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Abstract:  Kerr-type left-handed metamaterial (LHM) slab is proved to 
have an effect of focusing paraxial Gaussian beams and changing their waist 
radius, as conventional lens can do. The expressions for the focusing 
distance and the spot radius at the focal point are derived by the variational 
approach. We show that the incident Gaussian beams can be compressed or 
expanded by a single Kerr LHM slab, according to the sign of the Kerr 
nonlinearity and the divergence of the incident beam. Especially, it is 
demonstrated the focusing properties are significantly tuned by the slab 
thickness, the beam power and the divergence of the incident Gaussian 
beam.  
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1. Introduction 

In 2000, Pendry introduced the concept of perfect lens [1]. Thereafter, the lensing effect and 
imaging by a slab of left-handed metamaterial (LHM), which has simultaneously a negative 
dielectric permittivity and a negative magnetic permeability and thus negative refractive index 
[2], have attracted extensive interests [3-8]. Because of the negative refractive index, a 
divergent electromagnetic field from a point source can be refocused by a LHM slab when 
certain conditions are matched and the entire spectrum of the source can be restored by the 
LHM slab to obtain an unprecedented subwavelength resolution, which is verified by 
numerical simulations [9, 10] and experimental measurements [11, 12]. Such an effect has 
been found to play a significant role in the propagation of electromagnetic wave beam. For 
example, the phase difference of Gaussian beam caused by the Gouy phase shift in 
conventional media can be compensated by that in LHMs [13]. There is a unique lateral 
displacement for a Gaussian beam transmitting through a slab of LHM with an incidence 
angle [14-16]. Besides, it has been shown that by using a combination of an aperture and a 
medium slab exhibiting negative refraction, a light beam can be focused to below the 
diffraction limit [17]. For describing linear propagation in LHMs, partial differential equation 
is derived and transfer functions are developed [18].  

Because of the unique ability for guiding electromagnetic waves, LHMs have been 
developed quickly in recent years. LHMs were first obtained in the microwave range, now 
negative refraction up to the optical range can be realized (see, for example, [19]). Structures 
for low-loss, isotropic LHMs in the optical frequency regime have also been also suggested by 
Yannopapas et al. [20-22]. Moreover, effective nonlinear electric permittivity and magnetic 
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permeability in LHMs can be realized by embedding the metallic structure of arrays of wires 
and split-ring resonators into a dielectric with a nonlinear permittivity that depends on the 
intensity of the electric field [23]. For LHMs with cubic nonlinear electric response, or Kerr-
type LHMs, the interplay between diffraction and nonlinear effect is found opposite to that in 
conventional Kerr media [24], which leads to the requirement of an effective negative Kerr 
nonlinearity for the formation of transverse solitary waves in LHMs [25]. This, together with 
the unique dispersion relation in LHMs, has attracted a lot of researches on related nonlinear 
effects [26-28]. Besides, modulation instability in LHMs is found unique [29-31], especially 
the spatial modulation instability doesn’t occur in LHMs with positive nonlinearity. These 
studies suggest that Kerr-type LHMs have a great potential for application in control of light 
beam propagation.  

In this paper, we present an investigation on the focusing properties of Gaussian beams 
by a LHM slab with a Kerr-type nonlinear polarization. It should be pointed out that the 
presented study is based on LHMs satisfying the effective medium approximation [22, 24], 
which treats the medium as homogeneous and isotropic. The Kerr nonlinearity affects the 
spatial spectra of the beams passing through a medium, and thus the lensing effect of LHMs 
obtained under linear conditions will be significantly modified by the nonlinear effect.  

2. Models 

We study the focusing effect of a Gaussian beam by a Kerr LHM slab, which is sketched in 
Fig. 1. A Gaussian beam propagates along z-axis from the free space D1 through a Kerr LHM 
slab with a thickness LLHM (region D2), and then in another free space D3. In Fig. 1, Zw,1 and 
Zw,3 are the locations of waist of the Gaussian beam in free space D1 and D3, respectively, 
while Z0,2 and Z0,3 denote the on-axis coordinates of the front and back surfaces of the Kerr 
LHM slab, respectively. The Kerr LHM slab is assumed to be lossless and is transversely 
infinite, and the Gaussian beam is assumed to pass through the interfaces without reflection 
for simplicity.  

 
Fig. 1. Propagation model for the focusing of a Gaussian beam by a Kerr LHM slab. 

 
We assume the electric field of the incident Gaussian beam can be written as E1 

= ( ) ( )
1ˆ , , i kz txA x y z e ω− , where ω denotes the circular frequency of the electric field, ( )1 , ,A x y z  

is the envelope of the complex amplitude which can be written as  

( ) ( ) ( ) ( )
2 2 2 2

0,1
1 0,1 12

1 11

, , exp exp
2

w x y x y
A x y z A ik

w z R zw z

⎡ ⎤ ⎡ ⎤+ += −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

  (1) 

under the paraxial approximation, i.e., 1 1 1/A z k A∂ ∂ � , and the scalar approximation, where 

( ) 2 1/ 2
1 0,1 ,1 ,1{1 [( ) / ] }w Rw z w z Z L= + −  is the beam spot radius, 0,1A  and 0,1w  are the peak 

amplitude and the spot radius at the beam waist, 2
1 ,1 ,1 ,1( ) ( ){1 [ /( )] }w R wR z z Z L z Z= − + −  is 

the curvature radius of the beam phase front, 2
,1 1 0,1 / 2RL k w= , k1 = nL,12π/λ0, nL,1= 1 is the 

refractive index of free space and λ0 is the vacuum wavelength of the incident electromagnetic 
wave. Thus the q parameter of the incident beam is 1 1 1 11/ ( ) [1/ ( )] [2 / ( )]q z R z k w z= −  . We 
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should note here that we assume the paraxial approximation holds in the following theory and 
calculation. 

In the Kerr LHM slab, we use the nonlinear Schrödinger equation  

 
22 2

22 ,22
2 2 ,2 2 22 2

,2

2
2 0rl

NL
L

kA
i k A C A A

z x y n

μ⎛ ⎞∂ ∂ ∂+ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
  (2) 

to model the nonlinear propagation of optical beam, which can be obtained from Refs. [27, 30, 
32] by neglecting time-dependent effects, where k2= nL,22π/λ0, nL,2 is the linear refractive 
index of the LHM slab, A2 is the complex envelope of the electric field, ,2NLC = ,2 ,2/(2 )p Lnχ  is 

the nonlinear index coefficient, χp,2 is the cubic susceptibility, μrl,2 is the relative magnetic 
permeability of the LHM slab.  

3. Theory analysis 

When the Gaussian beam propagates from D1 into D2, it will be transformed by the interface 
separating D1 and D2. From the expression for the transformation of the q parameter of 
Gaussian beam in Ref. [18], we can obtain the waist radius 0,2iw  and the location of the waist 

,2w iZ  of the transformed Gaussian beam as  

 ( )0,2 0,1 ,2 0,2 ,1 0,2 ,2 ,1/i w i w L Lw w Z Z Z Z n n⎡ ⎤= , = + −  ⎣ ⎦ ,   (3) 

respectively. Then the initial state of the complex envelope of the beam field in the Kerr LHM 
slab can be written as  

 ( ) ( ) ( ) ( )
2 2 2 2

0,2
2 0,2 0,2 22

2 0,2 2 0,22 0,2

, , exp exp
2

i
i i

i ii

w x y x y
A x y Z A ik

w Z R Zw Z

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥= − ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

,  (4) 

where ( ) ( ){ }1/ 22

2 0,2 ,2 ,21 /i i w i R iw z w z Z L⎡ ⎤= + −⎣ ⎦ , 

( ) ( ) ( ){ }2

2 ,2 ,2 ,21 /i w i R i w iR z z Z L z Z⎡ ⎤= − + −⎣ ⎦ , 2
,2 2 0,2 / 2R i iL k w= , and k2 = nL,22π/λ0.  

We assume the envelope of the electric field of the beam in the Kerr LHM slab retains 
Gaussian-shaped and is written as   

 ( )
2 2

2 2
2 2 2 22

2

( ) exp ( ) ( )
( )

x y
A a z ib z x y i z

w z
ϕ⎡ ⎤+= − + + +⎢ ⎥

⎣ ⎦
.   (5) 

By the variational approach [33], we obtain from Eq. (2) the expression for the evolution of 
beam spot radius in the Kerr LHM slab as  

 ( )
2

0,2 0,22 2 2
2 0 2 0 1 2 0 12 2

2 0 2 0

1 2
z Z z Z

w z C k C C K k C C
k C k C

− −⎛ ⎞ ⎛ ⎞
⎡ ⎤= + + +⎜ ⎟ ⎜ ⎟⎣ ⎦

⎝ ⎠ ⎝ ⎠
, (6) 

where 0 2 0,2 1 0,2( ) ( )iC w Z w Z= = , 
0,2

1 2 ( ) /i z Z
C dw z dz

=
= , 2 2

2 24 ( ) ( )K M a z w z= −  , 

2
2 ,2 ,2 ,2/rl NL LM k C nμ= , 2 2 2 0,2 2 0,2( ) ( ) ( ) ( )a z w z a Z w Z=  is a constant due to the energy 

conservation law. Defining the power of the incident beam as 
2 2

0 ,2 2 0,2 2 0,2(1/ 2) | | ( ) ( )LP n a Z w Zε π=  and the reference power as 
2

,2 0 ,2/(2 | |)r NLP c Cε λ π= , we have  

 ( ){ },2 ,24 1 sgnrl NL PK C Rμ⎡ ⎤= − −⎣ ⎦ ,    (7) 
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where ,2/P rR P P= . Further, to reflect the influence of the divergence of the incident beam, 

we define parameters ( ),1 ,1 0,2 ,1/o w RZ Z Lθ = −  and ( ),2 ,2 0,2 ,2/i w i R iZ Z Lθ = − . Thus, we obtain 

θi,2=θo,1, ( )1/ 22
0 0,1 ,11 oC w θ= +  and ( ) ( )1/ 2

1 0,1 ,1 ,1 ,21 /o o R iC w Lθ θ−
= + − . By these relations, Eq. 

(6) becomes  

 ( )
2

0,2 0,22
2 0 ,1 ,12 2

2 0 2 0

1 4 4o o

z Z z Z
w z C K

k C k C
θ θ

− −⎛ ⎞ ⎛ ⎞
⎡ ⎤= − + +⎜ ⎟ ⎜ ⎟⎣ ⎦

⎝ ⎠ ⎝ ⎠
.  (8) 

For simplicity, we consider the case Zw,1=Z0,2=0, indicating C0=w0,1 and θo,1=0. Under 
these conditions, ( )2b z  and 2 ( )zϕ  can be obtained by the variational approach and ( )2b z  

has the form  

 ( )
( ) ( ){ }

0,2
2 22

2 2 2 0
0 0,2 2 02 1 /

z ZK
b z

k CC K z Z k C

−⎛ ⎞−= ⎜ ⎟
⎝ ⎠⎡ ⎤+ −⎣ ⎦

.  (9) 

Then, at Z0,3, we have  

 

( ) ( )

( )
( ){ }

2
2

2 0,3 0 2 0

2 0,3 22
2 2 2 0

0 2 0

1 / ,

.
2 1 /

LHM

LHM

LHM

w Z C K L k C

LK
b Z

k CC K L k C

⎫⎡ ⎤= + ⎪⎣ ⎦
⎪

⎛ ⎞ ⎬−= ⎜ ⎟ ⎪
⎝ ⎠⎡ ⎤ ⎪+ ⎣ ⎦ ⎭

   (10) 

It is clear from equation Eq. (10) that K is a crucial parameter for the output field of the Kerr 
LHM slab. According to Eq. (7), K can be significantly influenced by the sign of the nonlinear 
polarization of the LHM slab and the beam power, so we discuss the following three cases: (i), 
χp,2>0; (ii), χp,2<0 and RP<1/(-μrl,2); and (iii), χp,2<0 and RP>1/(-μrl,2). For the former two cases, 
we have K>0 and w2(Z0,3)>C0, indicating the beam is self-defocusing in the Kerr LHM slab. 
For the last case, we obtain that K is smaller than zero and w2(Z0,3) decreases from C0 as LLHM 
increases, indicating the beam is self-focusing in the Kerr LHM slab, and so the reference 
power Pr,2 can be viewed as the critical power for self-focusing. Thus, the conditions for self-
focusing and self-defocusing effects in the Kerr LHM case obtained here are in sharp contrast 
with their counterparts in the conventional Kerr medium (CKM) case. These results provide 
arguments for the prediction in Refs. [24, 25]. For the last case, it should be noted that, for 
certain slab thickness 2 2 1/ 2

2 0[( ) /( )]LHML k C K= − , w2(Z0,3) becomes approximately zero. If the 
slab thickness is close to or bigger than such a value, the beam will be totally self-focused in 
the Kerr LHM slab and Eq. (10) is no longer valid under such a condition.  

In region D3, we can further assume the beam is still Gaussian-shaped. By the boundary 
conditions at Z0,3 similar to those at Z0,2, we obtain the expressions for the waist location and 
the spot radius of the waist of the Gaussian beam as  

 
( ) ( )
( ) ( )

( )
( ) ( )

4

2 0,3 2 0,3 2 0,3
,3 0,3 3 0,32 4 2 4

2 0,3 2 0,3 2 0,3 2 0,3

1
,

2 1 1
w

b Z w Z w Z
Z Z k w

b Z w Z b Z w Z
= +  =

+ +
, (11) 

respectively. According to above analysis, Eq. (11) holds for four cases: (i) χp,2<0 and RP>1/(-
μrl,2) and 2 2 1/ 2

2 0[( ) /( )]LHML k C K< − , (ii) χp,2<0 and RP<1/(-μrl,2), and (iii) χp,2>0 and RP<1/(-

μrl,2); and (iv), χp,2>0 and RP>1/(-μrl,2). For the first case, we have Zw,3<Z0,3, indicating the 
output beam of the Kerr LHM slab is divergent. For the rest three cases, we have b2(Z0,3)>0 
and Zw,3<Z0,3, indicating the output beam of the Kerr LHM slab is convergent. In the rest three 
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cases, the effect of the Kerr LHM slab is similar to the effect of a lens. So, in the following 
part of this paper, we call a Gaussian beam in D3 a focused beam if Zw,3<Z0,3 and call this 
effect as the focusing (or lensing) effect of Kerr LHM slabs on Gaussian beams. Thus, it can 
be concluded that: (i) both Kerr LHM slabs with a positive nonlinear polarization and those 
with a negative nonlinear polarization can act as lenses to focus the incident Gaussian beam to 
a new waist; (ii) for the positive Kerr nonlinearity case, beam focusing happens for both 
0<RP<1/(-μrl,2) and RP>1/(-μrl,2) conditions; and (iii) for the negative Kerr nonlinearity case, 
beam focusing happens for RP<1/(-μrl,2) only. For such a focusing effect, the location and the 
radius of the focal spot are determined by Eq. (11). For convenience, we define the 
corresponding focusing distance as Lf =Zw,3-Z0,3 and especially, define the focusing distance 
for the case θo,1=0 as  

 
( ) ( )
( ) ( )

4

2 0,3 2 0,3

0 3 2 4

2 0,3 2 0,3

1

2 1
f

b Z w Z
L k

b Z w Z
=

+
.    (12) 

From Eqs. (11) and (12), it is easy to see that both the focusing distance and the spot 
radius of the beam waist in D3 are mainly determined by the thickness of the Kerr LHM slab 
and the ratio of the beam power to the reference power.  

3.1 Focusing properties of Gaussian beams by LHM slabs with positive or negative Kerr 
nonlinearities 

Here we analyze the focusing properties of Gaussian beams by Kerr LHM slabs for two cases 
in this subsection: (i) χp,2>0, and (ii) χp,2<0 and RP<1/(-μrl,2). Unless specially pointed out, in 
the following calculations and simulations, we use the following parameters: λ0 = 1053 nm, 
w2(Z0,2) = 0.4 mm, RP = 10, Zw,1 = Z0,2 = 0, LLHM = 10 cm, nL,2 = -1 and μrl,2 = -1.  

 
Fig. 2. (a) The focusing distance Lf0 and (b) the focal spot radius w0,3 of the focused Gaussian 
beam as functions of LLHM and RP for the case χp,2>0. (Available in color) 

 
For the case of χp,2>0, the theoretical predictions for the focusing distance and the waist 

radius in D3 are shown in Figs. 2(a) and 2(b), respectively. To show the influence of LLHM on 

0fL , we define the slope of a curve corresponds to certain beam power as 0 /f LHMs L L= ∂ ∂ . 

By s, we divide the results in Fig. 2(a) into two cases: (i) beam power is some times as high as 

,2rP , e.g. Rp is about 5, and (ii) power ratio is large, e.g. Rp is about 18. For case (i), s is 

always positive and 0fL  keeps increasing as LLHM increases. For case (ii), though generally 

positive, s can be negative in a certain value range of LLHM where 0fL  decreases as LLHM 

increases. It should also be noted that s approaches one finally in both cases. Figure 2(b) 

#91299 - $15.00 USD Received 3 Jan 2008; revised 14 Mar 2008; accepted 18 Mar 2008; published 24 Mar 2008

(C) 2008 OSA 31 March 2008 / Vol. 16,  No. 7 / OPTICS EXPRESS  4779



shows that the waist radius in D3 is inversely proportional to both the slab thickness and the 
beam power. Thus, the same focal spot radius can be obtained by changing the incident beam 
power or the thickness of the LHM slab. Besides, for Gaussian beams with very high power, 
evidently focusing effect can be obtained by a thin LHM slab. 

For the case of χp,2<0 and RP<1/(-μrl,2), the theoretical predictions for the focusing 
distance and the waist radius in D3 are shown in Fig. 3. In this case, for each slab thickness 
larger than zero, the focusing distance 0fL  decreases as the beam power increases, and the 

variation of the waist radius 0,3w in D3 with the beam power looks like a parabola. These are 

different from those shown by Fig. 2. Moreover, for Fig. 3(b), it should be noted that the waist 
radius in D3 is larger than the incident beam waist, which is contrary to that shown by Fig. 
2(b), and that the variation in absolute waist radius is smaller when compared to that in Fig. 
2(b).  

 
Fig. 3. (a) The focusing distance Lf0 and (b) the focal spot radius w0,3 of the focused Gaussian 
beam as functions of LLHM and RP for the case χp,2<0 and RP<1/(-μrl,2). (Available in color) 

 
Such a focusing effect is originated from the anomalous interaction between the 

diffraction and nonlinear effect in the Kerr LHM slab. In LHMs, the wavenumber is negative. 
Thus, for the first case, the phase shift caused by the positive nonlinear polarization and that 
caused by diffraction are positive and so the nonlinear effect enhances the diffraction effect in 
the Kerr LHM. For the second case, the phase shift caused by the negative nonlinear 
polarization is negative and so the nonlinear effect suppresses the diffraction effect in the Kerr 
LHM. Combining Eqs. (5) and (10), we obtain the spatial chirp of the Gaussian beam at Z0,3 is 

2
2 0/( )LHMG K L k C= −  . Considering the half-width (at 1/e-intensity point) of the spatial 

spectrum of Gaussian beam satisfies 2 1/ 2(1 ) /G wΔΩ = + , where w is the half-width (at 1/e-
intensity point) of the beam spot, we obtain from Eqs. (4), (5) and (10) the half-width of the 
spatial spectrum at the back surface of the slab:  

 
0,3 0,2

2 2

2
2 2

2 0 2 0

1 / 1LHM LHM
Z Z

L L
K K

k C k C

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥ΔΩ = ΔΩ + +⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

.  (13) 

From Eq. (13), it can be inferred that 
0,3 0,2Z ZΔΩ > ΔΩ  and 

0,3 0,2Z ZΔΩ < ΔΩ  for the first case 

and the second case, respectively. On the other hand, Gaussian beams with broader spatial 
spectrum have smaller waist radius, so, for the first case and the second case, the waist radius 
in D3 are smaller and larger than that of the incident beam, respectively.  

Moreover, it should be noted that the magnetic permeability of LHM slabs can 
quantitatively modify the above-mentioned influence of the beam power (see Eq. (7)). This is 
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very important for the second case, especially when the beam power equals approximately to 
the reference power, where small variation in permeability can change the convergent beam in 
D3 into a divergent one, or vice versa.  

3.2 Comparisons with the linear LHM slab case and the conventional Kerr medium slab case 

At first, let us consider the case that the LHM slab in Fig. 1 is a linear medium. In this case, it 
is easy to obtain 0 ,2 ,1/f L LHM LL n L n= , which is just related to the slab thickness and the 

refractive index, and 0,3 0,1w w= , which is not related to the slab thickness [1, 13]. When 

compared to this case, the above-mentioned lensing effect of Gaussian beam by Kerr LHM 
slab has more diverse results: (i) The waist of the beam in D3 can be larger or smaller than 
that of the incident beam; (ii) The focusing distance can also be larger or smaller than the slab 
thickness; (iii) Both the new waist radius and the focusing distance are functions of the beam 
power, the thickness, the magnetic permeability and the nonlinear polarization of the slab.  

Moreover, conventional lenses can compress or expand Gaussian beams passing through 
them. From this point of view, Kerr LHM slabs act as conventional lenses more than linear 
ones do.  

We now consider the case that the Kerr LHM slab in Fig. 1 is substituted with a CKM 
slab. For this case, the above obtained expressions are also valid by just setting μrl,2=1 and 
nL,2>1. For incident Gaussian beams with θo,1=0, there are two cases: (i) they will be self-
defocused for χp,2<0 or for χp,2>0 and RP<1, and (ii) they will be self-focused for χp,2>0 and 
RP>1. Then, it can be inferred from Eq. (10) that: (i) for the former case, b2(Z0,3)<0 and the 
beam in D3 is divergent; (ii) for the latter case, if the conditions for w2(Z0,3)>0 are satisfied, 
b2(Z0,3)>0 and the output beam of the CKM slab is convergent, indicating the beam can also 
be focused in D3. However, for the latter case, the beam suffers from modulation instability 
and thus filamentation may occur when there is small-scale modulation. For convenience, we 
assume that the waists of the incident beams are identical. Then, we find the main differences 
between the focusing properties of Gaussian beams by a Kerr LHM slab and those by a CKM 
slab case to be the following:  

(i) For beams with lower power, i.e. RP<1/(-μrl,2), both LHM slabs with positive nonlinear 
polarization and those with negative nonlinear polarization has the lensing effect on them;  

(ii) For χp,2>0, beams don’t suffer from modulation instability or filament formation in 
Kerr LHMs, as shown in Ref. [30];  

(iii) Under the same beam and slab conditions, the focusing effect of the Kerr LHM slab 
with μrl,2=-1 is not as strong as that of the CKM slab. The reason is that the power density in 
the Kerr LHM slab is smaller than that in the CKM slab, which weakens the nonlinear effect, 
and thus the focal spot size in D3 from the Kerr LHM slab is larger than that from the CKM 
slab. 

4. Numerical simulations 

Besides the factors discussed in the previous section, it is clear from Eq. (8) that the initial 
status of the incident beam also modifies the focusing properties. In this section we discuss 
the influence of the initial status of the beam on the focusing properties numerically. We first 
consider a special case that the waist of the incident Gaussian beam is at the front surface of 
the LHM slab, and then a general case that the waist of the incident Gaussian beam is before 
or behind this surface. We simulate the propagation of beam focusing by Kerr LHM slab 
through using the standard split-step Fourier algorithm. The properties of the Kerr LHM slab 
used for simulation consist with the theory in the previous section. For propagation in region 
D2, Eq. (2) is used. In region D3, a similar equation to Eq. (2) is used, with the nonlinear term 
removed. For the latter, all the quantities are replaced with those for free space. The step 
width is 1 mm in the Kerr LHM (also D2) slab and 1 cm in D3. If not especially pointed out, 
we use the default parameters given in section 3.1 and set χp,2>0 and RP>1/(-μrl,2).  
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4.1 θo,1 = 0 

The results for the radius of the beam waist in D3 and those for the focusing distance are 
shown in Figs. 4(a) and 4(b), respectively. In Fig. 4(a), good agreement can be seen between 
theoretical prediction and numerical results. Moreover, both theoretical prediction and 
numerical results show that either increasing the thickness of the Kerr LHM slab or increasing 
the incident beam power lead to a smaller waist when other conditions are the same. The 
theoretical and simulated results in Fig. 4(b) also reflect the same trend in the variations of the 
respective quantities. The quantitative differences between the theoretical and the simulated 
results in Fig. 4 are originated from the approximations introduced in the variational approach.  
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Fig. 4. (a) The spot radius of the beam waist in D3 and (b) the focusing distance versus the 
thickness of the Kerr LHM slab. The solid curve and the dashed curve are theoretical 
predictions; the rectangular-dotted curve and the circular-dotted curve are simulated results. 

4.2 θo,1 ≠ 0 

According to its definition, θo,1 depends on the convergence/divergence of incident Gaussian 
beams, i.e. for convergent incident beams, θo,1>0, and for divergent incident beams, θo,1<0. On 
the other hand, it is easy to infer from Eq. (4) that θo,1 represents the linear spatial chirp of 
incident Gaussian beams of the Kerr LHM slab. To see the influence of θo,1, we keep the spot 
radius at Z0,2 fixed for simplicity. In addition, in the Kerr LHM slab, the thickness of the slab 
also plays an important role in this case according to Eq. (8). Thus, we discuss the following 
two sub-cases: one is for a thick slab (LLHM=10 cm); the other is for a thin slab (LLHM=4 cm). 
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Fig. 5. The focal spot radius versus |θo,1|. The thicknesses of Kerr LHM slabs in (a) and (b) are 
10 cm and 4 cm, respectively. In both figures, the solid curves are the theoretical results for 
LLHM=0, where 0,3 0,1w w= , other curves are simulated results.  
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Numerical results for default conditions are shown in Fig. 5, where |Δθo,1|=0.5. In this 
figure, it should be noted that the solid curve also represents the transform limited waist radius 
of the incident beam. Figure 5(a) shows the results for the thick-slab case. For θo,1>0, the 
beam waist radius decreases as θo,1 increases. For θo,1<0, as |θo,1| increases, the beam waist 
radius increases at first and then decreases after reaching the maximum. This shows that 
irrespective of the initial beam divergence/convergence the incident beam can be focused by 
thick Kerr LHM slabs under certain conditions. When compared to the values shown by the 
solid curve, the numerical results for θi,2>0 are always smaller, while those for θi,2<0 can also 
be bigger when |θo,1| is big enough. For the thin-slab case shown by Fig. 5(b), for the case 
θo,1>0, the variation trend of w0,3 is the same as that in Fig. 5(a), but for the case θi,2<0, w0,3 
keeps increasing as |θi,2| increases and finally the beam becomes divergent in D3.  
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Fig. 6. The focal spot radius versus |θo,1| for χp,2<0. Solid curve, as that in Fig. 5, is the 

theoretical result for LLHM=0 , where 0,3 0,1w w= , other curves are simulated results. |Δθo,1|=0.1. 

 
For focusing effect in the χp,2<0 and 0<RP<1 case, however, because the absolute 

increment of beam waist radius is relatively small (see Fig. 3(b)), we set RP=0.5 and LLHM=40 
cm to obtain evident results. The influence of θo,1 on the new beam waist is presented in Fig. 6. 
It is clear that because of θo,1, the difference between w0,3 and w0,1 can be larger than the θo,1=0 
case. For the case θo,1>0, w0,3 increases at first and then decreases as |θo,1| increases and it 
always bigger than w0,1; for the case θo,1<0, w0,3 decreases as |θo,1| increases and basically 
smaller than w0,1. Comparing Fig. 6 to Fig. 5(a), it is easy to find that the effects of the 
convergence/divergence of incident Gaussian beams in these two cases are opposite to each 
other.  

The physical mechanism for these cases is, like that discussed for the case θo,1=0 in the 
previous section, also the interaction between the diffraction and the nonlinearity. But here the 
effect of the initial spatial chirp should be included. Here, we take the χp,2>0 condition for 
example. For the case θo,1>0, the total spatial chirp of the output beam of the Kerr LHM slab 
is greater than that in the case θi,2=0. For the case θi,2<0, because the initial spatial chirp has 
opposite sign to the spatial chirp aroused by the co-effect of diffraction and nonlinearity, it 
will be cancelled by the latter in the initial stage of propagation in the slab. Thus, as shown by 
Eq. (8), the beam spot radius is initially decreasing in the slab and the focusing effect is 
weakened. For similar reasons, the results for θo,1≠0 are related to the slab thickness. For the 
10 cm slab case, the negative initial chirps are totally cancelled in less than 10 cm, so the 
beam can always be focused in the value range of θo,1 in Fig. 5. For the 4 cm slab case, for the 
case |θo,1| is relatively smaller, the initial chirps can be totally cancelled in less than 4 cm and 
the beam can always be focused, while for the case |θo,1| is relatively larger, the initial 
negative chirps cannot be totally cancelled in the slab. 
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5. Conclusion 

We have investigated the propagation of Gaussian beams through a single Kerr LHM slab and 
found Kerr LHM slabs can act as lenses to focus Gaussian beams. By the variational 
approach, we have derived the analytical expressions for the focusing distance and the spot 
radius at the beam waist. By these expressions, the dependence of the focusing distance and 
the waist radius at the focal point on the slab thickness and the beam power is identified. We 
found that Gaussian beams can be focused in two cases: one is that the nonlinear polarization 
of LHM slabs is positive; the other is that the nonlinear polarization of LHM slabs is negative 
and the beam power is smaller than the effective critical power for self-focusing in Kerr 
LHMs. In the case the Kerr LHM slabs have positive (negative) nonlinear polarization, the 
focusing distance can be longer (shorter) than the imaging distance obtained in the linear 
LHM slab case, and the waist radius at the focal point can be much smaller (larger) than that 
of the incident beam. Especially, for a thin Kerr LHM slab with positive nonlinear 
polarization, when the beam power is very high, evident beam compressing effect can be seen 
and the focusing distance is much larger than the thickness of the slab. This is in sharp 
contrast with the CKM slab case and the linear LHM slab case. Besides, the 
convergence/divergence, or spatial chirp, of incident beam is found important for modifying 
focusing properties. For LHM slabs with positive nonlinear polarization, initially positive 
spatial chirp can stimulate but the negative one can suppress, even eliminate the focusing 
effect; for LHM slabs with negative nonlinear polarization, however, the result is reversed. 
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