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Fig. 1. Equipment used in the detection and measurement of C. and X-band power.

Fig. 2. Oscilloscope traces of C- and X-band reflector modes.
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Fig. 3. Curves of power output and reflector voltage vs. frequency.
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Fig. 4. Electric field configuration for beam interacting cavity modes.

ing figure of 9120 Me/s fell within 7 percent
of that of the detected output signal when
the tube oscillated at a Primary frequency of
6000 Mc/s.

It is worth notinsz that the amplitude of
the secondary, higher frequency oscillation
encountered in the above case may be ampli-
fied or suppressed through proper modifica-

tion of the dimensional parameters of the

resonator. The former has special signifi-

cance for the millimeter region since it ren-

ders possible the operation of a reflex kly-

stron at a frequency considerably higher than

that which the physical dimensions of its
circuit and beam would normally allow.
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Thanks are due to R. W. Nersesian who
performed most of the measurements re-

ported in this correspondence.
J. J. HAMILTON

Beam Tube Group

Raytheon Company

Waltham, Mass.

An Exact Analysis of Varactor

Frequency Multipliers

A novel yet simple approach to the exact

analysis of an abrupt-junction frequency
doubler is presented, utilizing the fact that

the voltage is proportional to the square of

the charge. Penfield and Rafusel were the
first to consider the problem in an exact

analysis. By imposing certain constraints
they obtained useful design information with
the aid of a large-scale computer. Through
different constraints, the preseut analysis
also offers an exact analysis, but the solution
is expressed in a closed form. The series
model of incremental elastance .,$(t) and re-

sistance R. is shown in the circuit of Fig. 1.

B

Fig. 1. Doubler circuit model.

The total current i and charge q flowing
through the varactor diode are, respectively,

i = ‘il + ;2 = ~1 cosd + 12 COS (2cut + @ (1)

and

where /3 is the phase angle between the fun-
damental and second harmonic in secoud
harmonic time measure, and K is the aver-
age charge to be determined by the bound-
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ary conditions such that

qmax = QB, and ~m,.=Q+, (3)

where QB and (IO are, respectively, the

charge at the breakdown voltage ~E and

contact potential +. Throughout the anal-

ysis we assume the diode is fully driven, as
implied by (3).

The voltage across the Iossless abrupt-

junction diode is

‘(q+ Q,)’v=–!b+~(vB+@) (4)

where .S~zX is the maximum elastance at ~B.

Substituting (2) into (4), we obtain

3 = Vb + VI Cos (cot + (-1) + V2 Cos (2cot + r2)

+ ?’-, Cos (3@t + e) + v, Cos (4@t + 26),

)1+(I,’++ , bias voltage (5)

V, = M1,[16ti2(K + Q4)2 + 12’

— 8~Iz(K + Q+) sin 0]’I!, (6)

V* = M[4w2112(K + Q# + 114

— 4c01121Z(K + Q+) sin /J]l/2, (7)

V3 = – MI,I,, J’J = – $MIz2, (8)

s’
M = ‘“

8c0’(VB + O) ‘
(9)

1, sine – 4c0(K + Q,)
fl = tan–l

I, cos e ‘
(lo)

and

– 2mZ,(K + QJ COS 6
– . (11).t, = tan-l _112 + 2@Ij(K + Q++)sine

Equations (6) to (8) are compatible with
similar equations obtained by Penfield and
Rafuse.j Note that the third and fourth har-
monic voltages V? and VA also exist across

the vmactor terminals. Approximate anal-

yses’-e published previously assume only the
existence of the fundamental and second
harmonic voltages VI and V, across the di-

ode terminals and therefore cannot yield re-
sults in a self-consistent manner by con-

straining both currents and voltages.

Combining (6) and (10), and (7) and

(1 1), we obtain the simple and im@rrtant

relations:
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Fig. 2. The efficiency of a doubler as a function of phase angle.

and

Cos ~z

—— $2 M[-11’ + 2coI,(K + Q*) sin 0]. (13)

The input power for the lossless case, or

the input power to the “pure” nonlinear ca-

pacitance part of a diode only, is

PI = +VIII Cos .(-1= *MI121, Cos e. (14)

The power output from the lossless varactor
is, similarly, according to the current con-

vention used in Fig. 2:

Pz = iVJ, cos (r, – @

—— – @fI,’1, cm @= – P,. (15)

Depending upon the constraints im-
posed, the solutions of the nonlinear varac-

tor problem are not unique. Pentield and

Rafuse used maximum efficiency and maxi-

mum power transfer as the constraints. The

present approach uses minimum dissipation

and constant PI as constraints. The dissipa-
tion expression is, after substituting 12 by

(14),

Pd = + (1,’+ 1,’)R.

Setting dF’d/dll = O, we tind the opt~m~artion

condition as:

The sought-after input impedance is

‘]’= (%cOs’’+R$)+’(;Sin”)’21)
and the sought-after load impedance is

[
V2

21= —
– Ij

Cos ($-2 — e) -- R. 1
+j[<~sin(.i_2-d]. (22)

Taking the ratios of the resistive and lreac-

tive parts, respectively, from (21) and (22),

we obtain the simple results:

R,. 1 x,,,
—. —.
RL 2E ‘

and —-=—2
Xl

(for 6 = OO). (23)

Accordingly, we discover the in teresting fact

that the input and load resistances are re-

lated through etliciency.

The remaining task of our problem is to

find the current amplitude 11 and the con-
stant of integration K of (2). Using (2), set-
ting dq/d(d) = O, and applying the boundary
conditions (3) and the minimum dissipation
constraint 11/12 = @ of (17), we obtain for
the maximum efficiency case (6= 0°) that

@(VB + @)
Ii = ——- ,

1.1775sm:Lx
(24)

and

“=%%)’’3=- ’17) K=%s%%!,v)’”l ‘2’)
We next optimize the efficiency and the

dissipation with respect to the phase angle

e. The efficiency, in general, is

power output P1 – ;IPR,
~=— — . (18)

power inpu~ – P1 + +IIZR.

When the optimization condition (17) is
used, (18) and (16) become, respectively,

2(P,M’ COS2e)‘/3 – R.

‘ = 2(P,W Cos’ e)’13+ 2R, ‘
(19)

and

“=+RG%)”3 ’20)

Setting de/dO and dP~/d@ equal to zero, we
have proved that o= 0° & the condition for
both maximum e&iency and srriniwum d&i-
pation. Equation (19) is plotted in Fig. 2 for
the parameters shown.

The efficiency, accordingly, becomes, by

combining (18), (14), (1 7), and (24),

1 – 6.661::
(*C

~= (26)

1 – 13.3222
w.

where a.= Sm.JR. is the ‘[cutofl frequency. ”
For low frequencies,

.s =1-203. (27)
w

Figure 3 shows the comparison of (26) and
Penfield-Rafuse results.

The usual given parameters for a doubler
to be designed are the input frequent y f,
output power PO”~ = ~ilf112JrZ — ~I~2R., pref-
erable breakdown voltage v& md intrinsic
series resistance R,. Combining (24), (9), and
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Fig. 3. The efficiency of a doubler as a function of cu.

t’~~t we obtain the value .S~~. of the sought-
-after varactor as:

s ma. = 0.08504j(VB + C#J)[(1’B + IP)

1f {(VB+ @)2—984.27R,Pout /$’out. (28)

The other sought-after quantities are:

S= _R()Rz = 0.02389 —
f’

(29)

()R,. = 0.011945 ~ + R. = ~ (30)

s
Ll(load inductance) = 0.0031662 ~

-f’
(31)

LO(source impedance required) = 4L1 (32)

V~(bias voltage) = 0.3596(VB + d) – 4, (33)

and

Pd = 19.9327Rsf2(vB + @)2/&ax2. (34)

In passing, we shall supply the simple
proof that except for the doubler, any
abrupt-j unction diode frequency multiplier
without an idler is not possible. Let the cur-
rent and charge flowing through the diode be

‘i = il +;. = 11 Cosd + In Cos (ti@t + e), (35)

and

Using (4), we have the voltage across the
diode

s’

~= –@+4(v:; o)

“K+(Q,’+ Q.’) + (K+ Q+)z]

+ 2Q,(K + Q+) sin cot – $ cos 2d

+ Q,Qn cos [(~ – l)wt + e]
+ 2Qn(K + Q@)sin (w.1 + 6’)

– QIQm cos [(n + l)wt + .9]

I– y Cos (2fz&Jt + 20) . (37)

Comparing (35) with (37), we notice that
except for n = 2 case the fundamental voltage

is always in quadrature with the fundamen-

tal current and, likewise, nth harmonic volt-

age is always in quadrature with nth har-
monic current.

On the other hand, the same approach
can be used for frequency multipliers other
than the abrupt-junction doubler by adding
the necessary idler current or currents flow-
ing through the varactor as constraints.

It can be shown that doublers are pos-
sible for h yperabrupt junctions with
~ (doping profile exponent) = # and quadru-
ples without idler are possible for the hyper-

abrupt functions with y= ~.
The results obtained by the present ap-

proach are quite different from those of the

Penfield-Rafuse approach using Fourier ex-

pansion of nonlinear elastance. The present

approach emphasizing minimum dissipation
can be particularly useful in cases where dis-
sipation is the principle problem; for ex-
ample, for high power varactor multipliers,
minimum dissipation is often the design ob-
jective, not maximum efficiency or maxi-
mum power output.

The present approach is simple and

straightforward in concept and does not
require the aid of a computer.

CHARLES C. H, TANG
Bell Telephone Labs., Inc.

Murray Hill, N. J.

Optimum Pitch of Traveling-

Wave Masers

The purpose of this correspondence is to

show theoretically that there exists an opti-
mum pitch (p in Fig. 1), which gives maxi-

Manuscript received December 20, 196S.

mum net gain for traveling-wave masers

(TWM) [1], utilizing transverse strip slow
wave structures (e.g., comb-structures [2],
Karp-structures [3], and meander lines).

The net gain in dB of the traveling-wave

maser may be expressed [1] as

where L is the structure length, xo the free
space wavelength, s the slowing factor,

\ Q~ \ the magnetic quality factor of the
maser material, QO the ohmic Q-factor, and
Q~ the Q-factor related to the forward wave

losses in the isolator. The Q-factors depend
on the particular structure geometry.

Fig. 1. A typical cross section of transverse
strip slow-wave strictures.

A typical cross section of a transverse

strip slow-wave structure is shown in Fig. 1.
If the cross-sectional dimensions within one

period p are much smaller than the free

space wavelength, and if the strip lengths

are long compared to their cross sections, the
fields may be approximated by TEM waves

traveling along the strips (the ~ direction of
Fig. 1).

Assume the pitch of a particular slow-

wave structure is PO. The slowing of the
structure becomes so and the ohmic Q-factor

Qoo. A scaling of the cross section is obtained
when all cross-sectional dimensions are mul-
tiplied by the factor @/@O. Hence, the new
pitch becomes p.

The impedance of the TEM waves K(@)
is only dependent on the relative cross-sec-

tional dimensions and, consequently, re-
mains constant during the scaling procedure.

K(+) does, however, depend on the phase

shift @ between two strips [2], [3]. If the
propagation constant of the wave traveling

along the structure (the %direction of Fig. 1)
is p, we have

4= fJ.p.

The u – o characteristic of the structure
is determined by the boundary conditions of

the TENf waves, the length of the strips, and
the impedance K(@) [2], [3]. We now as-

sume that the boundary conditions, the
length of the strips, and the cross-sectional

dimensions divided by p is constant during a
scaling of the cross section by p/pO. Hence,

the u –@ characteristic is independent of p.
The group velocity V, and the slowing s of
the wave traveling in the z direction becomes

%=; =P;

co co Pa ~o,~$.—.—— .
dw p

(2)
~u

po”~
P

where co is the velocity of light in vacuum.
The ohmic quality factor Qo is propor-

tional to V/S for constant relative cross-
sectional dimensions, where V is the volume
and Sis the surface of one period of the struc-
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