
ARTICLE IN PRESS

Pattern Recognition 43 (2010) 2476–2484
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

Switzer

E-m

(T. Des

URL
journal homepage: www.elsevier.com/locate/pr
Object classification by fusing SVMs and Gaussian mixtures
Thomas Deselaers a,b,�, Georg Heigold b, Hermann Ney b

a Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
b Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany
a r t i c l e i n f o

Article history:

Received 12 October 2009

Received in revised form

9 January 2010

Accepted 1 February 2010

Keywords:

Support vector machine

Gaussian mixtures

Discriminative classifiers

Generative classifiers

Local-feature-based object recognition
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.02.002

esponding author at: Computer Vision Lab

land. Tel.: +41 789 43 6669.

ail addresses: deselaers@vision.ee.ethz.ch, tho

elaers).

: http://thomas.deselaers.de (T. Deselaers).
a b s t r a c t

We present a new technique that employs support vector machines (SVMs) and Gaussian mixture

densities (GMDs) to create a generative/discriminative object classification technique using local image

features. In the past, several approaches to fuse the advantages of generative and discriminative

approaches were presented, often leading to improved robustness and recognition accuracy. Support

vector machines are a well known discriminative classification framework but, similar to other

discriminative approaches, suffer from a lack of robustness with respect to noise and overfitting.

Gaussian mixtures, on the contrary, are a widely used generative technique. We present a method to

directly fuse both approaches, effectively allowing to fully exploit the advantages of both. The fusion of

SVMs and GMDs is done by representing SVMs in the framework of GMDs without changing the

training and without changing the decision boundary. The new classifier is evaluated on the PASCAL

VOC 2006 data. Additionally, we perform experiments on the USPS dataset and on four tasks from the

UCI machine learning repository to obtain additional insights into the properties of the proposed

approach. It is shown that for the relatively rare cases where SVMs have problems, the combined

method outperforms both individual ones.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Two major approaches to the classification of patterns are well
known: generative approaches and discriminative approaches.
Both have been successfully applied to object classification and
both have their own advantages and disadvantages. For object
classification in images nearly all approaches nowadays strongly
build on the use of local features. Generative approaches such as
those presented by Fergus et al. [11], Mikolajczyk et al. [23] try to
find an optimal representation of the original data by keeping as
much information as possible. Generative methods can be trained
from partly or even unlabelled data and normally allow for a
reconstruction of the most likely prototype for each modelled
class. Generative methods can be built very robustly. Discrimina-
tive methods, such as those presented by Bosch et al. [2],
Moosmann et al. [25], Shotton et al. [30], Viola and Jones [32],
require fully labelled training data, can be applied very quickly
and often show better recognition accuracy than their generative
counterparts. The biggest problem of many discriminative
ll rights reserved.
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approaches is that they are prone to overfitting, which requires
significant extra effort to be overcome [2,36].

Clearly, both approaches have their advantages and several
authors have tried to combine the approaches to benefit from
both. One common approach to join the two worlds is a two stage
method: using a generative model to create a fixed length
representation of the image, which then is classified using a
discriminative technique [6,9,14,19]. Cazzanti et al. [3] combine
the two approaches the other way round: the extract discrimi-
native features using their similarity discriminant analysis and
then apply a generative model for classification.

A direct approach to joining the two principles is proposed by
Minka [24] and used in an object recognition framework by
Lasserre et al. [17] which allows to seamlessly blend from a fully
discriminative model to a fully generative model. Grabner et al.
[12] modify a discriminative, boosted model to account for
reconstruction in addition to the discriminatory performance
and a clear performance boost for noisy data was observed. Lin
et al. [20] take the opposite approach and boost Gaussians as
weak classifiers. Hegerath et al. [13] present a Gaussian mixture
density classifier for patch-based object recognition which, in
principle, is a generative model but which is refined by
discriminatively changing the cluster-weights. The discriminative
refinement of a generative model can in some cases be shown to
be identical to directly training a discriminative model [17,24] if
done properly. The model presented in [17] which also resembles
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a mixture, thus is a much cleaner way to achieve a similar goal. Do
and Artieres [8] use SVMs to improve the recognition of
sequential data. The proposed model increases the discriminative
power of generative models by using a support vector machine to
improve a mixture of generative models.

Among the discriminative models, support vector machines
(SVMs) are very popular in many domains since they have very
good performance in many cases and can be applied to many
problems in machine learning. Some of the two-staged genera-
tive/discriminative approaches mentioned above use SVMs for the
second stage [9] and in [33] a kernel for direct application to a
local feature-based image representation is presented. SVMs,
which do not model a probability distribution, are not open to the
ideas presented in [17] and can thus not easily be extended to
incorporate generative concepts.

For dimensionality reduction Yang et al. [35] propose a model
that allows to combine the advantages of kernel principal
component analysis (PCA) and linear discriminant analysis
(LDA). The resulting method is a hybrid generative/discriminative
dimensionality reduction method.

Despite the fact that it is relatively easy to find a good set of
parameters for training an SVM, which makes SVMs one of the
most successful and best understood approaches, LeCun et al. [18]
observe that in some cases tuning the parameters of an SVM to
obtain optimal performance turns an SVM into ‘‘little more than a

glorified template matcher’’. This is in accordance to the observa-
tion addressed here that an SVM (with radial basis function (RBF)
kernel, which is probably the most commonly used kernel) in
some cases has a large portion of the training data as support
vectors (SVs) and thus it degenerates to a discriminatively

weighted kernel densities classifier. This degeneration can be
interpreted as effectively overfitting to the training data.

In this paper, we present an approach that fuses an SVM with a
generatively trained GMD classifier and thereby profits from the
advantages of both techniques. The idea, how SVMs and GMDs
can be fused was published in [7] but not evaluated as thoroughly
and not applied to object recognition. A close connection between
Gaussian mixtures and SVMs was already discussed by Schölkopf
et al. [28], but to the best of our knowledge, the direct fusion of
both approaches has not yet been investigated. For the two
approaches, to be fused, we first convert the SVM into a GMD with
identical decision boundary. This conversion allows to compute
posterior probabilities pðcjxÞ for class c of observation x and class
conditional probabilities pðxjcÞ for the obtained GMD. These
probabilities, however, must not be considered to be the true
probabilities for the underlying SVM but are just an interim
instrument to allow for the combination. To obtain probabilities
from an SVM, other methods have been proposed, e.g., by Platt
[26], Seeger [29], Sollich [31] where a sigmoid function is fit onto
the distance of an observation to the hyperplane to obtain
probabilities. SVMs and GMDs could be combined by computing
their individual posterior probabilities Kittler [16] and combining
these, however, the here proposed method is not a late
combination of two different classifiers, but a unified framework,
to fuse the two classification methods into one joint classifier.

The object recognition approach presented is based on the
assumption that objects consist of parts and these parts can be
modelled more or less independently which is a common
assumption in the object recognition literature [9,11,14]. Here
the parts are represented by local features extracted at interest
points and classified individually. To classify the image, the
respective classification decisions are combined. In the course of
the experiments, we observe that SVMs are not suitable for this
approach since the problem of classifying the individual local
features is too ‘‘inseparable’’ for an SVM to be solved and thus the
SVM shows the degeneration as described by LeCun et al. [18].
The combination of the SVM with GMD is shown to be an effective
smoothing of the SVM. Experimentally it is shown that this
smoothing greatly reduces the negative effects from overfitting.

The remainder of this paper is structured as follows: In Section
2 we describe the local feature extraction for the SVM-based
object recognition system presented in Section 3 and the GMD-
based object recognition system presented in Section 4. In Section
5 the fusion of SVMs and GMDs into a unified framework is
presented. In Section 6 we present and discuss experiments on
the PASCAL VOC 2006 task and to get a deeper insight into the
proposed methods we also evaluate it on the USPS dataset and on
four tasks from the UCI machine learning repository. Finally, the
paper is concluded.
2. Feature extraction for object classification

For each image, we extract up to 200 SIFT descriptors [21] at
the top-200 Difference-of-Gaussian (DoG) interest points. SIFT
descriptors [21] are local image descriptors designed to be
invariant with respect to image translation, scaling, and rotation.
They are partially invariant to illumination changes and they are
robust to local geometric distortion.

We do not evaluate different types of features in this work, but
strictly follow the procedure described by Lowe [21] since here
we want to focus on the influence of the model rather than the
impact of carefully chosen descriptors. SIFT features, however,
were shown to perform well on a wide range of different tasks
[22] and need only little additional tweaking. In the following, an
image X is represented by the set of L local features xL

1 ¼ fx1 . . . xLg.
3. Object classification using local features with an RBF-
kernel SVM

SVMs, being a modern, well understood and widely used
classifier, directly predict the label of an observation. An SVM
commonly discriminates between two classes: �1 and 1 using
the decision rule

r : X-f�1;1g;X/rðXÞ ¼ sgn
X
vi AS

aiKðX; viÞþa0

 !
ð1Þ

¼ sgn
X

k

X
vi ASk

aiKðX; viÞþa0

 !
ð2Þ

to classify the observation X where K is a kernel function, the vi

are the support vectors (SVs) and the ai are the corresponding
weights, a0 is a bias term.

Here, an image X is represented by a variable number of local
SIFT features. To classify an image, we classify each of these local
features x individually and determine the class of the whole image
by combining the individual classification decisions. To allow for
effectively combining, not only the resulting class but also the
distance to the decision hyperplane is considered. The distance to
the decision hyperplane can be considered to be proportional to a
class-conditional emission probability, i.e., we assume that given
a class, every local feature vector x which is far away from the
hyperplane is likely to be emitted from this class, and conversely,
for every vector which is close to the hyperplane, the probability
that this vector comes from the class is low. Thus, we can write

pðxjkÞp
X

vi ASk

kaiKðx; viÞþa0 ð3Þ

where Sk is the set of SVs for class k, i.e., those SVs with positive ai

for class k= +1 and those with negative ai for class k=�1, and the
ai are the corresponding weights, a0 is the bias term.
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Given these probabilities, we apply Bayes’ decision rule,
assume that the patches of an image are independent, and come
to the following decision rule to classify an image X represented
by a set of local features fx1 . . . xLg.

X/rðfxL
1gÞ ¼ argmax

k
fpðkjfxL

1gÞg ¼ argmax
k
fpðkÞpðfxL

1gjkÞg

¼ argmax
k

pðkÞ
YL

l ¼ 1

pðxljkÞ

( )
ð4Þ

Note that the pðxljkÞ, which are the values obtained from the right-
hand side of Eq. (3), are not properly normalised with respect to x.
This, however, does not affect the decision and thus the missing
normalisation does not matter here.
4. Object classification using local features with Gaussian
mixture densities

Gaussian mixture models are a generative model: for each
object class a class-dependent mixture pðxjkÞ is used. To decide
which object is depicted in an image, again Bayes’ decision rule is
used:

X/rðfxL
1gÞ ¼ argmax

k
fpðkjfxL

1gÞg ¼ argmax
k
fpðkÞ � pðfxL

1gjkÞg

¼ argmax
k

pðkÞ �
YL

l ¼ 1

pðxljkÞ

( )
ð5Þ

where {x1
L} denotes the set of patches x1; . . . ; xL extracted from

image X. We model pðxljkÞ as untied Gaussian mixture densities
with class-wise pooled diagonal covariances, i.e.,

pðxljkÞ ¼
XIk

i ¼ 1

pðijkÞ � pðxlji; kÞ ¼
XIk

i ¼ 1

pðijkÞ �N ðxljmki;SkÞ ð6Þ

where class k is represented by Ik clusters, pðijkÞ are the cluster
weights and N ðxljmki;SkÞ is the Gaussian representing the i-th
cluster of class k with mean mki and covariance Sk. Without loss of
generalisation, we assume that Sk ¼ s1, where 1 is the identity
matrix. This can always be achieved by decorrelating and
rescaling the observations.

These mixtures are trained using the EM algorithm to
maximise the likelihood

QN
n ¼ 1

QLn

l ¼ 1 pðxljkÞ [5] by starting with
an initial Gaussian over all observations which is iteratively split
and reestimated until a certain number of densities is obtained.
Densities with too few observations are deleted to ensure stable
estimation.
5. Fusing support vector machines and Gaussian mixtures

As described above, SVMs are a discriminative classifier and
GMDs are a generative classifier. In the following, we first
Fig. 1. Scheme of the object classification system. Left: input i
describe how SVMs with RBF kernel can be represented in the
form of GMDs without changing the decision boundary and then
describe how two GMDs can be fused to profit from their
individual advantages.

Fig. 1 shows an overview of recognition phase for the different
models (SVM (Section 3), GMD (Section 4), fused SVM and GMD
(Section 5)). The applied system is the same in all three cases, only
the emission probabilities pðxljkÞ depend on the underlying model.

5.1. Approximating SVMs using GMDs

Since SVMs are designed to discriminate only two classes, here
we consider two cases: first we describe the transformation for
the two-class case and then we extend this transformation to the
multi-class case.

Two-class case: It is well known that SVMs as well as GMDs can
in principle model arbitrary decision boundaries and thus can
theoretically represent the respective other without any loss of
accuracy or generalisation ability. This theoretical feature, how-
ever, does not pose an advantage as the most difficult thing for
any classifier normally is to find the model parameters, and thus it
is not clear how to benefit from the theoretical equivalence here.

For the case of SVMs with an exponential RBF kernel, a close
similarity between SVMs and GMDs can be observed. Starting
from the general form of the decision function, we show that
GMDs and SVMs are in fact equivalent and, even more, that either
one can be represented as the respective other without changing
the decision boundary.

Consider the decision rule of a standard SVM in Eq. (1). This
equation can be rewritten as

rðXÞ ¼ arg max
kA f�1;1g

X
vi ASk

kaiKðX; viÞþa0

( )
ð7Þ

¼ arg max
kA f�1;1g

X
vi ASk

kaiexpð�gJX�viJ
2
Þþa0

( )
ð8Þ

where Sk is the set of SVs vi from class k, ai is the corresponding
weight, g is a kernel parameter, and a0 is the learned bias.

The decision rule of a GMM in Eq. (5) can also be rewritten as

rðXÞ ¼ argmax
k

X
i

pðkÞpðijkÞ
1

ð2ps2Þ
D=2

exp �
1

2

Jx�mkiJ
2

s2

 !( )
: ð9Þ

Now it can be seen that Eqs. (8) and (9) are identical except for the
a0 if the means mki and the SVs vi correspond. In fact, a GMD can
be transformed into an SVM (and vice versa) by setting

kai ¼ pðkÞpðijkÞ
1

ð2ps2Þ
D=2

ð10Þ

g¼ 1

2s2
ð11Þ

mki ¼ vi for all viASk ð12Þ
mage, center: extracted local features, right: decision rule.
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a0 can be sufficiently well approximated by an additional density
with arbitrary mean and very high variance and a cluster weight
proportional to a0. D is the dimensionality of the observations.
The fact that ai can be negative, which is not allowed for the
probabilities in the GMDs, can easily be worked around by adding
an SV to the other class with weight �ai, which does not affect the
decision boundary and can smoothly be transformed to a density
in the GMD model.

Thus GMDs and SVMs can represent the same decision
boundaries for the two class case and either representation can
be obtained from the other as described above keeping the
decision boundaries constant. Thus, the main difference between
a GMD and an SVM with RBF kernel is the training method and
the optimisation criterion.

Multi-class case: The earliest used implementation for SVM
multi-class classification is probably the ‘‘one-against-the-rest’’
(also known as ‘‘one-against-all’’) method, which has been used to
extend other binary classifiers to multi-class problems before
[15]. Therefore, not a single classifier is trained to discriminate
between all classes at once but a classifier is trained for each class
to discriminate it from all other classes and the decision is drawn
according to the scores from these individual decisions.

The decision rule in this case is

rðxÞ ¼ argmax
k

X
vi ASk

kaiKðx; viÞþak

( )
ð13Þ

where the parameters for each class k are optimised in individual
training procedures considering the two-class problem where all
competing classes are considered to be from class �1 and class k

is considered to be class 1.
Here, the relationship to the GMD classifier is similar to the

two-class case, if this SVM is converted into a GMD classifier, each
SV becomes a mixture mean, we assume a pooled, diagonal
covariance matrix with identical entries for each dimension
inversely proportional to g and the cluster weights are given
through the weights ai of the SVs:

pðkÞpðijkÞ
1

ð2ps2Þ
D=2
¼ ai ð14Þ

mki ¼ viASk ð15Þ

1

2s2
¼ g ð16Þ

Again, it is necessary to address the class-wise constant bias terms
ak which can be substituted by very diffuse Gaussians (one per
class) with an arbitrary mean and a weight proportional to ak.
Negative weights ai are compensated by adding respective
densities to all other classes.

Note that the same transformation can be applied if the SVM is
trained to jointly discriminate all classes as described by Weston
and Watkins [34] because the same decision rule is applied there
and only the training is done differently.
5.2. Fusing SVMs and GMDs

Given two GMDs

G1 ¼ ððm11 . . .m1IÞ; ðs2
11 . . .s

2
1IÞ; ðp1ð1Þ . . . p1ðIÞÞÞ ð17Þ

G2 ¼ ððm21 . . .m2JÞ; ðs2
21 . . .s

2
2JÞ; ðp2ð1Þ . . .p2ðJÞÞÞ ð18Þ

one trained using the EM algorithm for GMDs and the other
obtained by transforming an SVM, it is possible to fuse both GMDs
into a single GMD and arbitrarily mix between the two. The new,
joint GMD G0 is obtained as

G0 ¼ ððm11 . . .m1I;m21 . . .m2JÞðs2
11 . . .s

2
1I ;s

2
21 . . .s

2
2JÞ

ðwp1ð1Þ . . .wp1ðIÞ; ð1�wÞp2ð1Þ . . . ð1�wÞp2ðJÞÞÞ ð19Þ

where w is a weighting factor allowing to smoothly blend
between G1 (for w=1) and G2 (for w=0).

Since the cluster weights of G1 and G2 are normalised, for
0rwr1 the cluster weights of the resulting GMD G0 are also
normalised.

The resulting decision boundary, now is chosen according to a
combination of the optimisation criteria of the SVM, which
optimises classification performance, and the GMD, which
optimises data representation. Thus, the resulting decision
boundary is not-optimal with respect to either of these criteria,
but according to some compromise of these.

In Fig. 2 an example GMD (1 density per class) and three
differently parametrised SVMs are visualised for two-dimensional
data. It can be seen that the SVMs have, depending on the scale of
the kernel g, many SVs, which is an indicator for possible
overfitting. As will be experimentally observed later, overfitting
of SVMs to the training data is a problem in cases where the data
are very difficult to separate, which commonly goes along with a
very high number of SVs. For GMDs, the number of parameters
estimated can easily be fixed by the user (i.e. fix number of
densities), thus by forcing the number of parameters to be small,
overfitting can easily be avoided.

Note that it is typical that a GMD has far fewer densities than
an SVM has SVs since in a GMD each density represents a set of
observations whereas an SV in an SVM is one training sample.

In Fig. 3, the GMD from Fig. 2(a) is fused with the three
different SVMs from Fig. 2(b)–(d) with different weights wsvm. The
smoothing of the probability distribution and thereby of the
decision boundary can clearly be observed. The effect is best
observed in the top row of Fig. 3, which shows a combination of
the SVM with g¼ 0:01 (cp. Fig. 2(b)) with the GMD (Fig. 2(b)). The
before extremely bumpy decision boundary of the SVM is strongly
smoothed and only when the SVM gets relatively high weight a
slight tendency to overfitting can be observed. Similarly, the
decision boundaries for the combinations with the other two
SVMs are smoothed when combined with the GMD.
6. Experiments

In the following we present experimental results for two
different tasks. First we show the experimental results for the
PASCAL 2006 data for the two individual object recognition
methods and for their combination and then we present
experiments on the well-known USPS database to further analyse
the results and show how smoothing an SVM with a GMD can
help to rescue clearly overfit classification methods from failing
on test data. For both datasets the fused classifier outperforms its
individual components. Example images for the PASCAL are given
in Fig. 4.

6.1. PASCAL VOC 2006

In 2006, the PASCAL network of excellence organised a second
visual object classes challenge (VOC) to allow for quantitative
comparison of different approaches to object recognition, detec-
tion, and identification. The 2006 tasks comprise 10 classes and a
total of 5304 images were made available [10]. We apply the
above-described methods for the classification task. The data
were split into training, development, and testing data. In the
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Fig. 2. (a) A single density Gaussian classifier, the variance is given by the ellipse and the mean is denoted by a small star (b)–(d) support vector machines with (b) g¼ 100,

(c) g¼ 10, (d) g¼ 2. White areas denote high probabilities for the red class and dark areas denote high probabilities for the blue class, the decision boundary is yellow and

SVs are denoted by green circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Fusing the Gaussian classifier from Fig. 2(a) with the SVMs from Fig. 2(b)–(d) using different weights. The decision boundary is plotted as a yellow line.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Example images of the PASCAL VOC 2006 database.

T. Deselaers et al. / Pattern Recognition 43 (2010) 2476–24842480
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Fig. 5. The results from optimising the SVM parameters for the PASCAL 2006 task

on the development data. The individual lines denote different values for the SVM-

scale parameter g.

Table 1
Results on the PASCAL VOC 06 (development data) task using SVMs (top) and

GMDs (bottom).

Class SVM

C=0.2 C=1.0

AUC

# SV Train Test # SV Train Test

Bicycle 56 788 0.87 0.77 62 451 0.98 0.75

Bus 42 586 0.85 0.63 48 210 0.99 0.72

Car 112 848 0.90 0.87 111 580 0.89 0.87

Cat 81 643 0.67 0.59 88 084 0.96 0.73

Cow 45 270 0.70 0.65 51 418 0.90 0.72

Dog 81 150 0.67 0.63 154 309 0.85 0.66

Horse 57 294 0.69 0.62 63 596 0.92 0.63

Motorbike 53 417 0.84 0.69 59 142 0.95 0.69

Person 135 007 0.71 0.65 139 335 0.93 0.70

Sheep 51 790 0.81 0.68 57 466 0.98 0.77

Class GMD

8 splits 10 splits

AUC AUC

# dens. Train Test # dens. Train Test

Bicycle 512 0.97 0.85 2043 1.00 0.85

Bus 512 0.98 0.86 2024 1.00 0.85

Car 512 0.96 0.88 2046 1.00 0.90

Cat 511 0.93 0.78 2024 0.99 0.80

Cow 512 0.97 0.88 2027 1.00 0.88

Dog 512 0.89 0.73 2026 0.99 0.74

Horse 512 0.99 0.72 2043 1.00 0.73

Motorbike 512 0.99 0.81 2037 1.00 0.81

Person 512 0.90 0.69 2047 1.00 0.70

Sheep 510 0.97 0.86 2021 1.00 0.86

For the SVM experiments, the cost parameter C and the parameter g were carefully

chosen in a grid-search experiment of 35 experiments per class (cp. Fig. 5), but

none of these experiments showed better results on the development data. For the

GMD experiments, we used 8 and 10 splits. All results are given for the training

data and for the development data. Additionally we give the number of support

vectors and the number of densities.

Table 2
Results on the PASCAL data for combining the SVM with C=1.0 and g¼ 0:025 with

the GMD with 8 splits with equal weighting for both models.

Class Train Test max{SVM, GMD}

Bicycle 1.00 0.82 0.85
Bus 1.00 0.82 0.86
Car 1.00 0.89 0.88

Cat 1.00 0.80 0.78

Cow 1.00 0.88 0.88
Dog 1.00 0.75 0.73

Horse 1.00 0.71 0.72
Motorbike 1.00 0.77 0.81
Person 1.00 0.70 0.70
Sheep 1.00 0.87 0.86
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following, we mainly present experiments on the training vs.
development task.

In PASCAL VOC 2006 [10], area under the curve (AUC) is the
standard evaluation measure. It measures the area under the
receiver operating characteristic (ROC) curve. A ROC curve is a
plot of the sensitivity vs (1 specificity) for a binary classifier as the
decision threshold is varied. This allows for comparing classifiers
independently of class distribution and misclassification costs.

SVMs: The object classification method presented in Section 3
is evaluated on the PASCAL VOC 2006 data. To find suitable
settings for the SVM, we performed a grid search for the cost
parameters C and the scale parameter g of an SVM with RBF kernel
in the PASCAL development data (CAf0:01;0:02;0:05;0:1;0:2;0:5;
1:0;2:0g; gAf0:001;0:01;0:025;0:05;0:1; g, i.e., we performed
7 � 5¼ 35 experiments). The average AUC over the classes of the
grid search are shown in Fig. 5. Interestingly, we were unable to
find parameters for this approach that are able to compete with
the results for the (different) approaches applied in the PASCAL
VOC 2006 [10]. It can be seen that g¼ 0:025 performs best on the
average and that a high C, i.e., large costs for misclassifications of
the training data lead to the best results. The best results, when
training on the training data and testing on the development data,
are given in Table 1. A deeper analysis of the trained models
revealed that the models performed poorly for the test data, but
have quite good results on the training data and that they consist
of a very large number of SVs. The best models trained were those
with rather small numbers of SVs, i.e., models with ‘‘only’’ 20–50%
of all training vectors as SVs which still is a large amount. If g and
C are chosen such that even fewer SVs are selected (e.g. smaller C),
the performance is not better than the results presented here.

GMDs: The object classification method presented in Section 4
is also evaluated for the PASCAL data. Results for 8 and 10 splits
(i.e. maximally 256 and 1024 densities per class, respectively) are
presented in Table 1. Interestingly, and contrary to our initial
expectations, this fully generative method clearly outperforms the
discriminative SVM method on the development and on the
training data. The performance of the 10 split model is on
the development data only slightly better than the 8 split model
but due to the higher number of parameters shows a stronger
overfitting to the training data. Models with even more densities
have also been evaluated and found not to perform better.

Fused model: Interestingly, although experiments were per-
formed carefully, all data were scaled to be in a reasonable
domain and C and g parameters were carefully chosen, it seems
impossible to find a really good set of parameters for the SVMs,
and in all cases, the number of SVs chosen is very high, which is
an indicator for overfitting problems.

Table 2 gives results for combining the SVM model with the
GMD model (we choose the SVMs with C=1.0 and the GMDs with
8 splits). We have evaluated different weightings, but a weight of
0.5 performed best. It can be seen that the performance on the
training data is improved even further, but the overfitting has no
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Fig. 6. Example images from the USPS dataset.

Table 3
(a) Results using different scale parameters g and cost parameters C in the SVM

training on the USPS database.
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negative effect here, since the results on the test data are
improved over the SVM in all cases and over the GMD in most
cases (printed in bold face). From this we conclude that the fusion
of SVM and GMD effectively combined the advantages from both.
(a)

g C=0.5 C=1.0

ER (%) ER (%)

# SV Train Test # SV Train Test

0.001 4344 5.6 9.5 3670 4.5 8.7

0.01 3170 0.9 5.4 2947 0.2 5.0
0.02 4118 0.2 5.5 4053 0.0 5.0
0.05 5918 0.0 12.2 5824 0.0 11.8

0.08 6411 0.0 38.2 6359 0.0 36.0
0.1 6494 0.0 48.1 6454 0.0 47.6

0.2 6698 0.0 65.6 6656 0.0 65.6

0.5 7057 0.0 71.0 7012 0.0 71.1

(b)

# splits # densities ER (%)

Training Test

0 10 14.9 18.6

1 18 9.4 13.9

2 36 6.8 9.5

3 72 5.0 8.9

4 144 3.5 7.9

5 287 1.9 6.8

6 550 0.9 6.1

7 860 0.6 6.0

8 935 0.6 5.9

9 956 0.6 6.1

10 945 0.6 5.7

11 991 0.5 5.4

12 958 0.6 5.9

In addition to the classification error rate (ER [%]), we give the total number of

support vectors in the model. (b) Results on the USPS database using Gaussian

mixture densities with different numbers of densities. The number of densities

does not increase anymore after 8 splits due to lack of training data, densities

cannot be reestimated reliably and are thus deleted. Further splits and

reestimations nonetheless can change the results.

Table 4
Combining the SVM with C=1.0 and g¼ 0:08 with different GMDs from Table 3

using different weights wgmd on the USPS dataset.

Split wgmd=0.2 wgmd=0.5 wgmd=0.8

Train Test Train Test Train Test

0 0.0 11.7 0.0 10.7 0.2 14.8

1 0.0 9.5 0.0 8.1 0.1 10.3

2 0.0 6.3 0.0 6.1 0.0 8.3

5 0.0 5.7 0.0 5.7 0.0 5.8

10 0.0 5.2 0.0 5.3 0.0 5.3

11 0.0 5.1 0.0 5.2 0.0 5.3

12 0.0 5.3 0.0 5.8 0.0 5.6

Note that a column for wgmd=0.0 is the rightmost column in Table 3(a) and a

column for wgmd=1.0 is the given in Table 3(b).
6.2. USPS

The well-known USPS Handwritten Digit Database consists of
isolated and normalised images of handwritten digits taken from
US mail envelopes scaled to 16 �16 pixels. The database contains
a separate training and test set, with 7291 and 2007 images,
respectively.1 The US Postal Service task is still one of the most
widely used reference datasets for handwritten character recog-
nition and allows fast experiments due to its small size. The test
set contains a large amount of image variability and is considered
to be a ‘‘hard’’ recognition task. Example images from the USPS
database are shown in Fig. 6. For the USPS database, several good
results using SVMs were published [27]. Here, our objective is not
to outperform these results. Instead, we use this task for
demonstrating the power of smoothing an overfit SVM using a
GMD. For the USPS data, since the images are only 16 �16 pixels,
we do not use the local-feature based approach presented in
Sections 3 and 4 but directly use the complete image as feature
vector.

SVMs: Table 3 shows results for different parameters C and g
for the training and the test data of the USPS database along with
the number of SVs in the trained model. The chosen multi-class
voting scheme is one-against-the-rest. In accordance to the
experiments described above, the best result on the test data is
obtained in the models with the lowest numbers of SVs (bold
faced). It is interesting to observe how important carefully
choosing the cost parameter C and the scale parameter g are in
creating an SVM and how easily a badly overfitting SVM is
created, if parameters are chosen inappropriately. In many cases,
such as here, it is rather easy to find a good set of parameters, but
in other cases, such as the one described above, it might be very
difficult or even impossible. The results in Table 3 are a subset of
the results obtained in cross-validation experiments to tune the
C and g parameters. For our analysis, the more interesting cases
are those where the SVM overfits. Therefore, we use an SVM
which overfits moderately (bold, red) in the following
combination experiments.

GMDs: Table 3 gives results for 0–12 splits of GMD on the USPS
data, it can be observed that the number of densities does not
grow if more than 8 splits are used because due to the sparseness
of the data, some densities do not have enough observations to be
reestimated robustly and are therefore deleted. Here, the GMDs
do not outperform the best SVM but still have competitive results.

Fused model: To investigate the smoothing of the SVM using a
GMD, we chose the SVM trained with g¼ 0:08 and C=1.0 which
clearly overfits but does not fail completely (bold in Table 3). This
SVM is combined with several of the GMDs trained from the
previous section using different weights. The results from these
experiments are given in Table 4. It can be observed that none of
resulting models performs as badly on the test data as the original
SVM and that thus effectively the overfitting problem of the SVM
1 Data available from ftp://ftp.kyb.tuebingen.mpg.de/pub/bs
is smoothed away by mixing with the GMD model. Combining a
better SVM with a GMD does not lead to improved results over
either of the models. In additional experiments, we fused the

ftp://ftp.kyb.tuebingen.mpg.de/pub/bs
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Table 5
Overview of the UCI datasets used, C number of classes; N total number of vectors;

D dimensionality of the vectors.

Dataset C N D

Diabetes 2 768 8

German 2 1000 24

Hearta 2 270 25

Vehicle 4 846 18

a Categorical features were expanded (original dim. 13).

Table 6
Results using SVMs and GMDs on the UCI datasets.

Dataset SVM GMD ER (%)

ER (%) SVs (%) 1 dens. 2 dens. 32 dens.

Diabetes 29.9 50.0 28.6 30.5 24.7

German 24.5 54.4 24.0 26.5 30.0

Heart 25.9 56.0 22.2 22.2 27.8

Vehicle 60.2 50.7 53.8 49.1 35.1

We give the result for the SVM using the parameters determined on the data in

fivefold cross-validation. For the SVM we also give the number of SVs in

percentage. For GMD classifiers, we give three results for each database, using 1, 2,

and 32 densities per class, respectively.

Table 7
Results of fusing SVMs and GMDs with w=0.5.

Dataset ER (%)

1 dens. 32 dens.

Diabetes 30.5 27.3

German 22.5 33.0

Heart 22.2 18.5

Vehicle 55.0 35.7
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better SVM models with different GMD models, but could not
outperform the best SVM result (4.6% ER) on these data.
6.3. UCI datasets

Additionally, we evaluate the proposed method on four
datasets from the UCI machine learning repository2 [1]. An
overview over the datasets used is given in Table 5. These
datasets were selected from the UCI repository by selecting those
where classification is difficult, i.e., those where reported error
rates are rather high. For all experiments we normalised the mean
and the variance of all features to 0 and 1, respectively, as
recommended for the use with SVMs.

First, we present the experimental results using only SVMs and
using only GMDs. We used the default grid search of libsvm [4] in
fivefold cross validation (11 values for C, 10 values for g) to
determine the parameters g and C for the SVM. The results for the
SVMs and the GMDs (with 1, 2, and 32 densities/class) are
reported in Table 6. GMDs with 1 and 2 densities have only very
few parameters and are thus extremely unlikely to overfit. Thirty-
two densities were chosen to be a relatively large number of
densities that can be reliably estimated on all of these datasets (in
the heart-dataset on the average only 4.2 observations are in each
density). For the other datasets we also evaluated models with
more densities but results were not improved anywhere.

It can be observed that the error rates are in general quite high
which shows that the selected tasks can be considered difficult. As
expected, the SVMs decided to choose a significant part of the
training data as SVs and thus the SVM is on the best way to
overfitting. The GMDs mostly have better results (on the test data)
than the SVMs, although the SVMs have far better error rates on
the training data (not reported here), which is an indicator for
overfitting effects.

The results of fusing the classifiers using the SVM and GMDs
with 1 and 32 densities are given in Table 7. For these
experiments, we do not tune the weight w and set w=0.5 such
2 http://archive.ics.uci.edu/ml/index.html
that GMDs and SVMs have equal influence. For the German-task
and the heart task, the fused classifiers outperform their
individual components, for the diabetes-task and for the
vehicle-task, only the SVM is outperformed and the
performance is similar to the GMD alone. Not surprisingly, for
the vehicle- and diabetes-tasks the combination has better results
if more densities are used, because here the GMDs were better
with more densities. We assume that thus effectively the
overfitting of the SVM is smoothed away by mixing with the
GMD model. Informal experiments showed that for each of these
tasks, improvements are possible by using different numbers of
densities in the GMD and by using different weights w in the
fusion, these results are omitted due to brevity constraints.
7. Conclusion

We presented a novel generative/discriminative classification
method consisting of fusing a generative Gaussian mixture
density with a support vector machine with radial basis kernel.
We have shown on the PASCAL 2006 task that the combined
method is able to overcome overfitting problems of the support
vector machine. Further analysis of the observed effects is
performed on the USPS database and on four datasets of the UCI
machine learning task.

As a conclusion, the proposed technique can be applied in
those cases where SVMs suffer from major overfitting problems.
However, this is not the case in many situations. SVMs are known
to be a well-understood and easily usable classification technique.
The PASCAL setup, as presented here, however, is different from
most tasks in that respect, as the classification of individual
patches is a very hard problem, where a classification boundary is
hardly learnable, and thus the SVM tends to overfit, i.e., chooses a
huge amount of training samples as SVs. For the USPS dataset, the
combination did not lead to improvements, but we could show
with a setup where the SVM was chosen to overfit deliberately
that robustness is improved. For the UCI tasks the combined
models outperform the SVMs and the GMDs in all cases.
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