13: Multicorner-Multimode Optimization
Power Optimization Techniques 13-19

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The following example script shows how to set dynamic power constraints on the
scenarios of a multicorner-multimode design.

Example 13-2 Performing Dynamic Power Optimization in a Multicorner-Multimode Design

create_scenario s1
read_sdc s1.sdc
set_operating_conditions WCCOM -library test1.db:test1
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map
set_scenario_options -scenarios S1 -setup false -hold false \
-leakage_power false -dynamic_power true

create_scenario s2
read_sdc s2.sdc
set_operating_conditions BCCOM -library test2.db:test2
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map

set_scenario_options -scenarios S2 -setup false -hold false \
-leakage_power true -dynamic_power true
create_scenario s3
read_sdc s3.sdc
set_operating_conditions NCCOM -library test3.db:test3
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map

set_scenario_options -scenarios S3 -setup false -hold false \
-leakage_power false -dynamic_power true

create_scenario s4
read_sdc s4.sdc
set_operating_conditions WCCOM -library test4.db:test4
set_tlu_plus_files -max_tluplus max.tlu_plus -tech2itf_map tech.map

set_scenario_options -scenarios S4 -setup false -hold false \

-leakage_power false -dynamic_power true

Reporting Commands

This section describes the commands that you can use for reporting multicorner-multimode
designs.

report_scenario Command
The report_scenario command reports the scenario setup information for
multicorner-multimode designs. The scenario specific information includes the technology
library used, the operating condition, and TLUPlus files.

The following example shows a report generated by the report_scenarios command:
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-20

Power Compiler User Guide Version E-2010.12-SP2

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: C-2009.06
Date : Fri Apr 17 20:55:59 2009

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4
All Active scenarios (Total=1): SCN1
Current scenario : SCN1

Scenario #0: SCN1 is active.
Scenario options:
Has timing derate: No
Library(s) Used:
 technology library name (File: library.db)

Operating condition(s) Used:
 Analysis Type : bc_wc
 Max Operating Condition: library:WCCOM
 Max Process : 1.00
 Max Voltage : 1.08
 Max Temperature: 125.00
 Min Operating Condition: library:BCCOM
 Min Process : 1.00
 Min Voltage : 1.32
 Min Temperature: 0.00

Tlu Plus Files Used:
 Max TLU+ file: tlu_plus_file.tf
 Tech2ITF mapping file: tf2itf.map

Reporting Commands That Support the -scenario Option
Some reporting commands support the -scenario option to report scenario-specific
information. You can specify a list of scenarios to the -scenario option, and the tool reports
scenario details for the specified scenarios.

The following reporting commands support the -scenario option:

• report_timing

• report_timing_derate

• report_power

• report_clock

• report_path_group
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-21
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-21

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
• report_extraction_options

• report_tlu_plus_files

• report_constraint

Commands That Report the Current Scenario
The following reporting commands report scenario-specific details for the current scenario.
The header section of the report contains the name of the current scenario. No additional
options are required to report the scenario-specific details of the current scenario.

• report_net

• report_annotated_check

• report_annotated_transition

• report_annotated_delay

• report_attribute

• report_case_analysis

• report_ideal_network

• report_internal_loads

• report_clock_gating_check

• report_clock_tree

• report_delay_calculation

• report_delay_estimate_options

• report_transitive_fanout

• report_disable_timing

• report_latency_adjustment_options

• report_net

• report_power_calculation

• report_noise

• report_signal_em

• report_timing_derate
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-22

Power Compiler User Guide Version E-2010.12-SP2
• report_timing_requirements

• report_transitive_fanin

• report_crpr

• report_clock_timing

Reporting Examples
This section contains sample reports for some of the multicorner-multimode reporting
commands.

report_qor

The report_qor command reports by default, the QoR details for all the scenarios in the
design. The following example shows a report generated by the report_qor command:

**
Report : qor
Design : DESIGN1
**
 Scenario 's1'
 Timing Path Group 'reg2reg'

 Levels of Logic: 33.00
 Critical Path Length: 694.62
 Critical Path Slack: -144.52
 Critical Path Clk Period: 650.00
 Total Negative Slack: -4533.01
 No. of Violating Paths: 136.00

 Scenario 's2'
 Timing Path Group 'reg2reg'

 Levels of Logic: 33.00
 Critical Path Length: 393.61
 Critical Path Slack: 61.18
 Critical Path Clk Period: 500.00
 Total Negative Slack: 0.00
 No. of Violating Paths: 0.00

report_timing -scenario [all_scenarios]

This command reports timing results for the active scenarios in the design. You can specify
a list of scenarios with the -scenario option. When the -scenario option is not specified,
only the current scenario is reported.
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-23
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-23

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : DESIGN1
Version: C-2009.06
Date : Thu Apr 16 20:55:59 2009
**

* Some/all delay information is back-annotated.

A fanout number of 1000 was used for high fanout net computations.

Startpoint: TEST_BUF2En
 (input port clocked by clk)
Endpoint: TEST1/TEST2_SYN/latch_3
 (non-sequential rising-edge timing check clocked by clk)
Scenario: s1
Path Group: clk
Path Type: max
Point Incr Path Lib:OC

clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 450.00 450.00 f
TEST_BUF2En (in) 0.00 450.00 f stdcell_typ:WORST
TEST_BUF2En_BUF1/Z (inx4) 9.75 459.75 r stdcell_typ:WORST
U468/Z (inx10) 10.21 469.96 f stdcell_typ:WORST
TEST_BUF2En_BUF/Z (inx11) 8.74 478.70 r stdcell_typ:WORST
U293/Z (inx11) 9.30 488.00 f stdcell_typ:WORST
TEST1/TEST2_SYN/U74963/Z (nr2x4) 12.78 500.78 r stdcell_typ:WORST
U31662/Z (inx4) 10.58 511.37 f stdcell_typ:WORST
TEST1/TEST2_SYN/U75093/Z (aoi21x6) 18.98 530.34 r stdcell_typ:WORST
U42969/Z (nd2x6) 14.16 544.51 f stdcell_typ:WORST
TEST1/TEST2_SYN/U53046/Z (inx8) 13.35 557.86 r stdcell_typ:WORST
U2765/Z (inx8) 11.48 569.33 f stdcell_typ:WORST
U32442/Z (inx6) 7.61 576.94 r stdcell_typ:WORST
U33615/Z (nd2x3) 18.14 595.09 f stdcell_typ:WORST
U32269/Z (nd2x6) 8.74 603.82 r stdcell_typ:WORST
TEST1/TEST2_SYN/clk_gate/EN (cklan2x1) 0.00 603.82 r stdcell_typ:WORST
data arrival time 603.82

clock clk (rise edge) 650.00 650.00
clock network delay (propagated) 0.00 650.00
TEST1/TEST2_SYN/clk_gate/CLK (cklan2x1)
 0.00 650.00 r
library setup time -56.25 593.75
data required time 593.75
--
data required time 593.75
data arrival time -603.82
--
slack (VIOLATED) -10.07
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-24

Power Compiler User Guide Version E-2010.12-SP2
report_constraint

This command reports constraints for all active scenarios. Each scenario is reported
separately. When used with the -scenario option, the report_constraint command
reports constraints for a specified list of scenarios.

**
Report : constraint
Design : DESIGN1
Scenarios: 0, 1
Version: C-2009.06
Date : Thu Apr 16 20:55:59 2009
**
 Weighted
Group (max_delay/setup) Cost Weight Cost Scenario

CLK 10.07 1.00 10.07 s1
in2out 372.89 1.00 372.89 s1
in2reg 199.73 1.00 199.73 s1
reg2out 467.99 1.00 467.99 s1
reg2reg 171.16 1.00 171.16 s1
default 0.00 1.00 0.00 s1
CLK 90.60 1.00 90.60 s2
in2out 474.97 1.00 474.97 s2
in2reg 166.88 1.00 166.88 s2
reg2out 326.46 1.00 326.46 s2
reg2reg 0.00 1.00 0.00 s2
default 0.00 1.00 0.00 s2

max_delay/setup 4404.52

...
 Multi-Scenario
Constraint Cost

multiport_net 0.00 (MET)
min_capacitance 0.00 (MET)
max_transition 45.28 (VIOLATED)
max_fanout 150.00 (VIOLATED)
max_capacitance 0.00 (MET)
max_delay/setup 4404.52 (VIOLATED)
critical_range 4404.52 (VIOLATED)
min_delay/hold 0.00 (MET)
max_area 714233.56 (VIOLATED)

report_tlu_plus_files

This command reports the TLUPlus files associations; it shows each minimum and
maximum TLUPlus and layer map file for each scenario:

dc_shell-topo> current_scenario s1
Current scenario is: s1

dc_shell-topo> report_tlu_plus_files
Max TLU+ file: /snps/testcase/s1max.tluplus
Min TLU+ file: /snps/testcase/s1min.tluplus
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-25
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-25

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Tech2ITF mapping file: /snps/testcase/tluplus_map.txt

report_scenarios

The report_scenarios command reports the scenario setup information for
multicorner-multimode designs. This command reports all the defined scenarios. The
scenario-specific information includes the technology library used, the operating condition,
and the TLUPlus files. The following example shows a report generated by the
report_scenarios command:

Report : scenarios
Design : DESIGN1
scenario(s) : SCN1
Version: C-2009.06
Date : Fri Apr 17 20:55:59 2009

All scenarios (Total=4): SCN1 SCN2 SCN3 SCN4
All Active scenarios (Total=1): SCN1
Current scenario : SCN1

Scenario #0: SCN1 is active.
Scenario options:
Has timing derate: No
Library(s) Used:
 technology library name (File: library.db)

Operating condition(s) Used:
 Analysis Type : bc_wc
 Max Operating Condition: library:WCCOM
 Max Process : 1.00
 Max Voltage : 1.08
 Max Temperature: 125.00
 Min Operating Condition: library:BCCOM
 Min Process : 1.00
 Min Voltage : 1.32
 Min Temperature: 0.00

Tlu Plus Files Used:
 Max TLU+ file: tlu_plus_file.tf
 Tech2ITF mapping file: tf2itf.map

report_power

The report_power command supports the -scenario option. Without the -scenario
option, only the current scenario is reported. To report power information for all scenarios,
use the report_power -scenarios [all_scenarios] command.
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-26

Power Compiler User Guide Version E-2010.12-SP2
Note:
In the multicorner-multimode flow, the report_power command does not perform clock
tree estimation. The command reports only the netlist power in this flow.

The following example shows the report generated by the report_power -scenario
command.

**
Report : power
Design : Design_1
Scenario(s): s1
Version: C-2009.06
Date : Wed Apr 15 12:52:02 2009
**

Library(s) Used: slow (File: slow.db)

Global Operating Voltage = 1.08
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = Unitless

Warning: Could not find correlated power. (PWR-725)

Power Breakdown

 Cell Driven Net Tot Dynamic Cell
 Internal Switching Power (mW) Leakage
Cell Ower (mW) Power (mW) (% Cell/Tot) Power(nW)
--
Netlist Power 4.8709 1.2889 6.160e+00 (79%) 1.351e+05
Estimated Clock Tree Power N/A N/A (N/A) N/A
--
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-27
Chapter 13: Multicorner-Multimode Optimization
Reporting Commands 13-27

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Supported SDC Commands

Table 13-6 lists the SDC commands supported in the multicorner-multimode flow.

Table 13-6 Supported SDC Commands

Commands

all_clocks set_fanout_load

create_clock set_input_delay

create_generated_clock set_input_transition

get_clocks set_latency_adjustment_options

group_path set_load

set_annotated_delay set_max_capacitance

set_capacitance set_max_delay

set_case_analysis set_max_dynamic_power

set_clock_gating_check set_max_leakage_power

set_clock_groups set_max_time_borrow

set_clock_latency set_max_transition

set_clock_transition set_min_delay

set_clock_uncertainty set_multicycle_path

set_data_check set_output_delay

set_disable_timing set_propagated_clock

set_drive set_resistance

set_false_path set_timing_derate

set_voltage
Chapter 13: Multicorner-Multimode Optimization
Supported SDC Commands 13-28

Power Compiler User Guide Version E-2010.12-SP2
Multicorner-Multimode Script Example

Example 13-3 shows a basic sample script for the multicorner-multimode flow.

Example 13-3 Basic Script to Run a Multicorner-Multimode Flow

#......path settings......
set search_path ". $DESIGN_ROOT $lib_path/dbs \

$lib_path/mwlibs/macros/LM"
set target_library "stdcell.setup.ftyp.db \

stdcell.setup.typ.db stdcell.setup.typhv.db"
set link_library [concat * $target_library \

setup.ftyp.130v.100c.db setup.typhv.130v.100c.db \
setup.typ.130v.100c.db]

set_min_library stdcell.setup.typ.db -min_version stdcell.hold.typ.db

#......MW setup......
#......load design......

create_scenario s1
set_operating_conditions WORST -library stdcell.setup.typ.db:stdcell_typ
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s1.sdc
set_scenario_options -scenarios s1-setup false -hold false \
-leakage_power true -dynamic_power false

create_scenario s2
set_operating_conditions BEST -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s2.sdc

create_scenario s3
set_operating_conditions NOM -library stdcell.setup.ftyp.db:stdcell_ftyp
set_tlu_plus_files -max_tluplus design.tlup -tech2itf_map layermap.txt
read_sdc s3.sdc

set_active_scenarios {s1 s2}
report_scenarios
compile_ultra -scan -gate_clock
report_qor
report_constraints
report_timing -scenario [all_scenarios]
.
.
insert_dft
.
.
compile_ultra –incr

Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-29
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-29

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
The multicorner-multimode design in Figure 13-3 on page 13-31 and the subsequent
example scripts in Example 13-4 on page 13-32 and Example 13-5 on page 13-33 show
how you define your power intent in the UPF file and define the scenarios for a
multicorner-multimode multivoltage design.

Multicorner-multimode multivoltage designs are useful in applications such as dynamic
voltage and frequency scaling (DVFS). In hierarchical designs, the top-level design is
generally optimized at a different voltage and in a different corner than the subdesigns of the
hierarchy. The power intent specification can be for the entire design in a single UPF (Unified
Power Format) file.

Standard cell and special cell libraries should be available to satisfy all voltages defined
across multiple corners.

The design in Figure 13-3 on page 13-31 has two scenarios of operation, S1 and S2. In the
scenario S1, the power domain PDT operates at 1.0V, while the power domain PDA
operates at 0.8V or OFF and power domain PDB operates at 0.6V or OFF. In scenario S2,
the power domain PDT operates at 1.1V, while the power domain PDA operates at 0.6V or
OFF and power domain PDB operates at 0.7V or OFF.

Although the various subdesigns operate at different voltages, you need only a single UPF
file to specify your power intent for the entire design and all its subdesigns. The specific
voltages set on the supply nets are scenario-specific and are set by using the set_voltage
command in each scenario.
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-30

Power Compiler User Guide Version E-2010.12-SP2
Figure 13-3 Multicorner-Multimode Design with Multivoltage

Example 13-4 on page 13-32 and Example 13-5 on page 13-33 show sample scripts using
the UPF flow for the multivoltage, multicorner-multimode design in Figure 13-3 on
page 13-31.
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-31
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-31

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Example 13-4 UPF File Describing Design Intent

Sample UPF File
Create Power Domains
create_power_domain PDT -include_scope
create_power_domain PDA -elements PD_PDA
create_power_domain PDB -elements PD_PDB

Create Supply Nets
create_supply_net VDD -domain PDT
create_supply_net VDDA -domain PDA
create_supply_net VDDB -domain PDB
create_supply_net VSS -domain PDT
create_supply_net VSS -domain PDA -reuse
create_supply_net VSS -domain PDB -reuse

Create Supply Ports
create_supply_port VDD
create_supply_port VDDA
create_supply_port VDDB
create_supply_port VSS

Connect supply nets
connect_supply_net VDD -ports VDD
connect_supply_net VDDA -ports VDDA
connect_supply_net VDDB -ports VDDB
connect_supply_net VSS -ports VSS

Adding port states
add_port_state VDD -state {HV1 1} -state {HV2 1.1}
add_port_state VDDA -state {LV1 0.8} -state {LV3 0.6} -state {OFF off}
add_port_state VDDB -state {LV2 0.9} -state {LV4 0.7} -state {OFF off}
create_pst top_pst -supplies “VDD VDDA VDDB”
add_pst_state PM1 -pst top_pst –state { HV1 LV1 LV3 }
add_pst_state PM2 -pst top_pst -state { HV1 LV1 OFF }
add_pst_state PM3 -pst top_pst -state { HV1 OFF LV3 }
add_pst_state PM4 -pst top_pst -state { HV1 OFF OFF }
add_pst_state PM5 -pst top_pst -state { HV2 LV2 LV4 }
add_pst_state PM6 -pst top_pst -state { HV2 LV2 OFF }
add_pst_state PM7 -pst top_pst -state { HV2 OFF LV4 }
add_pst_state PM8 -pst top_pst -state { HV2 OFF OFF }
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-32

Power Compiler User Guide Version E-2010.12-SP2
Example 13-5 Sample Tcl Script

load_upf example.upf ## UPF file defined above

create_scenario s1
read_sdc s1.sdc
set_operating_conditions WCCOM lib1.0V
set_voltage -object_list VDD 1.0
set_voltage -object_list VDDA 0.8
set_voltage -object_list VDDB 0.9
set_scenario_options -scenario s1 -setup false -hold false \
-leakage_power true -dynamic_power false

create_scenario s2
read_sdc s2.sdc
set_operating_conditions BCCOM lib1.1V
set_voltage -object_list VDD 1.1
set_voltage -object_list VDDA 0.6
set_voltage -object_list VDDB 0.7
set_scenario_options -scenarios s2 -setup false -hold false \
-leakage_power true -dynamic_power false

compile_ultra –scan –gate_clock

Note:
The UPF file is not scenario-specific. As a result, the UPF file must contain port state
definitions and power state tables for all the scenarios.

You use the load_upf command to read the UPF script shown in Example 13-4 on
page 13-32.
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-33
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-33

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Chapter 13: Multicorner-Multimode Optimization
Multicorner-Multimode Script Example 13-34

A
Integrated Clock-Gating Cell Example A

This appendix contains an example .lib description of an integrated clock-gating cell and
some schematic examples of rising (positive) and falling (negative) edge integrated
clock-gating cells.

This appendix contains the following sections:

• Library Description

• Sample Schematics

A-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Library Description

Example A-1 is a description of an integrated clock-gating cell that demonstrates the
following features:

• The clock_gating_integrated_cell attribute

• Appropriate clock-gating attributes on three pins

• Setup and hold arc on enable pin (EN) with respect to the clock pin (CP)

• Combinational arcs from enable pin (EN) and clock pin (CP) to the output pin (Z)

• State table and state function on the output pin (Z)

• Internal power table

Example A-1 HDL Description, Integrated Clock-Gating Cell
cell(CGLP) {
 area : 1;
 clock_gating_integrated_cell : "latch_posedge";
 dont_use : true;
 statetable(" CP EN ", "IQ ") {
 table : " L L : - : L ,\
 L H : - : H ,\
 H - : - : N ";
 }
 pin(IQ) {
 direction : internal;
 internal_node : "IQ";
 }
 pin(EN) {
 direction : input;
 capacitance : 0.017997;
 clock_gate_enable_pin : true;
 timing() {
 timing_type : setup_rising;
 intrinsic_rise : 0.4;
 intrinsic_fall : 0.4;
 related_pin : "CP";
 }
 timing() {
 timing_type : hold_rising;
 intrinsic_rise : 0.4;
 intrinsic_fall : 0.4;
 related_pin : "CP";
 }
 }
 pin(CP) {
 direction : input;
Appendix A: Integrated Clock-Gating Cell Example
Library Description A-2

Power Compiler User Guide Version E-2010.12-SP2
 capacitance : 0.031419;
 clock_gate_clock_pin : true;
 min_pulse_width_low : 0.319;
 }
 pin(Z) {
 direction : output;
 state_function : "CP * IQ";
 max_capacitance : 0.500;
 max_fanout : 8
 clock_gate_out_pin : true;
 timing() {
 timing_sense : positive_unate;
 intrinsic_rise : 0.48;
 intrinsic_fall : 0.77;
 rise_resistance : 0.1443;
 fall_resistance : 0.0523;
 rise_resistance : 0.1443;
 fall_resistance : 0.0523;
 slope_rise : 0.0;
 slope_fall : 0.0;
 related_pin : "CP";
 }
 timing() {
 timing_sense : positive_unate;
 intrinsic_rise : 0.22;
 intrinsic_fall : 0.42;
 rise_resistance : 0.1443;
 fall_resistance : 0.0523;
 slope_rise : 0.0;
 slope_fall : 0.0;
 related_pin : "EN";
 }
 internal_power (){
 rise_power(li4X3){
 index_1("0.0150, 0.0400, 0.1050, 0.3550");
 index_2("0.050, 0.451, 1.501");
 values("0.141, 0.148, 0.256",\
 "0.162, 0.145, 0.234",\
 "0.192, 0.200, 0.284",\
 "0.199, 0.219, 0.297");
 }
 fall_power(li4X3){
 index_1("0.0150, 0.0400, 0.1050, 0.3550");
 index_2("0.050, 0.451, 1.500");
 values("0.117, 0.144, 0.246",\
 "0.133, 0.151, 0.238",\
 "0.151, 0.186, 0.279",\
 "0.160, 0.190, 0.217");
 }
 related_pin : "CP EN" ;
 }
 }
}

Chapter A: Integrated Clock-Gating Cell Example
Library Description A-3
Appendix A: Integrated Clock-Gating Cell Example
Library Description A-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
When creating your model, examine whether it includes all the clock_gate attributes on
both the cell and on the pins. The check_dft command and a few Power Compiler
commands require these attributes in order to recognize the functionality of the cell. DFT
Compiler does not recognize this cell. If these attributes are not included, an error message
displays. Include the following attributes in your model:

• clock_gating_integrated_cell

• clock_gate_test_pin

• clock_gate_enable_pin

• clock_gate_out_pin

• clock_gate_clock_pin

Library Compiler can interpret the functionality of the integrated clock-gating cell directly
from the state table and state function. The following example shows the
clock_gating_integrated_cell attribute with a generic value:

cell(CGLP) {
area : 1;
clock_gating_integrated_cell : "generic";
dont_use : true;
statetable(" CP EN ", "IQ ") {
table : " L L : - : L ,\
L H : - : H ,\
H - : - : N ";
}
pin(IQ) {
 direction : internal;
 internal_node : "IQ";
}
… …
pin(Z) {
direction : output;
 state_function : "CP * IQ";
 max_capacitance : 0.500;
 max_fanout : 8
 clock_gate_out_pin : true;
 timing() {
… …

Sample Schematics

This section contains example schematics of latch-based and latch-free clock-gating styles
for rising- and falling-edge-triggered logic. These are a subset of integrated clock-gating
cells supported by Power Compiler.
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-4

Power Compiler User Guide Version E-2010.12-SP2
Rising-Edge Latch-Based Integrated Cells
The following integrated cells are latch-based. The rising-edge latch-free integrated cells are
described in the following section.

Figure A-1 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs.

Figure A-1 Rising-Edge Latch-Based Integrated Cell (latch_posedge)

Figure A-2 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure A-2 Rising-Edge Latch-Based Integrated Cell With Pre-Control
(latch_posedge_precontrol)

Figure A-3 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

clk

en

enl
gclk

la
tc

h

clk

en

se

gclkenl

la
tc

h
Chapter A: Integrated Clock-Gating Cell Example
Sample Schematics A-5
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure A-3 Rising-Edge Latch-Based Integrated Cell With Post-Control
(latch_posedge_postcontrol)

Figure A-4 Rising Edge Latch Based Integrated Cell With Post-Control Observable Point
(latch_posedge_postcontrol)

Figure A-5 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure A-5 Rising-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_posedge_precontrol_obs)

Figure A-6 on page A-7 displays an integrated cell using a latch-based gating style,
appropriate for registers inferred from rising-edge-triggered HDL constructs. The integrated
cell contains test logic (scan enable) and observable point (cgobs).

clk

en

se

gclkenl

la
tc

h iq

 gclkla
tc

h

clk

enl

en

sen

IQN

la
tc

h

gclk

la
tc

h

se

en

clk

obs_pin
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-6

Power Compiler User Guide Version E-2010.12-SP2
Figure A-6 Rising-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_posedge_postcontrol_obs)

Rising-Edge Latch-Free Integrated Cells
The following integrated cells are latch-free. The rising-edge latch-based integrated cells
were described in the previous section.

Figure A-7 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs.

Figure A-7 Rising-Edge Latch-Free Integrated Cell (none_posedge)

Figure A-8 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from rising-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure A-8 Rising-Edge Latch-Free Integrated Cell With Control (none_posedge_control)

Figure A-9 on page A-8 displays an integrated cell using a latch-free gating style,
appropriate for registers inferred from rising-edge-triggered HDL constructs. The integrated
cell contains test logic (scan enable) and observable point (cgobs).

 gclk
la

tc
h

clk

en
se

obs_pin

enl

iq

clk

en

enl gclk

clk

en

se

gclkenl
Chapter A: Integrated Clock-Gating Cell Example
Sample Schematics A-7
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-7

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure A-9 Rising-Edge Latch-Free Integrated Cell With Control Observable Point
(none_posedge_control_obs)

Falling Edge Latch-Based Integrated Cells
The following integrated cells are latch-based. The falling-edge latch-free integrated cells
are described in the following section.

Figure A-10 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs.

Figure A-10 Falling-Edge Latch-Based Integrated Cell (latch_negedge)

Figure A-11 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure A-11 Falling-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_negedge_precontrol)

clk

en

se

gclk
enl

cgobs

clk

en

enl gclk

la
tc

h

clk

en

se

gclkenl

la
tc

h

Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-8

Power Compiler User Guide Version E-2010.12-SP2
Figure A-12 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure A-12 Falling-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_negedge_postcontrol)

Figure A-13 displays an integrated cell using a latch-based gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

Figure A-13 Falling-Edge Latch-Based Integrated Cell With Pre-Control Observable Point
(latch_negedge_precontrol_obs)

Figure A-14 on page A-10 displays an integrated cell using a latch-based gating style,
appropriate for registers inferred from falling-edge-triggered HDL constructs. The integrated
cell contains test logic (scan enable) and observable point (cgobs).

clk

en

se

gclkenl

la
tc

h iq

clk

en

se

gclkenl

cgobs

la
tc

h

Chapter A: Integrated Clock-Gating Cell Example
Sample Schematics A-9
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-9

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Figure A-14 Falling-Edge Latch-Based Integrated Cell With Post-Control Observable Point
(latch_negedge_postcontrol_obs)

Falling-Edge Latch-Free Integrated Cells
The following integrated cells are latch-free. The falling-edge latch-based integrated cells
were described in the previous section.

Figure A-15 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs.

Figure A-15 Falling-Edge Latch-Free Integrated Cell (none_negedge)

Figure A-16 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable).

Figure A-16 Falling-Edge Latch-Free Integrated Cell With Control (none_negedge_control)

Figure A-17 displays an integrated cell using a latch-free gating style, appropriate for
registers inferred from falling-edge-triggered HDL constructs. The integrated cell contains
test logic (scan enable) and observable point (cgobs).

clk

en

se

gclkenl

cgobs
la

tc
h

clk

en

enl gclk

clk

en

se

gclkenl
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-10

Power Compiler User Guide Version E-2010.12-SP2
Figure A-17 Falling-Edge Latch-Free Integrated Cell With Control Observable Point
(none_negedge_control_obs)

clk

en

se

gclkenl

cgobs
Chapter A: Integrated Clock-Gating Cell Example
Sample Schematics A-11
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-11

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Appendix A: Integrated Clock-Gating Cell Example
Sample Schematics A-12

B
Attributes for Querying and Filtering B

This appendix describes derived Power Compiler attributes that you can use in scripts to
view and filter design objects related to clock gating and operand isolation for power
optimization.

The derived attributes described in this appendix are read-only properties that Power
Compiler automatically assigns to designs, cell, and pins based on other attributes or the
netlist configuration.

At times, you may want to view and use design objects according to their attributes. For
example, you may want to filter for cells that are integrated clock gates (the is_icg
attribute). Or, your queries might be required for back end processes such as clock-tree
synthesis in which fanout considerations have priority.

This appendix contains the following sections:

• Derived Attribute Lists

• Usage Examples

B-1

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Derived Attribute Lists

You can query for the following derived attributes assigned by Power Compiler. Specify man
power_attributes in dc_shell to view a list of these attributes.Table B-1 and Table B-2
show the derived attribues for designs and cells, respectively.

Table B-1 Derived Attributes for Designs

Name Type Description

is_clock_gating_design Boolean true if the design is a clock-gating design

is_clock_gating_
observability_design

Boolean true if the design is a clock-gating observable design

Table B-2 Derived Attributes for Cells

Name Type Description

is_clock_gate Boolean true if the cell is a clock gate

is_icg Boolean true if the cell is an integrated clock gate

is_gicg Boolean true if the cell is a generic integrated clock gate

is_latch_based_clock_
gate

Boolean true if the cell is a latch-based clock-gating cell

is_latch_free_clock_
gate

Boolean true if the cell is a latch-free clock-gating cell

is_positive_edge_clock_
gate

Boolean true if the cell is a positive edge clock gate

is_negative_edge_clock_
gate

Boolean true if the cell is a negative edge clock gate

clock_gate_has_
precontrol

Boolean true if the cell is a clock gate with (pre-latch) control
point

clock_gate_has_
postcontrol

true if the
cell is a
clock gate
with
(post-latch)
control point

Boolean
Appendix B: Attributes for Querying and Filtering
Derived Attribute Lists B-2

Power Compiler User Guide Version E-2010.12-SP2
For hierarchical clock-gating cells, the derived clock-gating attributes only work when
applied to the hierarchical clock-gate wrapper. If you apply an attribute to the leaf cell of a
discrete clock gate or a leaf integrated clock gate, the attribute returns false for Boolean
attributes, -1 for integer attributes, or an empty string for string attributes. The only exception
to this rule is the is_icg attribute; this attribute is true when applied to a leaf integrated clock

clock_gate_has_
observation

Boolean true if the cell is a clock gate with observation point

is_clock_gated Boolean true if the cell is a clock-gated register or clock gate

clock_gating_depth integer number of clock gates on the clock path to this cell; -1
if not a clock gate or register

clock_gate_level integer position in a multistage clock tree: number of clock
gates on the longest branch in the fan out of this cell;
-1 if not a clock gate

clock_gate_fanout integer number of registers and clock gates in the direct fan
out of the clock gate; -1 if not a clock gate

clock_gate_register_
fanout

integer number of registers in the direct fan out of the clock
gate; -1 if not a clock gate

clock_gate_multi_stage_fa
nout

integer number of clock gates in the direct fan out of the clock
gate; -1 if not a clock gate

clock_gate_transitive_
register_fanout

integer number of registers in the transitive fan out of the
clock gate; -1 if not a clock gate

clock_gate_module_
fanout

integer number of modules in the local fan out of the clock
gate; -1 if not a clock gate

is_operand_isolator Boolean true if the cell is an operand isolation cell

is_isolated_operator Boolean true if the cell is an operator that was isolated with
operand isolation

operand_isolation_style string operand isolation style of the operand isolation cell of
isolated operator

Table B-2 Derived Attributes for Cells (Continued)

Name Type Description
Chapter B: Attributes for Querying and Filtering
Derived Attribute Lists B-3
Appendix B: Attributes for Querying and Filtering
Derived Attribute Lists B-3

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
gate contained within a hierarchical clock gate wrapper but false when applied to that
wrapper. This behavior allows you to recognize the actual integrated clock-gating cell, not
the hierarchical wrapper.

Usage Examples

You can query the attributes described in the previous section using the get_attribute,
get_designs, get_cells, get_pins, all_clock_gates, and all_operand_isolators
commands. You can also use these commands with the -filter option.

The following examples show how the attributes might appear in scripts.

To gather all the clock gates specific to a clock “clk”:

all_clock_gates –clock [get_clocks clk]

The all_clock_gates command creates a collection of clock-gating cells or pins that
satisfy the parameters you set. Additional options allow you to filter for enable, clock, and
gated-clock pins; scan_enable or test_mode pins; and observation pins. For more
information, see the man page.

Table B-3 Derived Attributes for Pins

Name Type Description

is_clock_gate_enable_pin Boolean true if the pin is a clock-gate enable input

is_clock_gate_clock_pin Boolean true if the pin is a clock-gate clock input

is_clock_gate_output_pin Boolean true if the pin is a clock-gate gated-clock output

is_clock_gate_test_pin Boolean true if the pin is a clock-gate scan-enable or
test-mode input

is_clock_gate_
observation_pin

Boolean true if the pin is a clock-gate observation point

is_operand_isolation_contr
ol_pin

Boolean true if the pin is the control pin of an operand isolation
cell

is_operand_isolation_data_
pin

Boolean true if the pin is the data input of an operand isolation
cell

is_operand_isolation_outpu
t_pin

Boolean true if the pin is the data output of an operand
isolation cell
Appendix B: Attributes for Querying and Filtering
Usage Examples B-4

Power Compiler User Guide Version E-2010.12-SP2
Similarly, the all_operand_isolators command creates a collection of operand isolation
cells or pins.

To filter out the multistage clock-gating cell associated with the clock “clk”:

set multi_stage_cg [filter [all_clock_gates -clock \
[get_clocks clk]] \ “@clock_gate_level >0”]

To retrieve the number of fan outs of a clock-gating cell:

get_attribute [get_cells top/clk_gate_1] \
clock_gate_fanout

To gather a collection of clock-gating cells with pre-latch control point and a fanout greater
than four:

set CG_collection [filter [all_clock_gates] \
“@clock_gate_has_precontrol== \
==true && @clock_gate_fanout > 4"]

To gather a collection of clock-gating designs (the wrapper design where the clock-gating
cells reside):

set CG_designs [get_designs -filter \
"@is_clock_gating_design==true”]

To gather a collection of operand isolation cells:

all_OI_isolators [all_operand_isolators]

To query the isolator’s operand isolation style:

get_attribute [get_cell C9] operand_isolation_style
Chapter B: Attributes for Querying and Filtering
Usage Examples B-5
Appendix B: Attributes for Querying and Filtering
Usage Examples B-5

Power Compiler User Guide E-2010.12-SP2Power Compiler User Guide Version E-2010.12-SP2
Appendix B: Attributes for Querying and Filtering
Usage Examples B-6

Index

Symbols
$read_lib_saif 4-12

A
accuracy

complex cells 6-5
correlation 6-4
delay model 6-3
factors affecting 6-3

add_port_state command 12-20
add_pst_state command 12-35
additional ports 7-71
always-on attribute 12-37
analysis

default switching activity 6-8
analyzing power 6-2

accuracy 6-2
annotation, minimum for 5-11
characterizing the design 6-14
gate-level 6-5
power correlation 6-9
reporting power attributes 6-15
using report_power 6-6
with partially annotated designs 6-8

analyzing switching activity 5-11
annotating switching activity

accuracy effect of 6-2
analysis 5-11
creating a clock 5-11
default switching values 5-13
estimating unannotated 5-13
name-mapping database 5-3
partially versus fully 5-10
removing annotation 5-12
with gate-level SAIF 5-4
with RTL SAIF 5-2

annotation
power analysis minimum requirements 5-11

attributes
always-on 12-37
clock gating A-4

clock_gate_clock_pin A-4
clock_gate_enable_pin A-4
clock_gate_out_pin A-4
clock_gate_test_pin A-4
clock_gating_integrated_cell A-4

default_threshold_voltage_group 10-10
dont use

dont_use attribute 7-34
dont_touch 10-9
for querying and filtering B-1
is_clock_gating_cell 7-34
is_isolation_cell 11-4
is_isolation_cell_enable_pin 12-41
IN-1
IN-1

Power Compiler User Guide Version E-2010.12-SP2
is_level_shifter 11-4
isolation_cell_enable_pin 11-4
level_shifter_enable_pin 11-4
ok_for_isolation 12-41
snps_derived 12-56
threshold_voltage_group 10-10

attributes, library
internal_power 3-8

automatic rollback 9-14

B
back-annotating, after layout 3-12
balance_registers command 7-50
buffers

clock-tree 6-5

C
calculating power 3-4
capacitive load, obtaining 3-12
capacitive switching power

(see switching power)
CCS libraries 1-9, 3-16
CCS power model 1-3
cell leakage power, equation 3-4
cells, library

complex 6-5
Channel-Width Model 10-14
characterize command 6-13

Design Compiler 6-13
characterize design 6-14
check_mv_design command 12-7, 12-48
check_test command A-4
clock

affect on switching propagation 5-11
clock constraints, propagating 7-53
clock domains in clock gating 7-8
clock gating

attributes A-4

attributes, querying and filtering B-1
choosing cell by name 7-31
choosing gating logic 7-26
choosing hold time 7-26
choosing integrated clock-gating cell 7-32
choosing setup time 7-25
choosing specific library 7-31
clock tree synthesis 7-24
conditions for 7-6
control point insertion 7-39
default style 7-46
designating cells 7-34
enable condition 7-6, 7-7
enhanced register-based 7-72
ensuring accuracy, ideal clocks 7-53
features 7-3
gate clock example 7-4
gated registers 7-48
hierarchical 7-70
identify_clock_gating usage flow 7-62
in structural netlists 7-59
instance specific 7-44
integrated clock-gating cells 7-50
introduction 7-3
latched-based 7-53
latch-free style 7-27, 7-37
limiting clock gate insertion 7-33
multistage 7-67
name conventions, name conventions, clock

gating 7-55
negative edge 7-26
observability 7-42
observability depth 7-43
on DesignWare components 7-74
overriding clock-gating conditions 7-9
overriding setup/hold times 7-33
pin attributes 7-52
positive edge 7-26
power-driven clock gating 7-14
propagating clock constraints 7-53
remove cell 7-48
removing clock gates 7-48
IN-2
Index IN-2

Power Compiler User Guide Version E-2010.12-SP2
replacing clock-gating cells 7-63
rewiring after retiming 7-49
sample script 7-54
scan enable versus test mode 7-41
script, naming style 7-57
script, output netlist 7-58
selecting clock-gating style 7-35
selecting latches 7-36
setup and hold times, specifying 7-21
setup condition 7-6, 7-7
target library 7-31
test port naming 7-40
testability, improving 7-38
timing analysis 7-15
timing considerations 7-53
ungrouped clock gates 7-59
width condition 7-7
with operand isolation 9-18
write_script usage flow 7-61

clock gating cell
deleting 7-48
specifying 7-48

clock gating registers
moving 7-48

clock tree synthesis, impact on setup and hold
times 7-24

clock_gate_clock_pin attribute A-4
clock_gate_enable_pin attribute A-4
clock_gate_out_pin attribute A-4
clock_gate_test_pin attribute A-4
clock_gating_integrated_cell attribute A-4
clock_gating_integrated_cell command 7-50
clock-gating

latch-free 7-53
clock-tree buffers 6-5
command

reading a design 1-8
syntax 1-9
ways to enter 1-9
writing a design 1-8

command-line interface

introduction to 1-7
quitting 1-7
starting 1-7

commands
add_port_state 12-20
add_pst_state 12-35
balance_registers 7-50
change_names

change_names command 7-61
characterize 6-13, 6-14
check_mv_design 12-7, 12-48
check_test A-4
clock_gating_integrated_cell 7-50
connect_supply_net 12-17
create_power_domain 12-11
create_power_switch 12-19
create_pst 12-34
create_supply_port 12-15, 12-16
create_supply_set 12-13
create_voltage_area 12-44
for operand isolation 9-10
get_attribute 10-5
identify_clock_gating 7-63
insert_clock_gating 7-10, 7-46
insert_dft 7-44
insert_mv_cells 12-41
map_isolation_cell 12-28
map_level_shifter_cell 12-23
map_retention_cell 12-32
merge_saif 5-4, 5-6
optimize registers 7-50
power_model_preference 1-9
read_saif 5-2, 5-4, 5-6
remove_attributes 10-5
remove_clock_gating 7-48
remove_operand_isolation 9-15
remove_target_library_subset 12-6
replace_clock_gates 7-64
report_constraint 13-25
report_isolation_cell 12-47
report_level_shifter 12-46
report_lib 6-13, 6-15
IN-3
Index IN-3

Power Compiler User Guide Version E-2010.12-SP2
report_operand_isolation 9-17
report_power 5-2, 6-2, 6-6, 6-16
report_power_domain 12-46
report_power_switch 12-46
report_pst 12-46
report_qor 13-23
report_retention_cell 12-47
report_saif 5-11
report_supply_net 12-47
report_supply_port 12-47
report_target_library_subset 12-7, 12-47
report_timing -scenario 13-23
report_tlu_plus_files 13-25
reset_switching_activity 5-12
rewire_clock_gating 7-48, 7-49
saif_map 5-2
set_attribute 10-10, 11-9, 12-37
set_cell_internal_power 6-5
set_clock_gating_registers 7-9
set_clock_gating_style 7-6, 7-26, 7-32, 7-35
set_clock_transition 7-53
set_design_attributes 12-29
set_domain_supply_net 12-18
set_dont_use 7-33
$set_gate_level_monitoring 4-12
set_isolation 12-24
set_isolation_control 12-27
set_leakage_power_model 10-12
set_level_shifter 12-21
set_max_dynamic_power 10-5, 10-15
set_max_leakage_power 10-5, 10-9
set_min_library 13-11
set_multi_vth_constraint 10-11
set_operand_isolation_cell 9-13
set_operand_isolation_scope 9-12
set_operand_isolation_slack 9-14
set_operand_isolation_style 9-11
set_operating_conditions 13-3, 13-8, 13-9
set_port_attributes 12-28, 12-56
set_retention 12-30
set_retention_control 12-32
set_scope 12-11

set_switching_activity 5-8, 5-12
set_target_library_subset 12-6
set_tlu_plus_files 13-5, 13-6
toggle control examples 4-19
$toggle_report 4-10
$toggle_reset 4-11
write_script 6-13, 6-16, 7-61

complex cells
accuracy 6-5

composite current source power model 1-3
connect_supply_net command 12-17
connect_supply_port command 12-16
connecting test ports 7-43

using hookup_test_ports 7-43
using hookup_testports 7-43

control points, for testability 7-39
conventions for documentation xx
correlation

defined 6-4
cps_default_sp 6-9
cps_default_tr 6-9
create_power_domain command 12-11
create_power_switch command 12-19
create_pst command 12-34
create_supply_port command 12-15
create_supply_set command 12-13
create_voltage_area command 12-44
customer support xxi

D
data flow

figure 2-4
overview 2-3

datapath designs 9-2
dc_shell interface 1-7
dc_shell-topo interface 1-7, 6-10
debugging, operand isolation 9-20
default switching activity values 5-13
default value 6-8
IN-4
Index IN-4

Power Compiler User Guide Version E-2010.12-SP2
default_threshold_voltage_group attribute
10-10

defaults
switching activity 6-8

definitions
CLoadi 3-12
correlation 6-4
dynamic power 3-2
integrated clock-gating cell 7-50
internal power 3-3
path-dependent power 3-11
power correlation 6-9
retention registers 11-5
short circuit power 3-3
static power 3-2
static probability 4-2
switching activity 4-2
switching power 3-2
toggle rate 4-2

delay model
accuracy

effect on 6-3, 6-4
glitching 6-4

derived attributes B-2
Design Compiler commands

characterize 6-13
design cycle, with power 2-2
design exploration

Power Compiler 6-11
design flow 2-1
design rule cost function 10-6
design rule fixing 10-8
designs

reading in 1-8
writing out 1-8

DesignWare components, clock gating 7-74
documentation xix
don’t care conditions 9-3
dont_touch attribute 10-9
dp format

creating with toggle_report 4-10

dp_shell
interface 1-7

dynamic power 3-2
defined 3-2
library requirements 1-6

dynamic power optimization 10-15
performing 10-15
switching activity annotation 10-16

dynamic power optimzation
scripts, sample 10-16

E
enable condition, clock gating 7-6, 7-7
enable power optimization 2-5
enhanced register-based clock gating 7-72
entering commands

methods of 1-9
syntax format 1-9

equations
internal power 3-9
leakage power 3-4
switching power 3-12

exiting the command-line interface 1-7
extensions, defaults for output files 1-9

F
features

clock gating 7-3
Power Compiler 1-5

format, input
list of 1-9
requiring license keys 1-9

G
gated clocks, and timing analysis 7-15
gate-level power analysis 6-5
gate-level power optimization 10-1, 10-2

atttibutes 10-5
IN-5
Index IN-5

Power Compiler User Guide Version E-2010.12-SP2
commands for 10-5
constraints 10-5
cost priority 10-6
design rule constraints 10-6
design rule fixing 10-8
dynamic 10-15
flow 10-2
in synthesis flow 10-3
incremental optimization

incremental optimization 10-8
leakage power optimization 10-9
optimization constraints 10-6
performing 10-5
positive timing slack 10-7
power contraints 10-6
unmet constraints 10-8

gate-level simulation
Power Compiler interface

Verilog 4-8
state- and path dependent switching activity

4-12
generating SAIF files 4-1
get_attribute command 10-5
glitching

zero-delay model 6-4
GUI

applying power intent 12-66
debugging power intent 12-78
defining UPF power intent 12-60
power domain expanding and collapsing

12-77
reviewing power intent 12-62
UPF diagram 12-66
Visual UPF 12-60

H
help

command, for a 1-10
displaying for a topic 1-11
displaying man pages 1-10

hierarchical clock gating 7-70

hierarchical levels
report 6-7

hold time 7-33
hold time, choosing 7-26
hold time, specifying 7-21

I
ideal clocks 7-53
identify_clock_gating command 7-63
identifying power and accuracy 6-2
input formats 1-9
inputs

primary
default switching for 6-8

insert_clock_gating command 7-10, 7-46
insert_dft command 7-44
insert_mv_cells command 12-41
Instance specific clock gating 7-44

enabling and disabling design objects 7-8
removing 7-45
specifying styles 7-45

integrated clock-gating cell
choosing the cell 7-32
example A-1

integrated clock-gating cells 7-50
interface, command line 1-7
internal nets, monitoring 4-12
internal power 1-6, 3-2

attribute 3-8
calculation 3-8
defined 3-3
equations for summing 3-9
look-up table, figure 3-10
look-up tables 3-10
modeling 3-3, 3-9
path-dependent, defined 3-11
rise and fall, separate 3-12
short circuit power 3-3

interoperability, operand isolation 9-18
IN-6
Index IN-6

Power Compiler User Guide Version E-2010.12-SP2
introduction 10-2
Introduction to UPF

 12-1
is_clock_gating_cell attribute 7-34
is_isolation_cell attribute 11-4
is_isolation_cell_enable_pin attribute 12-41
is_level_shifter attribute 11-4
Isc, short circuit current 3-3

isolation_cell_enable_pin attribute 11-4

K
k-factors

multivoltage designs 11-3, 12-6
unsupported in multicorner-multimode 13-10

L
latch-based clock gating 7-53
latch-free clock gating 7-8, 7-37, 7-53
latch-free clock-gating style 7-27
leakage power 1-6

calculation 3-4
cause of 3-2
equation 3-4
library requirements 1-6
modeling 3-2

leakage power calculation
channel width model 10-13
choosing a model 10-12
default model 10-13

leakage power optimization 10-9
power critical range 10-15
sample scripts 10-13

leakage power optimization, with multivoltage
libraries 10-10

level_shifter_enable_pin attribute 11-4
libraries

attributes
internal_power 3-8

CCS 1-3, 1-9, 3-16
NLPM 1-9
reporting power attributes of 6-15
requirements for optimization 1-6

library
complex cells 6-5

library models 1-3
library requirements

multivoltage designs 11-2, 12-6
license requirements 1-7
licenses

input formats requiring 1-9
look-up tables 3-10 to 3-11

M
man pages, displaying 1-10
manual rollback 9-15
map_isolation_cell command 12-28
map_level_shifter_cell command 12-23
map_retention_cell command 12-32
merge_saif command 5-4, 5-6
methodology flows, figures

Verilog gate-level simulation 4-8
Verilog RTL simulation 4-7
Verilog toggle commands 4-9

methodology, gate-level
state- and path dependent switching 4-12
Verilog simulation 4-9

methodology, RTL
Verilog simulation 4-9
VSS simulation A-1, B-1

-minimum_bitwidth 7-7
modeling delay 6-3, 6-4
modeling power

internal power 3-9
introduction to 1-3
leakage power 3-2
lookup table, three-dimensional 3-10
switching power 3-12
IN-7
Index IN-7

Power Compiler User Guide Version E-2010.12-SP2
monitoring internal nets 4-12
multicorner-multimode 13-2

Basic Flow 13-4
concepts 13-2
handling libraries 13-6
k-factors, unsupported 13-10
Optimization 13-2
optimizing for dynamic power 13-19
optimizing for leakage power 13-17
report_constraint command 13-25
report_qor command 13-23
report_timing -scenario command 13-23
report_tlu_plus_files command 13-25
reporting commands 13-20
reporting examples 13-23
scenario definition 13-2
scenario management 13-15
script example 13-29
set up 13-5
set_min_library command 13-11
set_tlu_plus_files command 13-5, 13-6
setup considerations 13-5
supported SDC commands 13-28

multistage clock gating 7-67
Multivoltage

UPF flow for multivoltage design
implementation 12-1

multivoltage and multisupply designs
power domains 11-2

multivoltage designs
Hierarchical UPF Flow 12-51
k-factors 11-3, 12-6
library requirements 11-2, 12-6
power and ground pin syntax 11-3, 12-7
target library subsetting 12-6

multivoltage libraries 10-10

N
name-mapping database 5-3
name-mapping, and PrimeTime PX 5-4

negative edge 7-26
net switching power equation 3-12
NLDM models 3-9
NLPM libraries 1-9

O
observability depth, choosing 7-43
observability don’t care conditions 9-3
observability, clock gating

circuitry, figure 7-42
logic depth, choosing 7-41

observability, increasing 7-41
ok_for_isolation attribute 12-41
one-pass operand isolation 9-6
online

help 1-10
man pages 1-10

operand isolation
attributes, querying and filtering B-1
automatic rollback 9-14
commands for 9-10
conditions for 9-4
debugging 9-20
examples 9-21
in Power Compiler 9-4
insertion mode 9-11
interoperability 9-18
introduction 9-2
manual rollback 9-15
methodology flows 9-4
observabillity don’t care conditions 9-3
one-pass flow 9-6
reporting 9-17
rollback 9-14
scope 9-12
scripts, sample 9-8, 9-15
style 9-11
two-pass flow 9-5
user directives 9-13
variables for 9-11
IN-8
Index IN-8

Power Compiler User Guide Version E-2010.12-SP2
with clock gating 9-18
with testability 9-19

operand isolations
reporting 9-22

optimization, power
minimum annotation requirements 5-11

optimize registers command 7-50
options, command

-clock 5-8
-period 5-8

output files
default extensions 1-9
SAIF format example 4-20

P
path-dependent power, defined 3-11
path-dependent switching activity

library requirements 1-6
path-dependent power 3-11

performing power analysis 6-1
phsyopt_power_critical_range variable 10-15
Physical Compiler

clock gating cell
specifying 7-48

pin attributes 7-52
positive edge 7-26
positive timing slack 10-7
power

calculations 3-4
internal cell 3-8
leakage, modeling 3-2
switching power, defined 3-12

power analysis
associated clock 6-8
characterizing the design 6-14
creating a clock 6-6
gate level 6-5
impact of annotation on 6-2
introduction 6-1
invoking 6-5

minimum annotation requirements 5-11
power correlation 6-9
report power attributes 6-15
report_power command 6-6
switching activity defaults 6-8
using report_power 6-6
with partially annotated designs 6-8

power analysis and reporting 2-5
power analysis technology 1-4
Power Compiler

design exploration 6-11
design flow 2-1
feature overview 1-5
features of 1-5
gate-level netlist formats 1-9
in power methodology 2-4
in power methodology, figure 2-4
interdependencies of inputs 6-4
interface to Verilog, methodology 4-8
introduction 1-1
license requirements 1-7
methodology 1-2
operand isolation 9-4
optimization and analysis flow 2-3
power analysis features 1-4
required inputs for 1-5
UPF flow for multivoltage design

implementation 12-1
user interface, introduction to 1-7

power constraints, gate-level power
optimization 10-6

power correlation
defining 6-9
performing 6-10
script 6-10

power critical range 10-15
power dissipation, figure 3-4
power domains

preparing multivoltage libraries
marking pass-gate library pins 11-9

power methodology
enable power optimization 2-5
IN-9
Index IN-9

Power Compiler User Guide Version E-2010.12-SP2
overview 2-3
power analysis and reporting 2-5
simulation 2-5
synthesis and power optimization 2-5

power modeling
dynamic power 3-2
features supported 1-3
internal power 3-8
static power 3-2
switching power 3-12

power optimization
attributes, querying, filtering B-1
design exploration 6-11
dynamic 10-15
flow 2-4
gate-level 10-1
minimum annotation requirements 5-11

power types, defined 3-2
power_cg_cell_naming_style variable 7-57
power_cg_flatten variable 7-59
power_cg_gated_clock_naming_style variable

7-57
power_cg_iscgs_enable variable 7-45
power_cg_module_naming_style variable

7-57
power_cg_print_enable_conditions variable

7-7
power_cg_print_enable_conditions_max_term

s variable 7-7
power_default_static_probability variable 5-14,

6-9
power_default_toggle_rate variable 5-14, 6-9
power_default_toggle_rate_type variable 6-9
power_model_preference command 1-9
power_model_preference variable 3-16
power-driven clock gating 7-14
PrimeTime PX, integration with 5-4
propagating clock constraints 7-53
propagating switching activity 5-14
Psc, short circuit power 3-3

Q
quitting the command-line interface 1-7

R
read command 1-9

(see also reading designs)
Read RTL Design 7-72
$read_lib_saif 4-12
read_saif command 5-2, 5-4, 5-6
reading designs

read command 1-8
recompiling

after characterizing 6-15
registers

gated
moving 7-48

remove
clock gating cell 7-48

remove_attributes command 10-5
remove_clock_gating command 7-48
remove_operand_isolation command 9-15
remove_target_library_subset command 12-6
removing switching activity annotation 5-12
replace_clock_gates command 7-64
replacing clock-gating cells 7-63
report_command 6-6
report_constraint command 13-25
report_isolation_cell command 12-47
report_level_shifter command 12-46
report_lib command 6-13, 6-15
report_operand_isolation command 9-17
report_power command 5-2, 6-2, 6-16
report_power_domain command 12-46
report_power_switch command 12-46
report_pst command 12-46
report_qor command 13-23
report_saif command 5-11
report_supply_net command 12-47
IN-10
Index IN-10

Power Compiler User Guide Version E-2010.12-SP2
report_supply_port command 12-47
report_target_library_subset command 12-7,

12-47
report_timing -scenario command 13-23
report_tlu_plus_files command 13-25
reporting library attributes 6-15
reporting toggle count

Verilog simulation 4-10
reports

analysis effort high 6-16
cell 6-19
cumulative 6-19
flat 6-18
hierarchical 6-20
hierarchical levels 6-7
net 6-18
nworst 6-18
operand isolation 9-17, 9-22
sort mode

net switching power 6-18
sort mode, cumulative fanout 6-19
verbose 6-16

reset_switching_activity command 5-12
retention registers

description 11-5
purpose of 11-5

rewire_clock_gating command 7-48, 7-49
rise and fall power 3-12
rollback, operand isolation 9-14

S
SAIF

annotating switching activity 5-1
annotation, integration with PrimeTime PX

5-4
defined 4-2
generating 4-1
generating with VCD 4-5
generation, RTL Verilog methodology 4-7

generation, Verilog gate-level methodology
4-8

output file, example 4-20
reading 5-4, 5-6
Verilog simulation

writing SAIF files 4-10
saif_map command 5-2
scan enable 7-41
scan_enable 7-44
scenario definition

multicorner-multimode 13-2
script, sample, clock gating 7-54
scripts

using for power analysis 6-16
write_script command 6-13, 6-16

SDPD
(see state- and path-dependent)

separate rise and fall power, specifying 3-12
set_attribute command 10-10, 11-9, 12-37
set_cell_internal_power command 6-5
set_clock_gating_registers command 7-9
set_clock_gating_style command 7-6, 7-26,

7-32, 7-35
set_clock_transition command 7-53
set_cope command 12-11
set_design_attributes command 12-29
set_domain_supply_net command 12-18
set_dont_use command 7-33
$set_gate_level_monitoring 4-12
set_isolation command 12-24
set_isolation_control command 12-27
set_leakage_power_model command 10-12
set_level_shifter command 12-21
set_max_dynamic_power command 10-5,

10-15
set_max_leakage_power command 10-5, 10-9
set_min_library command 13-11
set_multi_vth_constraint command 10-11
set_operand_isolation_cell 9-13
set_operand_isolation_scope command 9-12
IN-11
Index IN-11

Power Compiler User Guide Version E-2010.12-SP2
set_operand_isolation_slack command 9-14
set_operand_isolation_style 9-11
set_operating_condtions command 13-3,

13-8, 13-9
set_port_attributes command 12-28, 12-56
set_retention command 12-30
set_retention_control command 12-32
set_switching_activity command 5-8, 5-12
set_target_library_subset command 12-6
set_tlu_plus_files command 13-5, 13-6
$set_toggle_region 4-13
setup condition, clock gating 7-7

clock gating conditions, list 7-6
setup time 7-33
setup time, choosing 7-25
setup time, specifying 7-21
short circuit current, Isc 3-3
short circuit power

defined 3-3
internal power 3-3
symbol for 3-3

simulation
in power methodology 2-5
internal zero-delay 6-6

simulation, gate-level
path-dependent switching activity 4-12
state-dependent switching activity 4-12

snps_derived attribute 12-56, 12-59
SolvNet

accessing xxi
documentation xix
Download Center xviii

starting the command-line interface 1-7
state and path dependency 3-11
state- and path-dependent switching activity

deriving 5-14
library requirements for 1-6

state- and path-dependent toggle rates 5-2
state-dependent static probability 5-2

state-dependent switching activity 1-6
state-dependent toggle rates 5-2
static power 3-2
static probability 6-8

default
changing 6-9

defined 4-2
switching activity

analyzing 5-11
annotateable 5-2
annotating 5-1
annotating partially versus fullly 5-10
annotating with default values 5-13
annotating with gate-level SAIF 5-4
annotating with RTL SAIF 5-2
creating a clock 5-11
defaults 6-8
defined 4-2
estimating unnannotated 5-13
for dynamic power optimization 10-16
gate-level simulation

state- and path-dependent 4-12
importance of 5-2
name-mapping database 5-3
propagating 5-14
removing 5-12

Switching Activity Information Format (SAIF)
files 4-1

switching activity, annotating
accuracy 6-2

switching activity, capturing
Verilog simulation

gate-level 4-8
switching power 3-2

equation for 3-12
switching power, defined 3-2
synchronous load-enable

in a register bank 7-3
syntax

general 1-9
synthesis and power optimization 2-5
IN-12
Index IN-12

Power Compiler User Guide Version E-2010.12-SP2
T
target library subsetting, multivoltage designs

12-6
target_library variable 12-7
test mode 7-41
test port naming 7-40
test_mode 7-41, 7-44
testability, clock gating 7-38
testability, inserting control points 7-39
testability, with operand isolation 9-19
testbench

Verilog example 4-19
Verilog, toggle command flow 4-9

threshold_voltage_group attribute 10-10
timing analysis, with gated clocks 7-15
timing considerations, clock gating 7-53
toggle commands

examples 4-19
toggle rate

default
changing 6-9

default value 6-8
defined 4-2
-toggle_rate and TR, difference 5-8

$toggle_report 4-10
$toggle_report command 4-10
$toggle_reset command 4-11
topographical domain (in Design Compiler)

1-7, 6-10
two-pass operand isolation 9-5

U
unannotated switching activity, estimating 5-13
Unified Power Format 12-1
unmet constraints, gate-level power

optimization 10-8
UPF

adding port state information to supply ports
12-20

applying power intent in GUI 12-66
basic AND and OR gates as isolation cells

12-40
connecting supply nets 12-18
creating power domains 12-11
creating power state table 12-34
creating power switch 12-19
creating supply nets 12-17
creating supply port 12-15
defining multivoltage design strategies 12-20
defining power domains and supply network

12-10
defining power intent in GUI 12-60
handling always-on logic 12-37
Hierarchical Flow 12-51
hierarchy and scope 12-10
mapping retention registers 12-32
multivoltage design flow using UPF 12-3
multivoltage design implementation 12-1
reviewing power intent in GUI 12-62
specifying primary supply for power domains

12-18
UPF diagram 12-66
Visual UPF 12-60

UPF commands
add_port_state 12-20
add_pst_state 12-35
create_power_domain 12-11
create_power_switch 12-19
create_pst 12-34
create_supply_port 12-15
map_retention_cell 12-32
set_design_attributes 12-29
set_domain_supply_net 12-18
set_isolation 12-24
set_isolation_control 12-27
set_level_shifter 12-21
set_port_attributes 12-28
set_retention 12-30
set_retention_control 12-32
set_scope 12-11

UPF concepts
IN-13
Index IN-13

Power Compiler User Guide Version E-2010.12-SP2
always-on logic cells 11-7
power and ground pin syntax 11-3, 12-7

UPF Diagram 12-66
isolation strategy symbol 12-73
level-shifter strategy symbol 12-75
power domain symbol 12-69
power switch symbol 12-72
retention strategy symbol 12-75
scope symbol 12-69
supply net symbol 12-70
supply ports symbol 12-71

UPF strategy
isolation 12-24
level shifter 12-21
retention 12-30

user directives, operand isolation 9-13
user interface

Power Compiler, introduction to 1-7
utilities

vcd2saif 4-4, 4-5, 4-6

V
variables

cps_default_sp 6-9
cps_default_tr 6-9
for operand isolation 9-11
physopt_power_critical_range 10-15
power_cg_cell_naming_style 7-57
power_cg_flatten 7-59
power_cg_gated_clock_net_naming_style

7-57
power_cg_iscgs_enable 7-45
power_cg_module_naming_style 7-57
power_cg_print_enable_conditions 7-7
power_cg_print_enable_conditions_max_ter

ms 7-7
power_default_static_probability 5-14, 6-9
power_default_toggle_rate 5-14, 6-9
power_default_toggle_rate_type 6-9
power_model_preference 3-16
target_library 12-7

vcd2saif 4-4, 4-5, 4-6
vcd2saif utility 4-4, 4-5, 4-6
Verilog language

testbench 4-19
Verilog netlist 7-56
Verilog simulation

capturing switching activity
gate-level 4-8

example files, gate-level 4-18
example files, RTL 4-14
specific time periods, defining 4-11

Verilog testbench 4-19
Visual UPF

design or logical hierarchy view 12-62
diagram view 12-62
Error/Warning view 12-64
power hierarchy view 12-62
UPF script view 12-63

W
width condition, clock gating 7-7
wire load model 3-12
worse negative slack 9-14
write_script command 6-13, 6-16, 7-61
writing a design to disk 1-8
writing from simulation

toggle_report 4-10

X
XOR self gating 8-1

Excluding Registers 8-4
Performing 8-4
Querying 8-4
Reporting 8-5
sharing 8-3

Z
zero-delay model 6-4
IN-14
Index IN-14

Power Compiler User Guide Version E-2010.12-SP2
zero-delay simulation creating a clock for 5-11
IN-15
Index IN-15

	Preface
	Introduction to Power Compiler
	Power Compiler Methodology
	Power Library Models
	Power Analysis Technology
	Power Optimization Technology
	Working With Power Compiler
	Library Requirements
	Command-Line Interface
	Graphical User Interface
	License Requirements
	Reading and Writing Designs
	Command Syntax
	Getting Help
	Help for a Command
	Help for a Topic

	Power Compiler Design Flow
	Power in the Design Cycle
	Power Optimization and Analysis Flow
	Simulation
	Enable Power Optimization
	Synthesis and Power Optimization
	Power Analysis and Reporting

	Power Compiler and Other Synopsys Tools

	Power Modeling and Calculation
	Power Types
	Static Power
	Dynamic Power
	Switching Power
	Internal Power

	Calculating Power
	Leakage Power Calculation
	Multithreshold Voltage Libraries
	Channel-Width Based Leakage Power Calculation

	Internal Power Calculation
	NLDM Models
	State and Path Dependency
	Rise and Fall Power
	Switching Power Calculation

	Dynamic Power Calculation
	Dynamic Power Unit Derivation

	Power Calculation for Multirail Cells

	Using CCS Power Libraries

	Generating Switching Activity Interchange Format Files
	About Switching Activity
	Introduction to SAIF Files
	Generating SAIF Files
	Generating SAIF Using VCD Output Files
	Converting a VCD file to a SAIF File
	Limited SystemVerilog Support in vcd2saif Utility

	Generating SAIF Files Directly From Simulation
	Generating SAIF Files From SystemVerilog or Verilog Simulations
	Generating SAIF Files From RTL Simulation
	Generating SAIF Files From Gate-Level Simulation
	Understanding the VCS MX Toggle Commands

	Generating SAIF Files From VHDL Simulation
	System Task List for SAIF File Generation From VHDL Simulation

	Verilog Switching Activity Examples
	RTL Example
	Verilog Design Description
	RTL Testbench
	RTL SAIF File

	Gate-Level Example
	Gate-Level Verilog Module
	Verilog Testbench
	Gate-Level SAIF File

	VHDL Switching Activity Example
	VHDL Design Description
	RTL Testbench
	RTL SAIF File

	Analyzing a SAIF File

	Annotating Switching Activity
	Switching Activity That You Can Annotate
	Annotating Switching Activity Using RTL SAIF Files
	Using the Name-Mapping Database
	Integrating the RTL Annotation With PrimeTime PX

	Annotating Switching Activity Using Gate-Level SAIF Files
	Reading SAIF Files Using the read_saif Command
	Reading SAIF Files Using the merge_saif Command

	Annotating Switching Activity With the set_switching_activity Command
	Fully Annotating Versus Partially Annotating the Design
	Analyzing the Switching Activity Annotation
	Removing the Switching Activity Annotation
	Estimating the Nonannotated Switching Activity
	Annotating the Design Nets Using the Default Switching Activity Values
	Propagating the Switching Activity
	Deriving the State- and Path-Dependent Switching Activity

	Performing Power Analysis
	Overview
	Identifying Power and Accuracy
	Factors Affecting the Accuracy of Power Analysis
	Switching Activity Annotation
	Delay Model
	Correlation
	Clock Tree Buffers
	Complex Cells

	Performing Gate-Level Power Analysis
	Using the report_power Command
	Using the report_power_calculation Command

	Analyzing Power With Partially Annotated Designs
	Power Correlation
	Performing Power Correlation
	Power Correlation Script

	Design Exploration Using Power Compiler
	Power Optimization Settings for the Synopsys Physical Guidance Flow
	Other dc_shell Commands for Power
	Characterizing a Design for Power
	Reporting the Power Attributes of Library Cells

	Using a Script File
	Power Reports
	Power Report Summary
	Net Power Report
	Cell Power Report
	Hierarchical Power Reports
	Power Report for Interface Logic Model

	Clock Gating
	Introduction to Clock Gating
	Using Clock-Gating Conditions
	Clock-Gating Conditions
	Enable Condition
	Setup Condition

	Enabling or Disabling Clock Gating on Design Objects

	Inserting Clock Gates
	Using the compile_ultra -gate_clock Command
	Using the insert_clock_gating Command
	Clock-Gate Insertion in Multivoltage Designs

	Clock Gating Flows
	Inserting Clock Gates in the RTL Design
	Inserting Clock Gates in Gate-Level Design
	Power-Driven Clock Gating

	Specifying Clock-Gate Latency
	The set_clock_gate_latency Command
	The set_clock_latency Command
	Applying Clock-Gate Latency
	Resetting Clock-Gate Latency
	Comparison of the Clock-Gate Latency Specification Commands

	Calculating the Clock Tree Delay From Clock-Gating Cell to Registers
	Specifying Setup and Hold
	Predicting the Impact of Clock Tree Synthesis
	Choosing a Value for Setup
	Choosing a Value for Hold

	Choosing Gating Logic
	Choosing a Configuration for Gating Logic
	Choosing a Simple Gating Cell by Name
	Choosing a Simple Gating Cell and Library by Name
	Choosing an Integrated Clock-Gating Cell
	Choosing an Integrated Cell by Functionality
	Choosing an Integrated Cell by Name
	Specifying a Subset of Integrated Clock Gates
	Using Setup and Hold for Integrated Cells

	Designating Simple Cells Exclusively for Clock Gating

	Selecting Clock-Gating Style
	Choosing a Specific Latch and Library
	Choosing a Latch-Free Style
	Improving Testability
	Inserting a Control Point for Testability
	Improving Observability With test_mode
	Choosing a Depth for Observability Logic

	Connecting the Test Ports Throughout the Hierarchy
	Using the insert_dft Command

	Using the Instance-Specific Clock-Gating Styles
	Specifying Clock-Gating Styles on Design Objects
	Removing Instance-Specific Clock-Gating Styles
	Instance-Specific Clock-Gating Style Example

	Using the Default Clock-Gating Style

	Modifying the Clock-Gating Structure
	Changing a Clock-Gated Register to Another Clock-Gating Cell
	Removing Clock Gating From the Design
	Rewiring Clock Gating After Retiming

	Integrated Clock-Gating Cells
	Integrated Clock-Gating Cell Attributes
	Pin Attributes
	Timing Considerations

	Propagating Clock Constraints
	Ensuring Accuracy When Using Ideal Clocks
	Sample Clock-Gating Script
	Clock-Gating Naming Conventions
	Sample Script for Naming Style
	Sample Script Output Netlist

	Keeping Clock-Gating Information in a Structural Netlist
	Automatic Identification of Clock-Gating Cells
	Explicit Identification of Clock-Gating Cells
	Usage Flow With the write_script Command
	Usage Flow With the identify_clock_gating Command

	Replacing Clock-Gating Cells
	Clock-Gate Optimization Performed During Compilation
	Multistage Clock Gating
	Hierarchical Clock Gating
	Enhanced Register-Based Clock Gating

	Performing Clock-Gating on DesignWare Components
	Reporting Command for Clock Gates and Clock Tree Power
	The report_clock_gating Command

	XOR Self Gating
	Understanding XOR Self Gating
	Using XOR Self Gating in Power Compiler
	Sharing XOR Self Gates
	Registers Excluded From XOR Self Gating
	Performing XOR Self Gating
	Querying the XOR Self Gates
	Reporting the XOR Self Gates

	Operand Isolation
	Operand Isolation Overview
	Observable Don’t Care Conditions
	Power Compiler Operand Isolation Approach
	Automatic Versus User-Driven Operand Isolation Insertion
	Automatic Versus Manual Operand Isolation Rollback

	Operand Isolation Methodology Flows
	Two-Pass Approach (Recommended)
	One-Pass Approach
	Sample Scripts

	Commands and Variables Related to Operand Isolation
	Using Operand Isolation
	Specifying Operand Isolation Style and Selecting Insertion Mode
	Controlling the Scope for Operand Isolation
	Defining User Directives
	Operand Isolation Rollback
	Automatic Rollback Mechanism
	Manual Rollback Mechanism
	Sample Scripts for Operand Isolation Rollback

	Operand Isolation Reporting

	Interoperability
	Operand Isolation and Clock Gating
	Operand Isolation and Testability

	Debugging Tips
	Examples
	Verilog RTL With Observable Don’t Care Conditions
	Report Operand Isolation Progress
	Examples of Using the Operand Isolation Commands
	Operand Isolation Summary Report

	Gate-Level Power Optimization
	Overview
	Input and Output of Power Optimization
	Power Optimization in Synthesis Flow

	General Gate-Level Power Optimization
	Power Optimization Commands
	Power Constraints
	Scope of Power Constraints
	Design Rule Constraints and Optimization Constraints
	Cost Priority
	Positive Timing Slack
	Unmet Constraints
	Design Rule Fixing
	Incremental Optimization
	Synthesizable Logic

	Leakage Power Optimization
	Enabling Leakage Optimization
	Using Multithreshold Voltage Libraries
	Library Threshold Voltage Attributes
	Choosing the Leakage Power Calculation Model
	Calculating Leakage Power

	Sample Scripts for Leakage Optimization
	Using the Default Usage Model
	Using the Channel-Width Model

	Power Critical Range

	Dynamic Power Optimization
	Running Dynamic Power Optimization
	Annotating Switching Activity
	Sample Scripts

	Multivoltage Design Concepts
	Multivoltage and Multisupply Designs
	Library Requirements for Multivoltage Designs
	Liberty PG Pin Syntax
	Level-Shifter Cells
	Isolation Cells
	Requirements of Level-Shifter and Isolation cells
	Retention Register Cells
	Multithreshold-CMOS Retention Registers

	Power-Switch Cells
	Always-On Logic Cells

	Power Domains
	Shut-Down Blocks
	Marking Pass-Gate Library Pins

	Voltage Area

	IEEE 1801 Flow for Multivoltage Design Implementation
	Synthesizing Multivoltage Designs Using UPF
	Multivoltage Design Flow Using UPF

	Basic Library Requirements for Multivoltage Designs
	Target Library Subsetting
	Fine-Grained Switch Cell Support
	Power and Ground Pin Syntax
	Converting Libraries to PG Pin Library Format
	Using FRAM View
	Using Tcl Commands
	Tcl Commands for Low-Power Library Specification

	Defining Power Domains and the Supply Network in UPF
	Hierarchy and Scope
	Creating Power Domains
	Creating Supply Sets
	Restricting Supply Sets to a Power Domain
	Updating a Supply Set
	Defining Supply Sets While Creating Power Domains

	Creating Supply Ports
	Creating Supply Nets
	Connecting Supply Nets
	Specifying Primary Supply Nets for a Power Domain
	Creating Power Switch
	Adding Port State Information to Supply Ports

	Defining Multivoltage Design Strategies
	Defining the Level-Shifter Strategy
	Associating Specific Library Cells With the Level-Shifter Strategy
	Allowing Insertion of Level-Shifters on Clock Nets and Ideal Nets

	Defining the Isolation Strategy
	Mapping Isolation Strategies to Specific Library Cells
	Setting Isolation Attributes on Ports
	Setting Isolation Attributes on Cells
	Isolation and Level-Shifter Cells Connected Back-to-Back

	Defining the Retention Strategy
	Mapping Retention Strategies to Specific Library Cells
	Retention Strategy and Clock-Gating Cells

	Defining Power States for the Components of a Supply Set
	Defining Power State Tables
	Creating Power State Table
	Defining the States of Supply Nets
	Using State of the Supply Sets in Power State Tables

	Multivoltage Power Constraints
	Specifying the Operating Voltage
	Exceptions to the Mapping of the UPF Constraints

	Handling Always-On Logic
	Marking Pass-Gate Library Pins
	Marking Library Cells for Always-On Optimization
	Automatic Always-On Optimization
	Performing Always-On Optimization on Top-Level Feedthrough Nets
	Support for Disjoint Voltage Area and Always-On Synthesis

	Using Basic Gates as Isolation Cells
	Inserting the Power Management Cells
	Writing Out the Power Information
	Preserving the Command Order in the UPF’ File

	Additional Commands to Support Multivoltage Designs
	create_voltage_area
	hookup_retention_register

	Reporting Commands for the UPF Flow
	report_dont_touch
	report_power_domain
	report_level_shifter
	report_power_switch
	report_pst
	report_isolation_cell
	report_retention_cell
	report_supply_net
	report_supply_port
	report_target_library_subset
	report_mv_library_cells

	Debugging Commands for Multivoltage Designs
	check_mv_design
	analyze_mv_design

	Methodology for UPF-Based Hierarchical Multivoltage Flow
	Steps in the Hierarchical UPF Design Methodology
	Block-Level Implementation
	Top-Level Implementation
	Assembling Your Design

	Characterization of Supply Sets and Domain-Independent Supply Nets
	Criteria for Characterization
	Characterization of Supply Sets

	Automatic Inference of Related Supply Net
	Top-Level Design Integration

	Defining Power Intent Using Design Vision GUI
	Defining the Power Intent
	Reviewing the Power Intent
	Applying the Power Intent Changes
	UPF Diagram View
	Representation of Power Objects in the UPF Diagram
	Expanding and Collapsing Power Domains

	Debugging Power Intent Using Design Vision GUI

	Multicorner-Multimode Optimization
	Basic Multicorner-Multimode Concepts
	Scenario Definition
	Multicorner-Multimode Optimization
	Supported Features
	Unsupported Features
	Concurrent Multicorner-Multimode Optimization and Timing Analysis

	Basic Multicorner-Multimode Flow
	Setting Up the Design for a Multicorner-Multimode Flow
	Specifying TLUPlus Files
	Specifying Operating Conditions
	Specifying Constraints

	Handling Libraries in the Multicorner-Multimode Flow
	Link Libraries With Equal Nominal PVT Values
	Setting the dont_use Attribute on Library Cells

	Distinct PVT Requirements
	Unsupported k-factors
	Automatic Detection of Driving Cell Library
	Relating the Minimum Library to the Maximum Library
	Unique Identification of Libraries Based on File Names

	Automatic Inference of Operating Conditions for Macro, Pad and Switch Cells
	Scenario Management Commands
	Using ILMs in Multicorner-Multimode Designs
	ILM Checks for Scenario Management

	Power Optimization Techniques
	Optimizing for Leakage Power
	Optimizing for Dynamic Power

	Reporting Commands
	report_scenario Command
	Reporting Commands That Support the -scenario Option
	Commands That Report the Current Scenario
	Reporting Examples

	Supported SDC Commands
	Multicorner-Multimode Script Example

	Integrated Clock-Gating Cell Example
	Library Description
	Sample Schematics
	Rising-Edge Latch-Based Integrated Cells
	Rising-Edge Latch-Free Integrated Cells
	Falling Edge Latch-Based Integrated Cells
	Falling-Edge Latch-Free Integrated Cells

	Attributes for Querying and Filtering
	Derived Attribute Lists
	Usage Examples

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

