
QNX Neutrino RTOS
Getting Started with QNX Neutrino: A Guide

for Realtime Programmers

By Rob Krten; updated by QNX Software Systems

© 2008, QNX Software Systems GmbH & Co. KG.

© 1999–2008, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published 2008.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About This Guide xi
What you’ll find in this guide xiii

Typographical conventions xiii

Note to Windows users xiv

Technical support xv

Foreword to the First Edition by Peter van der Veen 1
Preface to the First Edition by Rob Krten 5

A little history 8

Who this book is for 8

What’s in this book? 8

Processes and Threads 9

Message Passing 9

Clocks, Timers, and Getting a Kick Every So Often 9

Interrupts 9

Resource Managers 9

QNX 4 to QNX Neutrino 9

Calling 911 10

Glossary 10

Index 10

Other references 10

About Rob Krten 10

Acknowledgments 10

Processes and Threads 131
Process and thread fundamentals 15

A process as a house 15

The occupants as threads 15

Back to processes and threads 15

Mutual exclusion 16

Priorities 17

Semaphores 17

A semaphore as a mutex 18

The kernel’s role 19

October 20, 2008 Contents iii

© 2008, QNX Software Systems GmbH & Co. KG.

Single CPU 19

Multiple CPU (SMP) 19

The kernel as arbiter 19

Kernel states 24

Threads and processes 26

Why processes? 26

Starting a process 27

Starting a thread 36

More on synchronization 57

Readers/writer locks 57

Sleepon locks 59

Condition variables 63

Additional Neutrino services 68

Pools of threads 69

Scheduling and the real world 76

Rescheduling — hardware interrupts 77

Rescheduling — kernel calls 77

Rescheduling — exceptions 77

Summary 78

Message Passing 792
Messaging fundamentals 81

A small microkernel and message passing 81

Message passing and client/server 82

Network-distributed message passing 85

What it means for you 85

The philosophy of Neutrino 86

Multiple threads 86

Server/subserver 87

Some examples 89

Using message passing 90

Architecture & structure 91

The client 91

The server 93

The send-hierarchy 97

Receive IDs, channels, and other parameters 97

Multipart messages 108

Pulses 113

Receiving a pulse message 114

The MsgDeliverEvent() function 117

Channel flags 118

iv Contents October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG.

Message passing over a network 124

Networked message passing differences 126

Some notes on NDs 128

Priority inheritance 130

So what’s the trick? 132

Summary 133

Clocks, Timers, and Getting a Kick Every So Often 1353
Clocks and timers 137

Operating periodically 137

Clock interrupt sources 139

Base timing resolution 140

Timing jitter 140

Types of timers 141

Notification schemes 142

Using timers 146

Creating a timer 146

Signal, pulse, or thread? 147

What kind of timer? 147

A server with periodic pulses 149

Timers delivering signals 157

Timers creating threads 157

Getting and setting the realtime clock and more 157

Advanced topics 159

Other clock sources 159

Kernel timeouts 163

Summary 165

Interrupts 1674
Neutrino and interrupts 169

Interrupt service routine 170

Level-sensitivity versus edge-sensitivity 172

Writing interrupt handlers 175

Attaching an interrupt handler 175

Now that you’ve attached an interrupt 176

Detaching an interrupt handler 177

The flags parameter 178

The interrupt service routine 178

ISR functions 186

Summary 188

October 20, 2008 Contents v

© 2008, QNX Software Systems GmbH & Co. KG.

Resource Managers 1895
What is a resource manager? 191

Examples of resource managers 191

Characteristics of resource managers 192

The client’s view 192

Finding the server 193

Finding the process manager 194

Handling directories 195

Union’d filesystems 196

Client summary 198

The resource manager’s view 199

Registering a pathname 199

Handling messages 200

The resource manager library 200

The library really does what we just talked about 202

Behind the scenes at the library 203

Writing a resource manager 204

Data structures 205

Resource manager structure 210

POSIX layer data structures 219

Handler routines 226

General notes 226

Connect functions notes 228

Alphabetical listing of connect and I/O functions 230

io_chmod() 230

io_chown() 231

io_close_dup() 231

io_close_ocb() 232

io_devctl() 232

io_dup() 234

io_fdinfo() 235

io_link() 235

io_lock() 236

io_lock_ocb() 237

io_lseek() 237

io_mknod() 238

io_mmap() 239

io_mount() 240

io_msg() 240

io_notify() 241

io_open() 242

vi Contents October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG.

io_openfd() 243

io_pathconf() 243

io_read() 244

io_readlink() 245

io_rename() 246

io_shutdown() 247

io_space() 247

io_stat() 248

io_sync() 248

io_unblock() [CONNECT] 249

io_unblock() [I/O] 249

io_unlink() 250

io_unlock_ocb() 251

io_utime() 251

io_write() 252

Examples 252

The basic skeleton of a resource manager 253

A simple io_read() example 255

A simple io_write() example 259

A simple io_devctl() example 263

An io_devctl() example that deals with data 266

Advanced topics 269

Extending the OCB 269

Extending the attributes structure 271

Blocking within the resource manager 272

Returning directory entries 273

Summary 283

QNX 4 to Neutrino 285A
QNX 4 and Neutrino 287

Similarities 287

Improvements 287

Porting philosophy 291

Message passing considerations 291

Interrupt service routines 301

Summary 302

Calling 911 303B
Seeking professional help 305

So you’ve got a problem. . . 305

Training 309

October 20, 2008 Contents vii

© 2008, QNX Software Systems GmbH & Co. KG.

Sample Programs 311C
atoz.c 313

time1.c 317

tp1.c 321

tt1.c 323

Glossary 325

Index 335

viii Contents October 20, 2008

List of Figures
A process as a container of threads. 16

Three threads in two different processes. 21

Two threads on the READY queue, one blocked, one running. 22

Scheduling roadmap. 23

Memory protection. 27

Serialized, single CPU. 49

Multithreaded, single CPU. 50

Four threads, four CPUs. 51

Eight threads, four CPUs. 52

System 1: Multiple operations, multiple processes. 54

System 2: Multiple operations, shared memory between processes. 55

System 3: Multiple operations, multiple threads. 55

One-to-one mutex and condvar associations. 68

Many-to-one mutex and condvar associations. 68

Thread flow when using thread pools. 71

Neutrino’s modular architecture. 81

State transitions of server. 82

State transitions of clients. 83

Clients accessing threads in a server. 87

Server/subserver model. 88

One master, multiple workers. 90

Relationship between a server channel and a client connection. 94

Relationship of client and server message-passing functions. 94

Message data flow. 95

Transferring less data than expected. 96

The fs-qnx4 message example, showing contiguous data view. 106

Transferring several chunks with MsgWrite(). 107

How the kernel sees a multipart message. 110

Converting contiguous data to separate buffers. 111

Confusion in a multithreaded server. 122

Message passing over a network. Notice that Qnet is divided into two sections.
125

Three threads at different priorities. 131

Blocked threads. 131

October 20, 2008 List of Figures ix

© 2008, QNX Software Systems GmbH & Co. KG.

Boosting the server’s priority. 132

PC clock interrupt sources. 139

Clock jitter. 141

Level-sensitive interrupt assertion. 172

Edge-sensitive interrupt assertion. 173

Sharing interrupts — one at a time. 174

Sharing interrupts — several at once. 174

Control flow with InterruptAttach(). 183

Control flow with InterruptAttachEvent(). 183

Control flow with InterruptAttachEvent() and unnecessary rescheduling. 184

Control flow with InterruptAttach() with no thread rescheduling. 184

Neutrino’s namespace. 193

First stage of name resolution. 193

The _IO_CONNECT message. 194

Neutrino’s namespace. 195

Neutrino’s namespace. 196

Overlaid filesystems. 196

Architecture of a resource manager — the big picture. 205

A combine message. 217

The readblock() function’s combine message. 218

Data structures — the big picture. 219

x List of Figures October 20, 2008

About This Guide

October 20, 2008 About This Guide xi

© 2008, QNX Software Systems GmbH & Co. KG. Typographical conventions

What you’ll find in this guide
Getting Started with QNX Neutrino is intended to introduce realtime programmers to
the QNX Neutrino RTOS and help them develop applications and resource managers
for it.

This book was originally written by Rob Krten in 1999 for QNX Neutrino 2. In 2005,
QNX Software Systems bought the rights to the book; this edition has been updated by
the staff at QNX Software Systems to reflect QNX Neutrino 6.4.

The following table may help you find information quickly:

To find out about: Go to:

Peter van der Veen’s forward Foreword to the First Edition

Rob Krten’s preface Preface to the First Edition

Using processes and threads Processes and Threads

Sending, receiving, and replying to messages Message Passing

Working with times and timers Clocks, Timers, and Getting a Kick Every So Often

Interrupts Interrupts

Writing resource managers Resource Managers

Migrating from QNX 4 to Neutrino QNX 4 to Neutrino

Getting help Calling 911

Full source code for the examples Sample Programs

Terms used in QNX docs Glossary

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

continued. . .

October 20, 2008 About This Guide xiii

Typographical conventions © 2008, QNX Software Systems GmbH & Co. KG.

Reference Example

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

xiv About This Guide October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Technical support

Technical support
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

October 20, 2008 About This Guide xv

Foreword to the First Edition by Peter van der Veen

October 20, 2008 Foreword to the First Edition by Peter van der Veen 1

© 2008, QNX Software Systems GmbH & Co. KG.

When I found myself staring at the first draft of this book I started thinking that it was
going to be a difficult read because I’d spent so many years intimately involved with
the design and development of QNX Neutrino. But I was wrong! I found this book
easy to read and very enjoyable because of the way Rob combines the QNX
philosophy (“Why things are the way they are”) with good habits applicable to any
realtime programming project. This book is suitable for people who’ve never seen
Neutrino before, or those who’ve used it extensively.

For people who’ve never used Neutrino, the book gives an excellent tutorial on how to
use it. Since Rob himself comes from a QNX 2 and QNX 4 background, his book is
also great for people who’ve used a QNX operating system before, because they share
a common ground.

As for myself, I was first introduced to QNX at an insurance company in the
mid-1980s. This insurance company primarily used an IBM mainframe, but they
wanted to shorten the time required to calculate quotes on corporate insurance. To do
this they used networks of 8 MHz 80286 ATs running QNX 2. They distributed their
data using QNX native networking, allowing access to all customer data files from any
QNX machine. This system was well-designed using the QNX client/server
philosophy and I was hooked on QNX.

When I joined QSS at the start of 1991, QNX 4 had just been released. QNX 4 was
developed to conform to the just-approved POSIX 1003.1 specification which would
make it easier to port public domain UNIX code than it was with QNX 2, and it would
conform to a genuine standard. In a few years we started thinking about the
next-generation operating system. The current group of less than 15 developers started
meeting to discuss anything we’d like to do differently and things that we’d need in the
future. We wanted to support the newer POSIX specifications and make it easier to
write drivers. We also didn’t want to lock ourselves to the x86 processor or “fix”
anything that wasn’t broken. The ideas that Dan Dodge and Gordon Bell started out
with when they created QNX are still in Neutrino today — ideas like message-passing,
having a small, lean kernel, providing fast, realtime response, etc. Complicating the
design was the goal of Neutrino being even more modular than QNX 4 (for example,
we wanted to provide a fully-functional kernel that you could link against, allowing
for more deeply embedded systems than QNX 4). In 1994 Dan Dodge and I started
working on the updated kernel and process manager.

As those of you who’ve been using QNX products for a long time already know,
writing device drivers for QNX 2 was a hair-raising experience. You had to be very
careful! In fact, most developers started with the QSS-supplied source for the spool
device and carefully tweaked it to do whatever they wanted. Only a few people tried
writing disk drivers, as this required specialized assembly language stubs. Because of
this, almost nobody ended up writing drivers for QNX 2. In QNX 4, writing drivers
was made much easier by making all I/O operations go through a standard,
well-defined, message-passing interface. When you did an open(), the server received
an open message. When you did a read(), the server received a read message. QNX 4
capitalized on the message passing theme by using it to decouple clients from servers.
I remember when I first saw the beta version 3.99 (a QNX 4 pre-release version) and

October 20, 2008 Foreword to the First Edition by Peter van der Veen 3

© 2008, QNX Software Systems GmbH & Co. KG.

thinking, “Wow! This is elegant!” In fact, I was so enamored with this, that I
immediately wrote a QNX 2 read-only filesystem using the new message-passing
interface; it was easy now!

For Neutrino, the process manager was being designed with three main separate
functions: pathname space management, process creation (attributes, destruction,
etc.), and memory space management. It also included several sub-services
(/dev/null, /dev/zero, image filesystem, etc.). Each of these acted independently,
but all shared the common code for processing the messages. This common code was
very useful, so we decided to take all the common code and make a cover library for it.
The “Resource Manager” library (or, as Rob likes to pronounce it, to my utter dismay,
rez-mugger :-)) was born.

We also found that most resource managers wanted to provide POSIX semantics for
their devices or filesystems, so we wrote another layer on top of the resource manager
layer called the iofunc*() functions. This lets anybody write a resource manager, and
have it automatically inherit POSIX functionality, without any additional work. At
about this time Rob was writing the Neutrino courses, and he wanted to write a
completely minimal resource manager example, /dev/null. His main slide was, “All
you have to do is provide read() and write() message handlers, and you have a
complete /dev/null!” I took that as a personal challenge, and removed even that
requirement — the resource manager library now implements /dev/null in about
half a dozen function calls. Since this library is shipped with Neutrino, everyone can
write fully POSIX-compatible device drivers with minimal effort.

While the resource manager concept was significant in the evolution of Neutrino, and
would indeed provide a solid base for the operating system, the fledgling OS needed
more. Filesystems, connectivity (such as TCP/IP) and common devices (serial,
console) were all being developed in parallel. After a lot of work, with lots of long
hours, Neutrino 1.00 was released in early 1996. Over the next few years, more and
more R&D staff were working on Neutrino. We’ve added SMP support, multiplatform
support (x86, PowerPC and MIPS currently, with more to come), and the dispatch
interface (that allows combining resource managers and other IPC methods), all
covered in this book.

In August of 1999, we released QNX Neutrino 2.00; just in time for Rob’s book! :-)

I think this book will be a “must have” for anyone who is writing programs for
Neutrino.

Peter van der Veen
On a plane somewhere between Ottawa and San Jose
September 1999

4 Foreword to the First Edition by Peter van der Veen October 20, 2008

Preface to the First Edition by Rob Krten

October 20, 2008 Preface to the First Edition by Rob Krten 5

© 2008, QNX Software Systems GmbH & Co. KG.

A few years after I started using computers, the very first IBM PC came out. I must
have been one of the first people in Ottawa to buy this box, with 16 KB of RAM and
no video card, because the salesman wasn’t experienced enough to point out that the
machine would be totally useless without the video card! Although the box wasn’t
useful, it did say “IBM” on it (at the time reserved solely for mainframes and the like),
so it was impressive on its own. When I finally had enough money to buy the video
card, I was able to run BASIC on my parents’ TV. To me, this was the height of
technology — especially with a 300 baud acoustically coupled modem! So, you can
imagine my chagrin, when my friend Paul Trunley called me up and said, “Hey, log in
to my computer!” I thought to myself, “Where did he get a VAX from?” since that
was the only conceivable machine I knew about that would fit in his parents’ house
and let you “log in” to. So I called it up. It was a PC running an obscure operating
system called “QUNIX,” with a revision number less than 1.00. It let me “log in.” I
was hooked!

What has always struck me about the QNX family of operating systems is the small
memory footprint, the efficiency, and the sheer elegance of the implementation. I
would often entertain (or bore, more likely) dinner guests with stories about all the
programs running concurrently on my machine in the basement, as we ate. Those who
were knowledgeable about computers would speculate about how huge the disk must
be, how I must have near infinite memory, etc. After dinner, I’d drag them downstairs
and show them a simple PC with (at the time) 8 MB of RAM and a 70 MB hard disk.
This would sometimes impress them. Those who where not impressed would then be
shown how much RAM and disk space was still available, and how most of the used
disk space was just data I had accumulated over the years.

As time passed, I’ve had the privilege of working at a number of companies, most of
which were involved with some form of QNX development; (from telecoms, to
process control, to frame grabber drivers, . . .), with the single most striking
characteristic being the simplicity of the designs and implementation. In my opinion,
this is due to the key engineers on the projects having a good understanding of the
QNX operating system — if you have a clean, elegant architecture to base your
designs on, chances are that your designs will also end up being clean and elegant
(unless the problem is really ugly).

In November, 1995, I had the good fortune to work directly for QNX Software
Systems (QSS), writing the training material for their two QNX Neutrino courses, and
presenting them over the next three years.

It’s these past 19 years or so that gave me the inspiration and courage to write the first
book, Getting Started with QNX 4 — A Guide for Realtime Programmers, which was
published in May, 1998. With this new book on QNX Neutrino, I hope to share some
of the concepts and ideas I’ve learned, so that you can gain a good, solid
understanding of how the QNX Neutrino OS works, and how you can use it to your
advantage. Hopefully, as you read the book, light bulbs will turn on in your head,
making you say “Aha! That’s why they did it this way!”

October 20, 2008 Preface to the First Edition by Rob Krten 7

Who this book is for © 2008, QNX Software Systems GmbH & Co. KG.

A little history
QSS, the company that created the QNX operating system, was founded in 1980 by
Dan Dodge and Gordon Bell (both graduates of the University of Waterloo in Ontario,
Canada). Initially, the company was called Quantum Software Systems Limited, and
the product was called “QUNIX” (“Quantum UNIX”). After a polite letter from
AT&T’s lawyers (who owned the “UNIX” trademark at the time), the product’s name
changed to “QNX.” Some time after that, the company’s name itself changed to “QNX
Software Systems” — in those days, everyone and their dog seemed to have a
company called “Quantum” something or other.

The first commercially successful product was simply called “QNX” and ran on 8088
processors. Then, “QNX 2” (QNX version 2) came out in the early 1980s. It’s still
running in many mission-critical systems to this day. Around 1991, a new operating
system, “QNX 4,” was introduced, with enhanced 32-bit operations and POSIX
support. In 1995, the latest member of the QNX family, QNX Neutrino, was
introduced.

On September 26th, 2000, the QNX Realtime Platform (consisting of the QNX
Neutrino operating system, Photon windowing system, development tools and
compilers, etc.) was released for free for noncommercial purposes. As of this second
printing (July 2001) there have been over 1 million downloads! (Go to
http://get.qnx.com/ to get your free copy.)

Who this book is for
This book is suitable for anyone wishing to gain a good fundamental understanding of
the key features of the QNX Neutrino OS and how it works. Readers with a modest
computer background should still get a lot out of the book (although the discussion in
each chapter gets more and more technical as the chapter progresses). Even diehard
hackers should find some interesting twists, especially with the two fundamental
features of QNX Neutrino, the message-passing nature of the operating system and the
way device drivers are structured.

I’ve tried to explain things in an easy-to-read “conversational” style, anticipating some
of the common questions that come up and answering them with examples and
diagrams. Because a complete understanding of the C language isn’t required, but is
definitely an asset, there are quite a few code samples sprinkled throughout.

What’s in this book?
This book introduces you to what the QNX Neutrino operating system is and how it
functions. It contains chapters covering process states, threads, scheduling algorithms,
message passing, operating system modularity, and so on. If you’ve never used QNX
Neutrino before, but are familiar with realtime operating systems, then you’ll want to
pay particular attention to the chapters on message passing and resource managers,
since these are concepts fundamental to QNX Neutrino.

8 Preface to the First Edition by Rob Krten October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. What’s in this book?

Processes and Threads
An introduction to processes and threads in QNX Neutrino, realtime, scheduling, and
prioritization. You’ll learn about scheduling states and QNX Neutrino’s scheduling
algorithms, as well as the functions you use to control scheduling, create processes
and threads, and modify processes and threads that are already running. You’ll see
how QNX Neutrino implements SMP (Symmetrical Multi-Processing), and the
advantages (and pitfalls) that this brings.

“Scheduling and the real world” discusses how threads are scheduled on a running
system, and what sorts of things can cause a running thread to be rescheduled.

Message Passing
An introduction to QNX Neutrino’s most fundamental feature, message passing.
You’ll learn what message passing is, how to use it to communicate between threads,
and how to pass messages over a network. Priority inversion, the bane of realtime
systems everywhere, and other advanced topics are also covered here.

This is one of the most important chapters in this book!

Clocks, Timers, and Getting a Kick Every So Often
Learn all about the system clock and timers, and how to get a timer to send you a
message. Lots of practical information here, and code samples galore.

Interrupts
This chapter will teach you how to write interrupt handlers for QNX Neutrino, and
how interrupt handlers affect thread scheduling.

Resource Managers
Learn all about QNX Neutrino resource managers (also known variously as “device
drivers” and “I/O managers”). You’ll need to read and understand the Message
Passing chapter before you write your own resource managers. The source for several
complete resource managers is included.

Resource managers are another important aspect of every QNX Neutrino-based
system.

QNX 4 to QNX Neutrino
This is an invaluable guide for anyone porting their QNX 4 application to QNX
Neutrino, or having to maintain code on both platforms. (QNX 4 is QSS’s
previous-generation operating system, also the subject of my previous book, Getting
Started with QNX 4.) Even if you’re designing a new application, there may be
demand from your customer base to support it on both QNX 4 and QNX Neutrino —

October 20, 2008 Preface to the First Edition by Rob Krten 9

About Rob Krten © 2008, QNX Software Systems GmbH & Co. KG.

if that happens, this section will help you avoid common pitfalls and show you how to
write code that’s portable to both operating systems.

Calling 911
Where you can turn to when you get stuck, find a bug, or need help with your design.

Glossary
Contains definitions of the terms used throughout this book.

Index
You can probably guess what this is for. . .

Other references
In addition to the custom kernel interface, QNX Neutrino implements a wide range of
industry standards. This lets you support your favorite publishers when looking for
information about standard functions from ANSI, POSIX, TCP/IP, etc.

About Rob Krten
Rob Krten has been doing embedded systems work, mostly on contract, since 1986
and systems-level programming since 1981. During his three year contract at QSS, he
designed and presented QSS’s courses on “Realtime Programming under the Neutrino
Kernel” and “Writing a Resource Manager.” He also wrote the prototype version of
QSS’s QNX Neutrino Native Networking Manager (Qnet) software, as well as a
significant portion of QSS’s Building Embedded Systems book.

Both this book and his previous book, Getting Started with QNX 4 — A Guide for
Realtime Programmers, have received a Society for Technical Communications (STC;
http://www.stc.org/) Award of Merit.

Rob maintains a website at http://www.krten.com.

Acknowledgments
This book would not have been possible without the help and support I received from
the following people, who contributed numerous suggestions and comments: Dave
Athersych, Luc Bazinet, James Chang, Dan Dodge, Dave Donohoe, Steven Dufresne,
Thomas Fletcher, David Gibbs, Marie Godfrey, Bob Hubbard, Mike Hunter, Pradeep
Kathail, Steve Marsh, Danny N. Prairie, and Andrew Vernon. (Apologies in advance if
I’ve missed anyone.)

I’d like to particularly thank Brian Stecher, who patiently reviewed at least three
complete drafts of this book in detail, and Peter van der Veen, who spent many nights
at my place (granted, I did bribe him with beer and pizza), giving me insight into the
detailed operations of QNX Neutrino’s resource managers.

Thanks to Kim Fraser for once again providing the cover artwork.

10 Preface to the First Edition by Rob Krten October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Acknowledgments

Additionally, my thanks goes out to John Ostrander for his excellent grammatical
suggestions and detailed proof-reading of of the book :-)

And of course, a special thank-you goes to my editor, Chris Herborth, for finding the
time to edit this book, help out with the sometimes obscure SGML/LaTeX tools, etc.,
all while doing dozens of other things at the same time! [I told you to remind me not to
do that again! – chrish]

I’d also like to gratefully acknowledge the patience and understanding of my wife,
Christine, for putting up with me while I crawled off into the basement and ignored
her for hours on end!

October 20, 2008 Preface to the First Edition by Rob Krten 11

Chapter 1

Processes and Threads

In this chapter. . .
Process and thread fundamentals 15
The kernel’s role 19
Threads and processes 26
More on synchronization 57
Scheduling and the real world 76

October 20, 2008 Chapter 1 • Processes and Threads 13

© 2008, QNX Software Systems GmbH & Co. KG. Process and thread fundamentals

Process and thread fundamentals
Before we start talking about threads, processes, time slices, and all the other
wonderful “scheduling concepts,” let’s establish an analogy.

What I want to do first is illustrate how threads and processes work. The best way I
can think of (short of digging into the design of a realtime system) is to imagine our
threads and processes in some kind of situation.

A process as a house
Let’s base our analogy for processes and threads using a regular, everyday object — a
house.

A house is really a container, with certain attributes (such as the amount of floor space,
the number of bedrooms, and so on).

If you look at it that way, the house really doesn’t actively do anything on its own —
it’s a passive object. This is effectively what a process is. We’ll explore this shortly.

The occupants as threads
The people living in the house are the active objects — they’re the ones using the
various rooms, watching TV, cooking, taking showers, and so on. We’ll soon see that’s
how threads behave.

Single threaded

If you’ve ever lived on your own, then you know what this is like — you know that
you can do anything you want in the house at any time, because there’s nobody else in
the house. If you want to turn on the stereo, use the washroom, have dinner —
whatever — you just go ahead and do it.

Multi threaded

Things change dramatically when you add another person into the house. Let’s say
you get married, so now you have a spouse living there too. You can’t just march into
the washroom at any given point; you need to check first to make sure your spouse
isn’t in there!

If you have two responsible adults living in a house, generally you can be reasonably
lax about “security” — you know that the other adult will respect your space, won’t
try to set the kitchen on fire (deliberately!), and so on.

Now, throw a few kids into the mix and suddenly things get a lot more interesting.

Back to processes and threads
Just as a house occupies an area of real estate, a process occupies memory. And just as
a house’s occupants are free to go into any room they want, a processes’ threads all
have common access to that memory. If a thread allocates something (mom goes out
and buys a game), all the other threads immediately have access to it (because it’s
present in the common address space — it’s in the house). Likewise, if the process

October 20, 2008 Chapter 1 • Processes and Threads 15

Process and thread fundamentals © 2008, QNX Software Systems GmbH & Co. KG.

allocates memory, this new memory is available to all the threads as well. The trick
here is to recognize whether the memory should be available to all the threads in the
process. If it is, then you’ll need to have all the threads synchronize their access to it.
If it isn’t, then we’ll assume that it’s specific to a particular thread. In that case, since
only that thread has access to it, we can assume that no synchronization is required —
the thread isn’t going to trip itself up!

As we know from everyday life, things aren’t quite that simple. Now that we’ve seen
the basic characteristics (summary: everything is shared), let’s take a look at where
things get a little more interesting, and why.

The diagram below shows the way that we’ll be representing threads and processes.
The process is the circle, representing the “container” concept (the address space), and
the three squigley lines are the threads. You’ll see diagrams like this throughout the
book.

A process as a container of threads.

Mutual exclusion
If you want to take a shower, and there’s someone already using the bathroom, you’ll
have to wait. How does a thread handle this?

It’s done with something called mutual exclusion. It means pretty much what you think
— a number of threads are mutually exclusive when it comes to a particular resource.

If you’re taking a shower, you want to have exclusive access to the bathroom. To do
this, you would typically go into the bathroom and lock the door from the inside.
Anyone else trying to use the bathroom would get stopped by the lock. When you’re
done, you’d unlock the door, allowing someone else access.

This is just what a thread does. A thread uses an object called a mutex (an acronym for
MUTual EXclusion). This object is like the lock on a door — once a thread has the
mutex locked, no other thread can get the mutex, until the owning thread releases
(unlocks) it. Just like the door lock, threads waiting to obtain the mutex will be barred.

Another interesting parallel that occurs with mutexes and door locks is that the mutex
is really an “advisory” lock. If a thread doesn’t obey the convention of using the
mutex, then the protection is useless. In our house analogy, this would be like
someone breaking into the washroom through one of the walls ignoring the convention
of the door and lock.

16 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Process and thread fundamentals

Priorities
What if the bathroom is currently locked and a number of people are waiting to use it?
Obviously, all the people are sitting around outside, waiting for whoever is in the
bathroom to get out. The real question is, “What happens when the door unlocks?
Who gets to go next?”

You’d figure that it would be “fair” to allow whoever is waiting the longest to go next.
Or it might be “fair” to let whoever is the oldest go next. Or tallest. Or most important.
There are any number of ways to determine what’s “fair.”

We solve this with threads via two factors: priority and length of wait.

Suppose two people show up at the (locked) bathroom door at the same time. One of
them has a pressing deadline (they’re already late for a meeting) whereas the other
doesn’t. Wouldn’t it make sense to allow the person with the pressing deadline to go
next? Well, of course it would. The only question is how you decide who’s more
“important.” This can be done by assigning a priority (let’s just use a number like
Neutrino does — one is the lowest usable priority, and 255 is the highest as of this
version). The people in the house that have pressing deadlines would be given a higher
priority, and those that don’t would be given a lower priority.

Same thing with threads. A thread inherits its scheduling algorithm from its parent
thread, but can call pthread_setschedparam() to change its scheduling policy and
priority (if it has the authority to do so).

If a number of threads are waiting, and the mutex becomes unlocked, we would give
the mutex to the waiting thread with the highest priority. Suppose, however, that both
people have the same priority. Now what do you do? Well, in that case, it would be
“fair” to allow the person who’s been waiting the longest to go next. This is not only
“fair,” but it’s also what the Neutrino kernel does. In the case of a bunch of threads
waiting, we go primarily by priority, and secondarily by length of wait.

The mutex is certainly not the only synchronization object that we’ll encounter. Let’s
look at some others.

Semaphores
Let’s move from the bathroom into the kitchen, since that’s a socially acceptable
location to have more than one person at the same time. In the kitchen, you may not
want to have everyone in there at once. In fact, you probably want to limit the number
of people you can have in the kitchen (too many cooks, and all that).

Let’s say you don’t ever want to have more than two people in there simultaneously.
Could you do it with a mutex? Not as we’ve defined it. Why not? This is actually a
very interesting problem for our analogy. Let’s break it down into a few steps.

A semaphore with a count of 1

The bathroom can have one of two situations, with two states that go hand-in-hand
with each other:

October 20, 2008 Chapter 1 • Processes and Threads 17

Process and thread fundamentals © 2008, QNX Software Systems GmbH & Co. KG.

• the door is unlocked and nobody is in the room

• the door is locked and one person is in the room

No other combination is possible — the door can’t be locked with nobody in the room
(how would we unlock it?), and the door can’t be unlocked with someone in the room
(how would they ensure their privacy?). This is an example of a semaphore with a
count of one — there can be at most only one person in that room, or one thread using
the semaphore.

The key here (pardon the pun) is the way we characterize the lock. In your typical
bathroom lock, you can lock and unlock it only from the inside — there’s no
outside-accessible key. Effectively, this means that ownership of the mutex is an
atomic operation — there’s no chance that while you’re in the process of getting the
mutex some other thread will get it, with the result that you both own the mutex. In
our house analogy this is less apparent, because humans are just so much smarter than
ones and zeros.

What we need for the kitchen is a different type of lock.

A semaphore with a count greater than 1

Suppose we installed the traditional key-based lock in the kitchen. The way this lock
works is that if you have a key, you can unlock the door and go in. Anyone who uses
this lock agrees that when they get inside, they will immediately lock the door from
the inside so that anyone on the outside will always require a key.

Well, now it becomes a simple matter to control how many people we want in the
kitchen — hang two keys outside the door! The kitchen is always locked. When
someone wants to go into the kitchen, they see if there’s a key hanging outside the
door. If so, they take it with them, unlock the kitchen door, go inside, and use the key
to lock the door.

Since the person going into the kitchen must have the key with them when they’re in
the kitchen, we’re directly controlling the number of people allowed into the kitchen at
any given point by limiting the number of keys available on the hook outside the door.

With threads, this is accomplished via a semaphore. A “plain” semaphore works just
like a mutex — you either own the mutex, in which case you have access to the
resource, or you don’t, in which case you don’t have access. The semaphore we just
described with the kitchen is a counting semaphore — it keeps track of the count (by
the number of keys available to the threads).

A semaphore as a mutex
We just asked the question “Could you do it with a mutex?” in relation to
implementing a lock with a count, and the answer was no. How about the other way
around? Could we use a semaphore as a mutex?

Yes. In fact, in some operating systems, that’s exactly what they do — they don’t have
mutexes, only semaphores! So why bother with mutexes at all?

18 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The kernel’s role

To answer that question, look at your washroom. How did the builder of your house
implement the “mutex”? I suspect you don’t have a key hanging on the wall!

Mutexes are a “special purpose” semaphore. If you want one thread running in a
particular section of code, a mutex is by far the most efficient implementation.

Later on, we’ll look at other synchronization schemes — things called condvars,
barriers, and sleepons.

Just so there’s no confusion, realize that a mutex has other properties, such as priority
inheritance, that differentiate it from a semaphore.

The kernel’s role
The house analogy is excellent for getting across the concept of synchronization, but it
falls down in one major area. In our house, we had many threads running
simultaneously. However, in a real live system, there’s typically only one CPU, so
only one “thing” can run at once.

Single CPU
Let’s look at what happens in the real world, and specifically, the “economy” case
where we have one CPU in the system. In this case, since there’s only one CPU
present, only one thread can run at any given point in time. The kernel decides (using
a number of rules, which we’ll see shortly) which thread to run, and runs it.

Multiple CPU (SMP)
If you buy a system that has multiple, identical CPUs all sharing memory and devices,
you have an SMP box (SMP stands for Symmetrical Multi Processor, with the
“symmetrical” part indicating that all the CPUs in the system are identical). In this
case, the number of threads that can run concurrently (simultaneously) is limited by
the number of CPUs. (In reality, this was the case with the single-processor box too!)
Since each processor can execute only one thread at a time, with multiple processors,
multiple threads can execute simultaneously.

Let’s ignore the number of CPUs present for now — a useful abstraction is to design
the system as if multiple threads really were running simultaneously, even if that’s not
the case. A little later on, in the “Things to watch out for when using SMP” section,
we’ll see some of the non-intuitive impacts of SMP.

The kernel as arbiter
So who decides which thread is going to run at any given instant in time? That’s the
kernel’s job.

The kernel determines which thread should be using the CPU at a particular moment,
and switches context to that thread. Let’s examine what the kernel does with the CPU.

October 20, 2008 Chapter 1 • Processes and Threads 19

The kernel’s role © 2008, QNX Software Systems GmbH & Co. KG.

The CPU has a number of registers (the exact number depends on the processor
family, e.g., x86 versus PPC, and the specific family member, e.g., 80486 versus
Pentium). When the thread is running, information is stored in those registers (e.g., the
current program location).

When the kernel decides that another thread should run, it needs to:

1 save the currently running thread’s registers and other context information

2 load the new thread’s registers and context into the CPU

But how does the kernel decide that another thread should run? It looks at whether or
not a particular thread is capable of using the CPU at this point. When we talked about
mutexes, for example, we introduced a blocking state (this occurred when one thread
owned the mutex, and another thread wanted to acquire it as well; the second thread
would be blocked).

From the kernel’s perspective, therefore, we have one thread that can consume CPU,
and one that can’t, because it’s blocked, waiting for a mutex. In this case, the kernel
lets the thread that can run consume CPU, and puts the other thread into an internal list
(so that the kernel can track its request for the mutex).

Obviously, that’s not a very interesting situation. Suppose that a number of threads can
use the CPU. Remember that we delegated access to the mutex based on priority and
length of wait? The kernel uses a similar scheme to determine which thread is going to
run next. There are two factors: priority and scheduling algorithm, evaluated in that
order.

Prioritization

Consider two threads capable of using the CPU. If these threads have different
priorities, then the answer is really quite simple — the kernel gives the CPU to the
highest priority thread. Neutrino’s priorities go from one (the lowest usable) and up, as
we mentioned when we talked about obtaining mutexes. Note that priority zero is
reserved for the idle thread — you can’t use it. (If you want to know the minimum and
maximum values for your system, use the functions sched_get_priority_min() and
sched_get_priority_max() — they’re prototyped in <sched.h>. In this book, we’ll
assume one as the lowest usable, and 255 as the highest.)

If another thread with a higher priority suddenly becomes able to use the CPU, the
kernel will immediately context-switch to the higher priority thread. We call this
preemption — the higher-priority thread preempted the lower-priority thread. When
the higher-priority thread is done, and the kernel context-switches back to the
lower-priority thread that was running before, we call this resumption — the kernel
resumes running the previous thread.

Now, suppose that two threads are capable of using the CPU and have the exact same
priority.

20 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The kernel’s role

Scheduling algorithms

Let’s assume that one of the threads is currently using the CPU. We’ll examine the
rules that the kernel uses to decide when to context-switch in this case. (Of course, this
entire discussion really applies only to threads at the same priority — the instant that a
higher-priority thread is ready to use the CPU it gets it; that’s the whole point of
having priorities in a realtime operating system.)

The two main scheduling algorithms (policies) that the Neutrino kernel understands
are Round Robin (or just “RR”) and FIFO (First-In, First-Out). (There’s also sporadic
scheduling, but it’s beyond the scope of this book; see “Sporadic scheduling” in the
QNX Neutrino Microkernel chapter of the System Architecture guide.)

FIFO

In the FIFO scheduling algorithm, a thread is allowed to consume CPU for as long as
it wants. This means that if that thread is doing a very long mathematical calculation,
and no other thread of a higher priority is ready, that thread could potentially run
forever. What about threads of the same priority? They’re locked out as well. (It
should be obvious at this point that threads of a lower priority are locked out too.)

If the running thread quits or voluntarily gives up the CPU, then the kernel looks for
other threads at the same priority that are capable of using the CPU. If there are no
such threads, then the kernel looks for lower-priority threads capable of using the
CPU. Note that the term “voluntarily gives up the CPU” can mean one of two things.
If the thread goes to sleep, or blocks on a semaphore, etc., then yes, a lower-priority
thread could run (as described above). But there’s also a “special” call, sched_yield()
(based on the kernel call SchedYield()), which gives up CPU only to another thread of
the same priority — a lower-priority thread would never be given a chance to run if a
higher-priority was ready to run. If a thread does in fact call sched_yield(), and no
other thread at the same priority is ready to run, the original thread continues running.
Effectively, sched_yield() is used to give another thread of the same priority a crack at
the CPU.

In the diagram below, we see three threads operating in two different processes:

A B

C

Three threads in two different processes.

If we assume that threads “A” and “B” are READY, and that thread “C” is blocked
(perhaps waiting for a mutex), and that thread “D” (not shown) is currently executing,
then this is what a portion of the READY queue that the Neutrino kernel maintains
will look like:

October 20, 2008 Chapter 1 • Processes and Threads 21

The kernel’s role © 2008, QNX Software Systems GmbH & Co. KG.

5

0

255

10
P
ri
o
ri
ty

A

Blocked

B

C

Running

D

Two threads on the READY queue, one blocked, one running.

This shows the kernel’s internal READY queue, which the kernel uses to decide who
to schedule next. Note that thread “C” is not on the READY queue, because it’s
blocked, and thread “D” isn’t on the READY queue either because it’s running.

Round Robin

The RR scheduling algorithm is identical to FIFO, except that the thread will not run
forever if there’s another thread at the same priority. It runs only for a system-defined
timeslice whose value you can determine by using the function
sched_rr_get_interval(). The timeslice is usually 4 ms, but it’s actually 4 times the
ticksize, which you can query or set with ClockPeriod().

What happens is that the kernel starts an RR thread, and notes the time. If the RR
thread is running for a while, the time allotted to it will be up (the timeslice will have
expired). The kernel looks to see if there is another thread at the same priority that’s
ready. If there is, the kernel runs it. If not, then the kernel will continue running the
RR thread (i.e., the kernel grants the thread another timeslice).

The rules

Let’s summarize the scheduling rules (for a single CPU), in order of importance:

• Only one thread can run at a time.

• The highest-priority ready thread will run.

• A thread will run until it blocks or exits.

• An RR thread will run for its timeslice, and then the kernel will reschedule it (if
required).

22 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The kernel’s role

The following flowchart shows the decisions that the kernel makes:

Enter on a rescheduling event

Find the running thread

Did we
just

READY a
higher-priority

thread?

Yes Remove the current thread
from the RUNNING array, and
run the new thread instead

No

Is the
currently

running thread
running

RR?

No Continue running this thread
until the end of its timeslice

Yes

Has it used
more than one

timeslice?

No

Yes

No

Yes

Reshuffle the queue so that this
(running) thread is at the end of the

READY queue for its priority, and
remove the thread from the head of the

READY queue and run it

Rest the thread's timeslice
counter

Is there
another READY
thread at this

priority?

Scheduling roadmap.

For a multiple-CPU system, the rules are the same, except that multiple CPUs can run
multiple threads concurrently. The order that the threads run (i.e., which threads get to
run on the multiple CPUs) is determined in the exact same way as with a single CPU
— the highest-priority READY thread will run on a CPU. For lower-priority or

October 20, 2008 Chapter 1 • Processes and Threads 23

The kernel’s role © 2008, QNX Software Systems GmbH & Co. KG.

longer-waiting threads, the kernel has some flexibility as to when to schedule them to
avoid inefficiency in the use of the cache. For more information about SMP, see the
Multicore Processing User’s Guide.

Kernel states
We’ve been talking about “running,” “ready,” and “blocked” loosely — let’s now
formalize these thread states.

RUNNING

Neutrino’s RUNNING state simply means that the thread is now actively consuming
the CPU. On an SMP system, there will be multiple threads running; on a
single-processor system, there will be one thread running.

READY

The READY state means that this thread could run right now — except that it’s not,
because another thread, (at the same or higher priority), is running. If two threads
were capable of using the CPU, one thread at priority 10 and one thread at priority 7,
the priority 10 thread would be RUNNING and the priority 7 thread would be READY.

The blocked states

What do we call the blocked state? The problem is, there’s not just one blocked state.
Under Neutrino, there are in fact over a dozen blocking states.

Why so many? Because the kernel keeps track of why a thread is blocked.

We saw two blocking states already — when a thread is blocked waiting for a mutex,
the thread is in the MUTEX state. When a thread is blocked waiting for a semaphore,
it’s in the SEM state. These states simply indicate which queue (and which resource)
the thread is blocked on.

If a number of threads are blocked on a mutex (in the MUTEX blocked state), they get
no attention from the kernel until the thread that owns the mutex releases it. At that
point one of the blocked threads is made READY, and the kernel makes a rescheduling
decision (if required).

Why “if required?” The thread that just released the mutex could very well still have
other things to do and have a higher priority than that of the waiting threads. In this
case, we go to the second rule, which states, “The highest-priority ready thread will
run,” meaning that the scheduling order has not changed — the higher-priority thread
continues to run.

Kernel states, the complete list

Here’s the complete list of kernel blocking states, with brief explanations of each state.
By the way, this list is available in <sys/neutrino.h>— you’ll notice that the
states are all prefixed with STATE_ (for example, “READY” in this table is listed in
the header file as STATE_READY):

24 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The kernel’s role

If the state is: The thread is:

CONDVAR Waiting for a condition variable to be signaled.

DEAD Dead. Kernel is waiting to release the thread’s resources.

INTR Waiting for an interrupt.

JOIN Waiting for the completion of another thread.

MUTEX Waiting to acquire a mutex.

NANOSLEEP Sleeping for a period of time.

NET_REPLY Waiting for a reply to be delivered across the network.

NET_SEND Waiting for a pulse or message to be delivered across the network.

READY Not running on a CPU, but is ready to run (one or more higher or
equal priority threads are running).

RECEIVE Waiting for a client to send a message.

REPLY Waiting for a server to reply to a message.

RUNNING Actively running on a CPU.

SEM Waiting to acquire a semaphore.

SEND Waiting for a server to receive a message.

SIGSUSPEND Waiting for a signal.

SIGWAITINFO Waiting for a signal.

STACK Waiting for more stack to be allocated.

STOPPED Suspended (SIGSTOP signal).

WAITCTX Waiting for a register context (usually floating point) to become
available (only on SMP systems).

WAITPAGE Waiting for process manager to resolve a fault on a page.

WAITTHREAD Waiting for a thread to be created.

The important thing to keep in mind is that when a thread is blocked, regardless of
which state it’s blocked in, it consumes no CPU. Conversely, the only state in which a
thread consumes CPU is in the RUNNING state.

We’ll see the SEND, RECEIVE, and REPLY blocked states in the Message Passing
chapter. The NANOSLEEP state is used with functions like sleep(), which we’ll look at
in the chapter on Clocks, Timers, and Getting a Kick Every So Often. The INTR state
is used with InterruptWait(), which we’ll take a look at in the Interrupts chapter. Most
of the other states are discussed in this chapter.

October 20, 2008 Chapter 1 • Processes and Threads 25

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

Threads and processes
Let’s return to our discussion of threads and processes, this time from the perspective
of a real live system. Then, we’ll take a look at the function calls used to deal with
threads and processes.

We know that a process can have one or more threads. (A process that had zero
threads wouldn’t be able to do anything — there’d be nobody home, so to speak, to
actually perform any useful work.) A Neutrino system can have one or more
processes. (The same discussion applies — a Neutrino system with zero processes
wouldn’t do anything.)

So what do these processes and threads do? Ultimately, they form a system — a
collection of threads and processes that performs some goal.

At the highest level, the system consists of a number of processes. Each process is
responsible for providing a service of some nature — whether it’s a filesystem, a
display driver, data acquisition module, control module, or whatever.

Within each process, there may be a number of threads. The number of threads varies.
One designer using only one thread may accomplish the same functionality as another
designer using five threads. Some problems lend themselves to being multi-threaded,
and are in fact relatively simple to solve, while other processes lend themselves to
being single-threaded, and are difficult to make multi-threaded.

The topic of designing with threads could easily occupy another book — we’ll just
stick with the basics here.

Why processes?
So why not just have one process with a zillion threads? While some OSes force you to
code that way, the advantages of breaking things up into multiple processes are many:

• decoupling and modularity

• maintainability

• reliability

The ability to “break the problem apart” into several independent problems is a
powerful concept. It’s also at the heart of Neutrino. A Neutrino system consists of
many independent modules, each with a certain responsibility. These independent
modules are distinct processes. The people at QSS used this trick to develop the
modules in isolation, without the modules relying on each other. The only “reliance”
the modules would have on each other is through a small number of well-defined
interfaces.

This naturally leads to enhanced maintainability, thanks to the lack of
interdependencies. Since each module has its own particular definition, it’s reasonably
easy to fix one module — especially since it’s not tied to any other module.

Reliability, though, is perhaps the most important point. A process, just like a house,
has some well-defined “borders.” A person in a house has a pretty good idea when

26 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

they’re in the house, and when they’re not. A thread has a very good idea — if it’s
accessing memory within the process, it can live. If it steps out of the bounds of the
process’s address space, it gets killed. This means that two threads, running in
different processes, are effectively isolated from each other.

Process 1

Process 1's
address space

Process 2

Process 2's
address space

Memory protection
barrier

Memory protection.

The process address space is maintained and enforced by Neutrino’s process manager
module. When a process is started, the process manager allocates some memory to it
and starts a thread running. The memory is marked as being owned by that process.

This means that if there are multiple threads in that process, and the kernel needs to
context-switch between them, it’s a very efficient operation — we don’t have to
change the address space, just which thread is running. If, however, we have to change
to another thread in another process, then the process manager gets involved and
causes an address space switch as well. Don’t worry — while there’s a bit more
overhead in this additional step, under Neutrino this is still very fast.

Starting a process
Let’s now turn our attention to the function calls available to deal with threads and
processes. Any thread can start a process; the only restrictions imposed are those that
stem from basic security (file access, privilege restrictions, etc.). In all probability,
you’ve already started other processes; either from the system startup script, the shell,
or by having a program start another program on your behalf.

Starting a process from the command line

For example, from the shell you can type:

$ program1

This instructs the shell to start a program called program1 and to wait for it to finish.
Or, you could type:

$ program2 &

This instructs the shell to start program2 without waiting for it to finish. We say that
program2 is running “in the background.”

October 20, 2008 Chapter 1 • Processes and Threads 27

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

If you want to adjust the priority of a program before you start it, you could use the
nice command, just like in UNIX:

$ nice program3

This instructs the shell to start program3 at a reduced priority.

Or does it?

If you look at what really happens, we told the shell to run a program called nice at
the regular priority. The nice command adjusted its own priority to be lower (this is
where the name “nice” comes from), and then it ran program3 at that lower priority.

Starting a process from within a program

You don’t usually care about the fact that the shell creates processes — this is a basic
assumption about the shell. In some application designs, you’ll certainly be relying on
shell scripts (batches of commands in a file) to do the work for you, but in other cases
you’ll want to create the processes yourself.

For example, in a large multi-process system, you may want to have one master
program start all the other processes for your application based on some kind of
configuration file. Another example would include starting up processes when certain
operating conditions (events) have been detected.

Let’s take a look at the functions that Neutrino provides for starting up other processes
(or transforming into a different program):

• system()

• exec() family of functions

• spawn() family of functions

• fork()

• vfork()

Which function you use depends on two requirements: portability and functionality.
As usual, there’s a trade-off between the two.

The common thing that happens in all the calls that create a new process is the
following. A thread in the original process calls one of the above functions.
Eventually, the function gets the process manager to create an address space for a new
process. Then, the kernel starts a thread in the new process. This thread executes a few
instructions, and calls main(). (In the case of fork() and vfork(), of course, the new
thread begins execution in the new process by returning from the fork() or vfork();
we’ll see how to deal with this shortly.)

Starting a process with the system() call

The system() function is the simplest; it takes a command line, the same as you’d type
it at a shell prompt, and executes it.

28 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

In fact, system() actually starts up a shell to handle the command that you want to
perform.

The editor that I’m using to write this book makes use of the system() call. When I’m
editing, I may need to “shell out,” check out some samples, and then come back into
the editor, all without losing my place. In this editor, I may issue the command :!pwd

for example, to display the current working directory. The editor runs this code for the
:!pwd command:

system ("pwd");

Is system() suited for everything under the sun? Of course not, but it’s useful for a lot
of your process-creation requirements.

Starting a process with the exec() and spawn() calls

Let’s look at some of the other process-creation functions.

The next process-creation functions we should look at are the exec() and spawn()
families. Before we go into the details, let’s see what the differences are between these
two groups of functions.

The exec() family transforms the current process into another one. What I mean by
that is that when a process issues an exec() function call, that process ceases to run the
current program and begins to run another program. The process ID doesn’t change —
that process changed into another program. What happened to all the threads in the
process? We’ll come back to that when we look at fork().

The spawn() family, on the other hand, doesn’t do that. Calling a member of the
spawn() family creates another process (with a new process ID) that corresponds to
the program specified in the function’s arguments.

Let’s look at the different variants of the spawn() and exec() functions. In the table that
follows, you’ll see which ones are POSIX and which aren’t. Of course, for maximum
portability, you’ll want to use only the POSIX functions.

Spawn POSIX? Exec POSIX?

spawn() No

spawnl() No execl() Yes

spawnle() No execle() Yes

spawnlp() No execlp() Yes

spawnlpe() No execlpe() No

spawnp() No

spawnv() No execv() Yes

continued. . .

October 20, 2008 Chapter 1 • Processes and Threads 29

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

Spawn POSIX? Exec POSIX?

spawnve() No execve() Yes

spawnvp() No execvp() Yes

spawnvpe() No execvpe() No

While these variants might appear to be overwhelming, there is a pattern to their
suffixes:

A suffix of: Means:

l (lowercase “L”) The argument list is specified via a list of parameters given in
the call itself, terminated by a NULL argument.

e An environment is specified.

p The PATH environment variable is used in case the full
pathname to the program isn’t specified.

v The argument list is specified via a pointer to an argument
vector.

The argument list is a list of command-line arguments passed to the program.

Also, note that in the C library, spawnlp(), spawnvp(), and spawnlpe() all call
spawnvpe(), which in turn calls spawnp(). The functions spawnle(), spawnv(), and
spawnl() all eventually call spawnve(), which then calls spawn(). Finally, spawnp()
calls spawn(). So, the root of all spawning functionality is the spawn() call.

Let’s now take a look at the various spawn() and exec() variants in detail so that you
can get a feel for the various suffixes used. Then, we’ll see the spawn() call itself.

For example, if I want to invoke the ls command with the arguments -t, -r, and -l“l” suffix

(meaning “sort the output by time, in reverse order, and show me the long version of
the output”), I could specify it as either:

/* To run ls and keep going: */
spawnl (P_WAIT, "/bin/ls", "/bin/ls", "-t", "-r", "-l", NULL);

/* To transform into ls: */
execl ("/bin/ls", "/bin/ls", "-t", "-r", "-l", NULL);

or, using the v suffix variant:

char *argv [] =
{

"/bin/ls",
"-t",
"-r",
"-l",
NULL

};

30 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

/* To run ls and keep going: */
spawnv (P_WAIT, "/bin/ls", argv);

/* To transform into ls: */
execv ("/bin/ls", argv);

Why the choice? It’s provided as a convenience. You may have a parser already built
into your program, and it would be convenient to pass around arrays of strings. In that
case, I’d recommend using the “v” suffix variants. Or, you may be coding up a call to
a program where you know what the parameters are. In that case, why bother setting
up an array of strings when you know exactly what the arguments are? Just pass them
to the “l” suffix variant.

Note that we passed the actual pathname of the program (/bin/ls) and the name of
the program again as the first argument. We passed the name again to support
programs that behave differently based on how they’re invoked.

For example, the GNU compression and decompression utilities (gzip and gunzip)
are actually links to the same executable. When the executable starts, it looks at argv
[0] (passed to main()) and decides whether it should compress or decompress.

The “e” suffix versions pass an environment to the program. An environment is just“e” suffix

that — a kind of “context” for the program to operate in. For example, you may have a
spelling checker that has a dictionary of words. Instead of specifying the dictionary’s
location every time on the command line, you could provide it in the environment:

$ export DICTIONARY=/home/rk/.dict

$ spellcheck document.1

The export command tells the shell to create a new environment variable (in this
case, DICTIONARY), and assign it a value (/home/rk/.dict).

If you ever wanted to use a different dictionary, you’d have to alter the environment
before running the program. This is easy from the shell:

$ export DICTIONARY=/home/rk/.altdict

$ spellcheck document.1

But how can you do this from your own programs? To use the “e” versions of spawn()
and exec(), you specify an array of strings representing the environment:

char *env [] =
{

"DICTIONARY=/home/rk/.altdict",
NULL

};

// To start the spell-checker:
spawnle (P_WAIT, "/usr/bin/spellcheck", "/usr/bin/spellcheck",

"document.1", NULL, env);

// To transform into the spell-checker:
execle ("/usr/bin/spellcheck", "/usr/bin/spellcheck",

"document.1", NULL, env);

October 20, 2008 Chapter 1 • Processes and Threads 31

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

The “p” suffix versions will search the directories in your PATH environment variable“p” suffix

to find the executable. You’ve probably noticed that all the examples have a
hard-coded location for the executable — /bin/ls and /usr/bin/spellcheck.
What about other executables? Unless you want to first find out the exact path for that
particular program, it would be best to have the user tell your program all the places to
search for executables. The standard PATH environment variable does just that.
Here’s the one from a minimal system:

PATH=/proc/boot:/bin

This tells the shell that when I type a command, it should first look in the directory
/proc/boot, and if it can’t find the command there, it should look in the binaries
directory /bin part. PATH is a colon-separated list of places to look for commands.
You can add as many elements to the PATH as you want, but keep in mind that all
pathname components will be searched (in order) for the executable.

If you don’t know the path to the executable, then you can use the “p” variants. For
example:

// Using an explicit path:
execl ("/bin/ls", "/bin/ls", "-l", "-t", "-r", NULL);

// Search your PATH for the executable:
execlp ("ls", "ls", "-l", "-t", "-r", NULL);

If execl() can’t find ls in /bin, it returns an error. The execlp() function will search
all the directories specified in the PATH for ls, and will return an error only if it can’t
find ls in any of those directories. This is also great for multiplatform support — your
program doesn’t have to be coded to know about the different CPU names, it just finds
the executable.

What if you do something like this?

execlp ("/bin/ls", "ls", "-l", "-t", "-r", NULL);

Does it search the environment? No. You told execlp() to use an explicit pathname,
which overrides the normal PATH searching rule. If it doesn’t find ls in /bin that’s
it, no other attempts are made (this is identical to the way execl() works in this case).

Is it dangerous to mix an explicit path with a plain command name (e.g., the path
argument /bin/ls, and the command name argument ls, instead of /bin/ls)? This
is usually pretty safe, because:

• a large number of programs ignore argv [0] anyway

• those that do care usually call basename(), which strips off the directory portion of
argv [0] and returns just the name.

The only compelling reason for specifying the full pathname for the first argument is
that the program can print out diagnostics including this first argument, which can
instantly tell you where the program was invoked from. This may be important when
the program can be found in multiple locations along the PATH.

The spawn() functions all have an extra parameter; in all the above examples, I’ve
always specified P_WAIT. There are four flags you can pass to spawn() to change its
behavior:

32 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

P_WAIT The calling process (your program) is blocked until the newly
created program has run to completion and exited.

P_NOWAIT The calling program doesn’t block while the newly created program
runs. This allows you to start a program in the background, and
continue running while the other program does its thing.

P_NOWAITO Identical to P_NOWAIT, except that the SPAWN_NOZOMBIE flag is
set, meaning that you don’t have to worry about doing a waitpid() to
clear the process’s exit code.

P_OVERLAY This flag turns the spawn() call into the corresponding exec() call!
Your program transforms into the specified program, with no
change in process ID.

It’s generally clearer to use the exec() call if that’s what you meant
— it saves the maintainer of the software from having to look up
P_OVERLAY in the C Library Reference!

“plain” spawn()

As we mentioned above, all spawn() functions eventually call the plain spawn()
function. Here’s the prototype for the spawn() function:

#include <spawn.h>

pid_t
spawn (const char *path,

int fd_count,
const int fd_map [],
const struct inheritance *inherit,
char * const argv [],
char * const envp []);

We can immediately dispense with the path, argv, and envp parameters — we’ve
already seen those above as representing the location of the executable (the path
member), the argument vector (argv), and the environment (envp).

The fd_count and fd_map parameters go together. If you specify zero for fd_count,
then fd_map is ignored, and it means that all file descriptors (except those modified by
fcntl()’s FD_CLOEXEC flag) will be inherited in the newly created process. If the
fd_count is non-zero, then it indicates the number of file descriptors contained in
fd_map; only the specified ones will be inherited.

The inherit parameter is a pointer to a structure that contains a set of flags, signal
masks, and so on. For more details, you should consult the Neutrino Library
Reference.

Starting a process with the fork() call

Suppose you want to create a new process that’s identical to the currently running
process and have it run concurrently. You could approach this with a spawn() (and the
P_NOWAIT parameter), giving the newly created process enough information about

October 20, 2008 Chapter 1 • Processes and Threads 33

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

the exact state of your process so it could set itself up. However, this can be extremely
complicated; describing the “current state” of the process can involve lots of data.

There is an easier way — the fork() function, which duplicates the current process. All
the code is the same, and the data is the same as the creating (or parent) process’s data.

Of course, it’s impossible to create a process that’s identical in every way to the parent
process. Why? The most obvious difference between these two processes is going to
be the process ID — we can’t create two processes with the same process ID. If you
look at fork()’s documentation in the Neutrino Library Reference, you’ll see that there
is a list of differences between the two processes. You should read this list to be sure
that you know these differences if you plan to use fork().

If both sides of a fork() look alike, how do you tell them apart? When you call fork(),
you create another process executing the same code at the same location (i.e., both are
about to return from the fork() call) as the parent process. Let’s look at some sample
code:

int main (int argc, char **argv)
{

int retval;

printf ("This is most definitely the parent process\n");
fflush (stdout);
retval = fork ();
printf ("Which process printed this?\n");

return (EXIT_SUCCESS);
}

After the fork() call, both processes are going to execute the second printf() call! If
you run this program, it prints something like this:

This is most definitely the parent process
Which process printed this?
Which process printed this?

Both processes print the second line.

The only way to tell the two processes apart is the fork() return value in retval. In the
newly created child process, retval is zero; in the parent process, retval is the child’s
process ID.

Clear as mud? Here’s another code snippet to clarify:

printf ("The parent is pid %d\n", getpid ());
fflush (stdout);

if (child_pid = fork ()) {
printf ("This is the parent, child pid is %d\n",

child_pid);
} else {

printf ("This is the child, pid is %d\n",
getpid ());

}

This program will print something like:

34 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

The parent is pid 4496
This is the parent, child pid is 8197
This is the child, pid is 8197

You can tell which process you are (the parent or the child) after the fork() by looking
at fork()’s return value.

Starting a process with the vfork() call

The vfork() function can be a lot less resource intensive than the plain fork(), because
it shares the parent’s address space.

The vfork() function creates a child, but then suspends the parent thread until the child
calls exec() or exits (via exit() and friends). Additionally, vfork() will work on physical
memory model systems, whereas fork() can’t — fork() needs to create the same
address space, which just isn’t possible in a physical memory model.

Process creation and threads

Suppose you have a process and you haven’t created any threads yet (i.e., you’re
running with one thread, the one that called main()). When you call fork(), another
process is created, also with one thread. This is the simple case.

Now suppose that in your process, you’ve called pthread_create() to create another
thread. When you call fork(), it will now return ENOSYS (meaning that the function is
not supported)! Why?

Well, believe it or not, this is POSIX compatible — POSIX says that fork() can return
ENOSYS. What actually happens is this: the Neutrino C library isn’t built to handle the
forking of a process with threads. When you call pthread_create(), the
pthread_create() function sets a flag, effectively saying, “Don’t let this process fork(),
because I’m not prepared to handle it.” Then, in the library fork() function, this flag is
checked, and, if set, causes fork() to return ENOSYS.

The reason this is intentionally done has to do with threads and mutexes. If this
restriction weren’t in place (and it may be lifted in a future release) the newly created
process would have the same number of threads as the original process. This is what
you’d expect. However, the complication occurs because some of the original threads
may own mutexes. Since the newly created process has the identical contents of the
data space of the original process, the library would have to keep track of which
mutexes were owned by which threads in the original process, and then duplicate that
ownership in the new process. This isn’t impossible — there’s a function called
pthread_atfork() that allows a process to deal with this; however, the functionality of
calling pthread_atfork() isn’t being used by all the mutexes in the Neutrino C library
as of this writing.

So what should you use?

Obviously, if you’re porting existing code, you’ll want to use whatever the existing
code uses. For new code, you should avoid fork() if at all possible. Here’s why:

• fork() doesn’t work with multiple threads, as discussed above.

October 20, 2008 Chapter 1 • Processes and Threads 35

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

• When fork() does work with multiple threads, you’ll need to register a
pthread_atfork() handler and lock every single mutex before you fork,
complicating the design.

• The child of fork() duplicates all open file descriptors. As we’ll see in the Resource
Manager chapter later, this causes a lot of work — most of which will be
unnecessary if the child then immediately does an exec() and closes all the file
descriptors anyway.

The choice between vfork() and the spawn() family boils down to portability, and what
you want the child and parent to be doing. The vfork() function will pause until the
child calls exec() or exits, whereas the spawn() family of functions can allow both to
run concurrently. The vfork() function, however, is subtly different between operating
systems.

Starting a thread
Now that we’ve seen how to start another process, let’s see how to start another thread.

Any thread can create another thread in the same process; there are no restrictions
(short of memory space, of course!). The most common way of doing this is via the
POSIX pthread_create() call:

#include <pthread.h>

int
pthread_create (pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

The pthread_create() function takes four arguments:

thread a pointer to a pthread_t where the thread ID is stored

attr an attributes structure

start_routine the routine where the thread begins

arg an argument passed to the thread’s start_routine

Note that the thread pointer and the attributes structure (attr) are optional — you can
pass them as NULL.

The thread parameter can be used to store the thread ID of the newly created thread.
You’ll notice that in the examples below, we’ll pass a NULL, meaning that we don’t
care what the ID is of the newly created thread. If we did care, we could do something
like this:

pthread_t tid;

pthread_create (&tid, ...
printf ("Newly created thread id is %d\n", tid);

36 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

This use is actually quite typical, because you’ll often want to know which thread ID
is running which piece of code.

A small subtle point. It’s possible that the newly created thread may be running before
the thread ID (the tid parameter) is filled. This means that you should be careful about
using the tid as a global variable. The usage shown above is okay, because the
pthread_create() call has returned, which means that the tid value is stuffed correctly.

The new thread begins executing at start_routine(), with the argument arg.

The thread attributes structure

When you start a new thread, it can assume some well-defined defaults, or you can
explicitly specify its characteristics.

Before we jump into a discussion of the thread attribute functions, let’s look at the
pthread_attr_t data type:

typedef struct {
int __flags;
size_t __stacksize;
void *__stackaddr;
void (*__exitfunc)(void *status);
int __policy;
struct sched_param __param;
unsigned __guardsize;

} pthread_attr_t;

Basically, the fields are used as follows:

__flags Non-numerical (Boolean) characteristics (e.g., whether the thread
should run “detached” or “joinable”).

__stacksize, __stackaddr, and __guardsize

Stack specifications.

__exitfunc Function to execute at thread exit.

__policy and __param

Scheduling parameters.

The following functions are available:

Attribute administration

pthread_attr_destroy()
pthread_attr_init()

Flags (Boolean characteristics)

pthread_attr_getdetachstate()
pthread_attr_setdetachstate()

October 20, 2008 Chapter 1 • Processes and Threads 37

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

pthread_attr_getinheritsched()
pthread_attr_setinheritsched()
pthread_attr_getscope()
pthread_attr_setscope()

Stack related pthread_attr_getguardsize()
pthread_attr_setguardsize()
pthread_attr_getstackaddr()
pthread_attr_setstackaddr()
pthread_attr_getstacksize()
pthread_attr_setstacksize()
pthread_attr_getstacklazy()
pthread_attr_setstacklazy()

Scheduling related

pthread_attr_getschedparam()
pthread_attr_setschedparam()
pthread_attr_getschedpolicy()
pthread_attr_setschedpolicy()

This looks like a pretty big list (20 functions), but in reality we have to worry about
only half of them, because they’re paired: “get” and “set” (with the exception of
pthread_attr_init() and pthread_attr_destroy()).

Before we examine the attribute functions, there’s one thing to note. You must call
pthread_attr_init() to initialize the attribute structure before using it, set it with the
appropriate pthread_attr_set*() function(s), and then call pthread_create() to create
the thread. Changing the attribute structure after the thread’s been created has no
effect.

Thread attribute administration

The function pthread_attr_init() must be called to initialize the attribute structure
before using it:

...

pthread_attr_t attr;
...
pthread_attr_init (&attr);

You could call pthread_attr_destroy() to “uninitialize” the thread attribute structure,
but almost no one ever does (unless you have POSIX-compliant code).

In the descriptions that follow, I’ve marked the default values with “(default).”

The “flags” thread attribute

The three functions, pthread_attr_setdetachstate(), pthread_attr_setinheritsched(),
and pthread_attr_setscope() determine whether the thread is created “joinable” or
“detached,” whether the thread inherits the scheduling attributes of the creating thread

38 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

or uses the scheduling attributes specified by pthread_attr_setschedparam() and
pthread_attr_setschedpolicy(), and finally whether the thread has a scope of “system”
or “process.”

To create a “joinable” thread (meaning that another thread can synchronize to its
termination via pthread_join()), you’d use:

(default)
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE);

To create one that can’t be joined (called a “detached” thread), you’d use:

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);

If you want the thread to inherit the scheduling attributes of the creating thread (that is,
to have the same scheduling algorithm and the same priority), you’d use:

(default)
pthread_attr_setinheritsched (&attr, PTHREAD_INHERIT_SCHED);

To create one that uses the scheduling attributes specified in the attribute structure
itself (which you’d set using pthread_attr_setschedparam() and
pthread_attr_setschedpolicy()), you’d use:

pthread_attr_setinheritsched (&attr, PTHREAD_EXPLICIT_SCHED);

Finally, you’d never call pthread_attr_setscope(). Why? Because Neutrino supports
only “system” scope, and it’s the default when you initialize the attribute. (“System”
scope means that all threads in the system compete against each other for CPU; the
other value, “process,” means that threads compete against each other for CPU within
the process, and the kernel schedules the processes.)

If you do insist on calling it, you can call it only as follows:

(default)
pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM);

The “stack” thread attributes

The thread attribute stack parameters are prototyped as follows:

int
pthread_attr_setguardsize (pthread_attr_t *attr, size_t gsize);

int
pthread_attr_setstackaddr (pthread_attr_t *attr, void *addr);

int
pthread_attr_setstacksize (pthread_attr_t *attr, size_t ssize);

int
pthread_attr_setstacklazy (pthread_attr_t *attr, int lazystack);

These functions all take the attribute structure as their first parameter; their second
parameters are selected from the following:

October 20, 2008 Chapter 1 • Processes and Threads 39

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

gsize The size of the “guard” area.

addr The address of the stack, if you’re providing one.

ssize The size of the stack.

lazystack Indicates if the stack should be allocated on demand or up front from
physical memory.

The guard area is a memory area immediately after the stack that the thread can’t write
to. If it does (meaning that the stack was about to overflow), the thread will get hit with
a SIGSEGV. If the guardsize is 0, it means that there’s no guard area. This also implies
that there’s no stack overflow checking. If the guardsize is nonzero, then it’s set to at
least the system-wide default guardsize (which you can obtain with a call to sysconf()
with the constant _SC_PAGESIZE). Note that the guardsize will be at least as big as a
“page” (for example, 4 KB on an x86 processor). Also, note that the guard page
doesn’t take up any physical memory — it’s done as a virtual address (MMU) “trick.”

The addr is the address of the stack, in case you’re providing it. You can set it to
NULL meaning that the system will allocate (and will free!) the stack for the thread.
The advantage of specifying a stack is that you can do postmortem stack depth
analysis. This is accomplished by allocating a stack area, filling it with a “signature”
(for example, the string “STACK” repeated over and over), and letting the thread run.
When the thread has completed, you’d look at the stack area and see how far the
thread had scribbled over your signature, giving you the maximum depth of the stack
used during this particular run.

The ssize parameter specifies how big the stack is. If you provide the stack in addr,
then ssize should be the size of that data area. If you don’t provide the stack in addr
(meaning you passed a NULL), then the ssize parameter tells the system how big a
stack it should allocate for you. If you specify a 0 for ssize, the system will select the
default stack size for you. Obviously, it’s bad practice to specify a 0 for ssize and
specify a stack using addr — effectively you’re saying “Here’s a pointer to an object,
and the object is some default size.” The problem is that there’s no binding between
the object size and the passed value.

If a stack is being provided via addr, no automatic stack overflow protection exists for
that thread (i.e., there’s no guard area). However, you can certainly set this up yourself
using mmap() and mprotect().

Finally, the lazystack parameter indicates if the physical memory should be allocated
as required (use the value PTHREAD_STACK_LAZY) or all up front (use the value
PTHREAD_STACK_NOTLAZY). The advantage of allocating the stack “on demand”
(as required) is that the thread won’t use up more physical memory than it absolutely
has to. The disadvantage (and hence the advantage of the “all up front” method) is that
in a low-memory environment the thread won’t mysteriously die some time during
operating when it needs that extra bit of stack, and there isn’t any memory left. If you
are using PTHREAD_STACK_NOTLAZY, you’ll most likely want to set the actual size
of the stack instead of accepting the default, because the default is quite large.

40 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

The “scheduling” thread attributes

Finally, if you do specify PTHREAD_EXPLICIT_SCHED for
pthread_attr_setinheritsched(), then you’ll need a way to specify both the scheduling
algorithm and the priority of the thread you’re about to create.

This is done with the two functions:

int
pthread_attr_setschedparam (pthread_attr_t *attr,

const struct sched_param *param);

int
pthread_attr_setschedpolicy (pthread_attr_t *attr,

int policy);

The policy is simple — it’s one of SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

SCHED_OTHER is currently mapped to SCHED_RR.

The param is a structure that contains one member of relevance here: sched_priority.
Set this value via direct assignment to the desired priority.

A common bug to watch out for is specifying PTHREAD_EXPLICIT_SCHED and then
setting only the scheduling policy. The problem is that in an initialized attribute
structure, the value of param.sched_priority is 0. This is the same priority as the IDLE
process, meaning that your newly created thread will be competing for CPU with the
IDLE process.

Been there, done that, got the T-shirt. :-)

Enough people have been bitten by this that QSS has made priority zero reserved for
only the idle thread. You simply cannot run a thread at priority zero.

A few examples

Let’s take a look at some examples. We’ll assume that the proper include files
(<pthread.h> and <sched.h>) have been included, and that the thread to be created
is called new_thread() and is correctly prototyped and defined.

The most common way of creating a thread is to simply let the values default:

pthread_create (NULL, NULL, new_thread, NULL);

In the above example, we’ve created our new thread with the defaults, and passed it a
NULL as its one and only parameter (that’s the third NULL in the pthread_create() call
above).

Generally, you can pass anything you want (via the arg field) to your new thread. Here
we’re passing the number 123:

pthread_create (NULL, NULL, new_thread, (void *) 123);

A more complicated example is to create a non-joinable thread with round-robin
scheduling at priority 15:

October 20, 2008 Chapter 1 • Processes and Threads 41

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

pthread_attr_t attr;

// initialize the attribute structure
pthread_attr_init (&attr);

// set the detach state to "detached"
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);

// override the default of INHERIT_SCHED
pthread_attr_setinheritsched (&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy (&attr, SCHED_RR);
attr.param.sched_priority = 15;

// finally, create the thread
pthread_create (NULL, &attr, new_thread, NULL);

To see what a multithreaded program “looks like,” you could run the pidin command
from the shell. Say our program was called spud. If we run pidin once before spud
created a thread and once after spud created two more threads (for three total), here’s
what the output would look like (I’ve shortened the pidin output to show only spud):

pidin
pid tid name prio STATE Blocked
12301 1 spud 10r READY

pidin
pid tid name prio STATE Blocked
12301 1 spud 10r READY
12301 2 spud 10r READY
12301 3 spud 10r READY

As you can see, the process spud (process ID 12301) has three threads (under the “tid”
column). The three threads are running at priority 10 with a scheduling algorithm of
round robin (indicated by the “r” after the 10). All three threads are READY, meaning
that they’re able to use CPU but aren’t currently running on the CPU (another,
higher-priority thread, is currently running).

Now that we know all about creating threads, let’s take a look at how and where we’d
use them.

Where a thread is a good idea

There are two classes of problems where the application of threads is a good idea.

Threads are like overloading operators in C++ — it may seem like a good idea (at the
time) to overload every single operator with some interesting use, but it makes the
code hard to understand. Similarly with threads, you could create piles of threads, but
the additional complexity will make your code hard to understand, and therefore hard
to maintain. Judicious use of threads, on the other hand, will result in code that is
functionally very clean.

Threads are great where you can parallelize operations — a number of mathematical
problems spring to mind (graphics, digital signal processing, etc.). Threads are also
great where you want a program to perform several independent functions while

42 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

sharing data, such as a web-server that’s serving multiple clients simultaneously. We’ll
examine these two classes.

Threads in mathematical operations

Suppose that we have a graphics program that performs ray tracing. Each raster line
on the screen is dependent on the main database (which describes the actual picture
being generated). The key here is this: each raster line is independent of the others.
This immediately causes the problem to stand out as a threadable program.

Here’s the single-threaded version:

int
main (int argc, char **argv)
{

int x1;

... // perform initializations

for (x1 = 0; x1 < num_x_lines; x1++) {
do_one_line (x1);

}

... // display results
}

Here we see that the program will iterate x1 over all the raster lines that are to be
calculated.

On an SMP system, this program will use only one of the CPUs. Why? Because we
haven’t told the operating system to do anything in parallel. The operating system isn’t
smart enough to look at the program and say, “Hey, hold on a second! We have 4
CPUs, and it looks like there are independent execution flows here. I’ll run it on all 4
CPUs!”

So, it’s up to the system designer (you) to tell Neutrino which parts can be run in
parallel. The easiest way to do that would be:

int
main (int argc, char **argv)
{

int x1;

... // perform initializations

for (x1 = 0; x1 < num_x_lines; x1++) {
pthread_create (NULL, NULL, do_one_line, (void *) x1);

}

... // display results
}

There are a number of problems with this simplistic approach. First of all (and this is
most minor), the do_one_line() function would have to be modified to take a void *

instead of an int as its argument. This is easily remedied with a typecast.

The second problem is a little bit trickier. Let’s say that the screen resolution that you
were computing the picture for was 1280 by 1024. We’d be creating 1280 threads!

October 20, 2008 Chapter 1 • Processes and Threads 43

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

This is not a problem for Neutrino — Neutrino “limits” you to 32767 threads per
process! However, each thread must have a unique stack. If your stack is a reasonable
size (say 8 KB), you’ll have used 1280 × 8 KB (10 megabytes!) of stack. And for
what? There are only 4 processors in your SMP system. This means that only 4 of the
1280 threads will run at a time — the other 1276 threads are waiting for a CPU. (In
reality, the stack will “fault in,” meaning that the space for it will be allocated only as
required. Nonetheless, it’s a waste — there are still other overheads.)

A much better solution to this would be to break the problem up into 4 pieces (one for
each CPU), and start a thread for each piece:

int num_lines_per_cpu;
int num_cpus;

int
main (int argc, char **argv)
{

int cpu;

... // perform initializations

// get the number of CPUs
num_cpus = _syspage_ptr -> num_cpu;
num_lines_per_cpu = num_x_lines / num_cpus;
for (cpu = 0; cpu < num_cpus; cpu++) {

pthread_create (NULL, NULL,
do_one_batch, (void *) cpu);

}

... // display results
}

void *
do_one_batch (void *c)
{

int cpu = (int) c;
int x1;

for (x1 = 0; x1 < num_lines_per_cpu; x1++) {
do_line_line (x1 + cpu * num_lines_per_cpu);

}
}

Here we’re starting only num_cpus threads. Each thread will run on one CPU. And
since we have only a small number of threads, we’re not wasting memory with
unnecessary stacks. Notice how we got the number of CPUs by dereferencing the
“System Page” global variable _syspage_ptr. (For more information about what’s in
the system page, please consult QSS’s Building Embedded Systems book or the
<sys/syspage.h> include file).

Coding for SMP or single processor

The best part about this code is that it will function just fine on a single-processor
system — you’ll create only one thread, and have it do all the work. The additional
overhead (one stack) is well worth the flexibility of having the software “just work
faster” on an SMP box.

44 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

Synchronizing to the termination of a thread

I mentioned that there were a number of problems with the simplistic code sample
initially shown. Another problem with it is that main() starts up a bunch of threads and
then displays the results. How does the function know when it’s safe to display the
results?

To have the main() function poll for completion would defeat the purpose of a realtime
operating system:

int
main (int argc, char **argv)
{

...

// start threads as before

while (num_lines_completed < num_x_lines) {
sleep (1);

}
}

Don’t even consider writing code like this!

There are two elegant solutions to this problem: pthread_join() and
pthread_barrier_wait().

Joining

The simplest method of synchronization is to join the threads as they terminate.
Joining really means waiting for termination.

Joining is accomplished by one thread waiting for the termination of another thread.
The waiting thread calls pthread_join():

#include <pthread.h>

int
pthread_join (pthread_t thread, void **value_ptr);

To use pthread_join(), you pass it the thread ID of the thread that you wish to join, and
an optional value_ptr, which can be used to store the termination return value from the
joined thread. (You can pass in a NULL if you aren’t interested in this value — we’re
not, in this case.)

Where did the thread ID came from? We ignored it in the pthread_create() — we
passed in a NULL for the first parameter. Let’s now correct our code:

int num_lines_per_cpu, num_cpus;

int main (int argc, char **argv)
{

int cpu;
pthread_t *thread_ids;

... // perform initializations
thread_ids = malloc (sizeof (pthread_t) * num_cpus);

October 20, 2008 Chapter 1 • Processes and Threads 45

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

num_lines_per_cpu = num_x_lines / num_cpus;
for (cpu = 0; cpu < num_cpus; cpu++) {

pthread_create (&thread_ids [cpu], NULL,
do_one_batch, (void *) cpu);

}

// synchronize to termination of all threads
for (cpu = 0; cpu < num_cpus; cpu++) {

pthread_join (thread_ids [cpu], NULL);
}

... // display results
}

You’ll notice that this time we passed the first argument to pthread_create() as a
pointer to a pthread_t. This is where the thread ID of the newly created thread gets
stored. After the first for loop finishes, we have num_cpus threads running, plus the
thread that’s running main(). We’re not too concerned about the main() thread
consuming all our CPU; it’s going to spend its time waiting.

The waiting is accomplished by doing a pthread_join() to each of our threads in turn.
First, we wait for thread_ids [0] to finish. When it completes, the pthread_join() will
unblock. The next iteration of the for loop will cause us to wait for thread_ids [1] to
finish, and so on, for all num_cpus threads.

A common question that arises at this point is, “What if the threads finish in the reverse
order?” In other words, what if there are 4 CPUs, and, for whatever reason, the thread
running on the last CPU (CPU 3) finishes first, and then the thread running on CPU 2
finishes next, and so on? Well, the beauty of this scheme is that nothing bad happens.

The first thing that’s going to happen is that the pthread_join() will block on
thread_ids [0]. Meanwhile, thread_ids [3] finishes. This has absolutely no impact on
the main() thread, which is still waiting for the first thread to finish. Then thread_ids
[2] finishes. Still no impact. And so on, until finally thread_ids [0] finishes, at which
point, the pthread_join() unblocks, and we immediately proceed to the next iteration
of the for loop. The second iteration of the for loop executes a pthread_join() on
thread_ids [1], which will not block — it returns immediately. Why? Because the
thread identified by thread_ids [1] is already finished. Therefore, our for loop will
“whip” through the other threads, and then exit. At that point, we know that we’ve
synched up with all the computational threads, so we can now display the results.

Using a barrier

When we talked about the synchronization of the main() function to the completion of
the worker threads (in “Synchronizing to the termination of a thread,” above), we
mentioned two methods: pthread_join(), which we’ve looked at, and a barrier.

Returning to our house analogy, suppose that the family wanted to take a trip
somewhere. The driver gets in the minivan and starts the engine. And waits. The
driver waits until all the family members have boarded, and only then does the van
leave to go on the trip — we can’t leave anyone behind!

46 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

This is exactly what happened with the graphics example. The main thread needs to
wait until all the worker threads have completed, and only then can the next part of the
program begin.

Note an important distinction, however. With pthread_join(), we’re waiting for the
termination of the threads. This means that the threads are no longer with us; they’ve
exited.

With the barrier, we’re waiting for a certain number of threads to rendezvous at the
barrier. Then, when the requisite number are present, we unblock all of them. (Note
that the threads continue to run.)

You first create a barrier with pthread_barrier_init():

#include <pthread.h>

int
pthread_barrier_init (pthread_barrier_t *barrier,

const pthread_barrierattr_t *attr,
unsigned int count);

This creates a barrier object at the passed address (pointer to the barrier object is in
barrier), with the attributes as specified by attr (we’ll just use NULL to get the
defaults). The number of threads that must call pthread_barrier_wait() is passed in
count.

Once the barrier is created, we then want each of the threads to call
pthread_barrier_wait() to indicate that it has completed:

#include <pthread.h>

int
pthread_barrier_wait (pthread_barrier_t *barrier);

When a thread calls pthread_barrier_wait(), it will block until the number of threads
specified initially in the pthread_barrier_init() have called pthread_barrier_wait()
(and blocked too). When the correct number of threads have called
pthread_barrier_wait(), all those threads will “simultaneously” unblock.

Here’s an example:

/*
* barrier1.c

*/

#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <sys/neutrino.h>

pthread_barrier_t barrier; // the barrier synchronization object

void *
thread1 (void *not_used)
{

time_t now;
char buf [27];

October 20, 2008 Chapter 1 • Processes and Threads 47

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

time (&now);
printf ("thread1 starting at %s", ctime_r (&now, buf));

// do the computation
// let’s just do a sleep here...
sleep (20);
pthread_barrier_wait (&barrier);
// after this point, all three threads have completed.
time (&now);
printf ("barrier in thread1() done at %s", ctime_r (&now, buf));

}

void *
thread2 (void *not_used)
{

time_t now;
char buf [27];

time (&now);
printf ("thread2 starting at %s", ctime_r (&now, buf));

// do the computation
// let’s just do a sleep here...
sleep (40);
pthread_barrier_wait (&barrier);
// after this point, all three threads have completed.
time (&now);
printf ("barrier in thread2() done at %s", ctime_r (&now, buf));

}

main () // ignore arguments
{

time_t now;
char buf [27];

// create a barrier object with a count of 3
pthread_barrier_init (&barrier, NULL, 3);

// start up two threads, thread1 and thread2
pthread_create (NULL, NULL, thread1, NULL);
pthread_create (NULL, NULL, thread2, NULL);

// at this point, thread1 and thread2 are running

// now wait for completion
time (&now);
printf ("main () waiting for barrier at %s", ctime_r (&now, buf));
pthread_barrier_wait (&barrier);

// after this point, all three threads have completed.
time (&now);
printf ("barrier in main () done at %s", ctime_r (&now, buf));

}

The main thread created the barrier object and initialized it with a count of how many
threads (including itself !) should be synchronized to the barrier before it “breaks
through.” In our sample, this was a count of 3 — one for the main() thread, one for
thread1(), and one for thread2(). Then the graphics computational threads (thread1()
and thread2() in our case here) are started, as before. For illustration, instead of
showing source for graphics computations, we just stuck in a sleep (20); and
sleep (40); to cause a delay, as if computations were occurring. To synchronize,

48 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

the main thread simply blocks itself on the barrier, knowing that the barrier will
unblock only after the worker threads have joined it as well.

As mentioned earlier, with the pthread_join(), the worker threads are done and dead in
order for the main thread to synchronize with them. But with the barrier, the threads
are alive and well. In fact, they’ve just unblocked from the pthread_barrier_wait()
when all have completed. The wrinkle introduced here is that you should be prepared
to do something with these threads! In our graphics example, there’s nothing for them
to do (as we’ve written it). In real life, you may wish to start the next frame
calculations.

Multiple threads on a single CPU

Suppose that we modify our example slightly so that we can illustrate why it’s also
sometimes a good idea to have multiple threads even on a single-CPU system.

In this modified example, one node on a network is responsible for calculating the
raster lines (same as the graphics example, above). However, when a line is computed,
its data should be sent over the network to another node, which will perform the
display functions. Here’s our modified main() (from the original example, without
threads):

int
main (int argc, char **argv)

{
int x1;

... // perform initializations

for (x1 = 0; x1 < num_x_lines; x1++) {

do_one_line (x1); // "C" in our diagram, below
tx_one_line_wait_ack (x1); // "X" and "W" in diagram below

}
}

You’ll notice that we’ve eliminated the display portion and instead added a
tx_one_line_wait_ack() function. Let’s further suppose that we’re dealing with a
reasonably slow network, but that the CPU doesn’t really get involved in the
transmission aspects — it fires the data off to some hardware that then worries about
transmitting it. The tx_one_line_wait_ack() uses a bit of CPU to get the data to the
hardware, but then uses no CPU while it’s waiting for the acknowledgment from the
far end.

Here’s a diagram showing the CPU usage (we’ve used “C” for the graphics compute
part, “X” for the transmit part, and “W” for waiting for the acknowledgment from the
far end):

Time

C X W C X W C X W

Serialized, single CPU.

October 20, 2008 Chapter 1 • Processes and Threads 49

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

Wait a minute! We’re wasting precious seconds waiting for the hardware to do its
thing!

If we made this multithreaded, we should be able to get much better use of our CPU,
right?

C

X W

C

X W

C

X W

Time

Thread 1

Thread 2

Multithreaded, single CPU.

This is much better, because now, even though the second thread spends a bit of its
time waiting, we’ve reduced the total overall time required to compute.

If our times were Tcompute to compute, Ttx to transmit, and Twait to let the hardware
do its thing, in the first case our total running time would be:

(Tcompute + Ttx + Twait) × num_x_lines

whereas with the two threads it would be

(Tcompute + Ttx) × num_x_lines + Twait

which is shorter by

Twait × (num_x_lines - 1)

assuming of course that Twait ≤ Tcompute.

Note that we will ultimately be constrained by:

Tcompute + Ttx × num_x_lines

because we’ll have to incur at least one full computation, and we’ll have to transmit
the data out the hardware — while we can use multithreading to overlay the
computation cycles, we have only one hardware resource for the transmit.

Now, if we created a four-thread version and ran it on an SMP system with 4 CPUs,
we’d end up with something that looked like this:

50 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

Time

thread 1

thread 2 C

X WC X W C

C X W X W C

X WC

thread 3

thread 4

C

C X W

X W

C

C

C

X W

X W C

X W C

X W

X W

CPU 1

utilization

CPU 4

CPU 3

CPU 2

utilization

utilization

utilization

Four threads, four CPUs.

Notice how each of the four CPUs is underutilized (as indicated by the empty
rectangles in the “utilization” graph). There are two interesting areas in the figure
above. When the four threads start, they each compute. Unfortunately, when the
threads are finished each computation, they’re contending for the transmit hardware
(the “X” parts in the figure are offset — only one transmission may be in progress at a
time). This gives us a small anomaly in the startup part. Once the threads are past this
stage, they’re naturally synchronized to the transmit hardware, since the time to
transmit is much smaller than 1

4 of a compute cycle. Ignoring the small anomaly at the
beginning, this system is characterized by the formula:

(Tcompute + Ttx + Twait) × num_x_lines / num_cpus

This formula states that using four threads on four CPUs will be approximately 4
times faster than the single-threaded model we started out with.

By combining what we learned from simply having a multithreaded single-processor
version, we would ideally like to have more threads than CPUs, so that the extra
threads can “soak up” the idle CPU time from the transmit acknowledge waits (and the

October 20, 2008 Chapter 1 • Processes and Threads 51

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

transmit slot contention waits) that naturally occur. In that case, we’d have something
like this:

Time

thread 1

thread 2 C

X WC X W C

C X W X W C

X WC

thread 3

thread 4

C

C X W

X W

C

C

C

X W

X W C

X W C X W

CPU 1

thread 5 C C

CPU 4

CPU 3

CPU 2

thread 6 C C

thread 7 C C

thread 8 C CC

C

C

C

C

utilization

utilization

utilization

utilization

1

X W

X W C

3

C

C

X W

Total CPU utilization

TX slot utilization

X W

2

Eight threads, four CPUs.

This figure assumes a few things:

• threads 5, 6, 7, and 8 are bound to processors 1, 2, 3, and 4 (for simplification)

• once a transmit begins it does so at a higher priority than a computation

• a transmit is a non-interruptible operation

Notice from the diagram that even though we now have twice as many threads as
CPUs, we still run into places where the CPUs are under-utilized. In the diagram,
there are three such places where the CPU is “stalled”; these are indicated by numbers
in the individual CPU utilization bar graphs:

52 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

1 Thread 1 was waiting for the acknowledgment (the “W” state), while thread 5
had completed a calculation and was waiting for the transmitter.

2 Both thread 2 and thread 6 were waiting for an acknowledgment.

3 Thread 3 was waiting for the acknowledgment while thread 7 had completed a
calculation and was waiting for the transmitter.

This example also serves as an important lesson — you can’t just keep adding CPUs in
the hopes that things will keep getting faster. There are limiting factors. In some cases,
these limiting factors are simply governed by the design of the multi-CPU
motherboard — how much memory and device contention occurs when many CPUs
try to access the same area of memory. In our case, notice that the “TX Slot
Utilization” bar graph was starting to become full. If we added enough CPUs, they
would eventually run into problems because their threads would be stalled, waiting to
transmit.

In any event, by using “soaker” threads to “soak up” spare CPU, we now have much
better CPU utilization. This utilization approaches:

(Tcompute + Ttx) × num_x_lines / num_cpus

In the computation per se, we’re limited only by the amount of CPU we have; we’re
not idling any processor waiting for acknowledgment. (Obviously, that’s the ideal
case. As you saw in the diagram there are a few times when we’re idling one CPU
periodically. Also, as noted above,

Tcompute + Ttx × num_x_lines

is our limit on how fast we can go.)

Things to watch out for when using SMP

While in general you can simply “ignore” whether or not you’re running on an SMP
architecture or a single processor, there are certain things that will bite you.
Unfortunately, they may be such low-probability events that they won’t show up
during development but rather during testing, demos, or the worst: out in the field.
Taking a few moments now to program defensively will save problems down the road.

Here are the kinds of things that you’re going to run up against on an SMP system:

• Threads really can and do run concurrently — relying on things like FIFO
scheduling or prioritization for synchronization is a no-no.

• Threads and Interrupt Service Routines (ISRs) also do run concurrently — this
means that not only will you have to protect the thread from the ISR, but you’ll also
have to protect the ISR from the thread. See the Interrupts chapter for more details.

October 20, 2008 Chapter 1 • Processes and Threads 53

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

• Some operations that you’d expect to be atomic aren’t, depending on the operation
and processor. Notable operations in this list are things that do a read-modify-write
cycle (e.g., ++, --, |=, &= etc.). See the include file <atomic.h> for
replacements. (Note that this isn’t purely an SMP issue; most RISC processors
don’t necessarily perform the above code in an atomic manner.)

Threads in independent situations

As discussed above in the “Where a thread is a good idea” section, threads also find
use where a number of independent processing algorithms are occurring with shared
data structures. While strictly speaking you could have a number of processes (each
with one thread) explicitly sharing data, in some cases it’s far more convenient to have
a number of threads in one process instead. Let’s see why and where you’d use threads
in this case.

For our examples, we’ll evolve a standard input/process/output model. In the most
generic sense, one part of the model is responsible for getting input from somewhere,
another part is responsible for processing the input to produce some form of output (or
control), and the third part is responsible for feeding the output somewhere.

Multiple processes

Let’s first understand the situation from a multiple process, one-thread-per-process
outlook. In this case, we’d have three processes, literally an input process, a
“processing” process, and an output process:

Input

Processing

Output

System 1: Multiple operations, multiple processes.

This is the most highly abstracted form, and also the most “loosely coupled.” The
“input” process has no real “binding” with either of the “processing” or “output”
processes — it’s simply responsible for gathering input and somehow giving it to the
next stage (the “processing” stage). We could say the same thing of the “processing”
and “output” processes — they too have no real binding with each other. We are also
assuming in this example that the communication path (i.e., the input-to-processing
and the processing-to-output data flow) is accomplished over some connectioned
protocol (e.g., pipes, POSIX message queues, native Neutrino message passing —
whatever).

54 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Threads and processes

Multiple processes with shared memory

Depending on the volume of data flow, we may want to optimize the communication
path. The easiest way of doing this is to make the coupling between the three
processes tighter. Instead of using a general-purpose connectioned protocol, we now
choose a shared memory scheme (in the diagram, the thick lines indicate data flow; the
thin lines, control flow):

Input

Processing

Output

Shared
memory

Shared
memory

System 2: Multiple operations, shared memory between processes.

In this scheme, we’ve tightened up the coupling, resulting in faster and more efficient
data flow. We may still use a “general-purpose” connectioned protocol to transfer
“control” information around — we’re not expecting the control information to
consume a lot of bandwidth.

Multiple threads

The most tightly-coupled system is represented by the following scheme:

Input

Processing

Output

Data
structure

Data
structure

System 3: Multiple operations, multiple threads.

Here we see one process with three threads. The three threads share the data areas
implicitly. Also, the control information may be implemented as it was in the previous

October 20, 2008 Chapter 1 • Processes and Threads 55

Threads and processes © 2008, QNX Software Systems GmbH & Co. KG.

examples, or it may also be implemented via some of the thread synchronization
primitives (we’ve seen mutexes, barriers, and semaphores; we’ll see others in a short
while).

Comparisons

Now, let’s compare the three methods using various categories, and we’ll also describe
some of the trade-offs.

With system 1, we see the loosest coupling. This has the advantage that each of the
three processes can be easily (i.e., via the command line, as opposed to
recompile/redesign) replaced with a different module. This follows naturally, because
the “unit of modularity” is the entire module itself. System 1 is also the only one that
can be distributed among multiple nodes in a Neutrino network. Since the
communications pathway is abstracted over some connectioned protocol, it’s easy to
see that the three processes can be executing on any machine in the network. This may
be a very powerful scalability factor for your design — you may need your system to
scale up to having hundreds of machines distributed geographically (or in other ways,
e.g., for peripheral hardware capability) and communicating with each other.

Once we commit to a shared memory region, however, we lose the ability to distribute
over a network. Neutrino doesn’t support network-distributed shared memory objects.
So in system 2, we’ve effectively limited ourselves to running all three processes on
the same box. We haven’t lost the ability to easily remove or change a component,
because we still have separate processes that can be controlled from the command
line. But we have added the constraint that all the removable components need to
conform to the shared-memory model.

In system 3, we’ve lost all the above abilities. We definitely can’t run different threads
from one process on multiple nodes (we can run them on different processors in an
SMP system, though). And we’ve lost our configurability aspects — now we need to
have an explicit mechanism to define which “input,” “processing,” or “output”
algorithm we want to use (which we can solve with shared objects, also known as
DLLs.)

So why would I design my system to have multiple threads like system 3? Why not go
for the maximally flexible system 1?

Well, even though system 3 is the most inflexible, it is most likely going to be the
fastest. There are no thread-to-thread context switches for threads in different
processes, I don’t have to set up memory sharing explicitly, and I don’t have to use
abstracted synchronization methods like pipes, POSIX message queues, or message
passing to deliver the data or control information — I can use basic kernel-level
thread-synchronization primitives. Another advantage is that when the system
described by the one process (with the three threads) starts, I know that everything I
need has been loaded off the storage medium (i.e., I’m not going to find out later that
“Oops, the processing driver is missing from the disk!”). Finally, system 3 is also most
likely going to be the smallest, because we won’t have three individual copies of
“process” information (e.g., file descriptors).

56 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

To sum up: know what the trade-offs are, and use what works for your design.

More on synchronization
We’ve already seen:

• mutexes

• semaphores

• barriers

Let’s now finish up our discussion of synchronization by talking about:

• readers/writer locks

• sleepon locks

• condition variables

• additional Neutrino services

Readers/writer locks
Readers and writer locks are used for exactly what their name implies: multiple
readers can be using a resource, with no writers, or one writer can be using a resource
with no other writers or readers.

This situation occurs often enough to warrant a special kind of synchronization
primitive devoted exclusively to that purpose.

Often you’ll have a data structure that’s shared by a bunch of threads. Obviously, only
one thread can be writing to the data structure at a time. If more than one thread was
writing, then the threads could potentially overwrite each other’s data. To prevent this
from happening, the writing thread would obtain the “rwlock” (the readers/writer lock)
in an exclusive manner, meaning that it and only it has access to the data structure.
Note that the exclusivity of the access is controlled strictly by voluntary means. It’s up
to you, the system designer, to ensure that all threads that touch the data area
synchronize by using the rwlocks.

The opposite occurs with readers. Since reading a data area is a non-destructive
operation, any number of threads can be reading the data (even if it’s the same piece of
data that another thread is reading). An implicit point here is that no threads can be
writing to the data area while any thread or threads are reading from it. Otherwise, the
reading threads may be confused by reading a part of the data, getting preempted by a
writing thread, and then, when the reading thread resumes, continue reading data, but
from a newer “update” of the data. A data inconsistency would then result.

Let’s look at the calls that you’d use with rwlocks.

The first two calls are used to initialize the library’s internal storage areas for the
rwlocks:

October 20, 2008 Chapter 1 • Processes and Threads 57

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

int
pthread_rwlock_init (pthread_rwlock_t *lock,

const pthread_rwlockattr_t *attr);

int
pthread_rwlock_destroy (pthread_rwlock_t *lock);

The pthread_rwlock_init() function takes the lock argument (of type
pthread_rwlock_t) and initializes it based on the attributes specified by attr. We’re
just going to use an attribute of NULL in our examples, which means, “Use the
defaults.” For detailed information about the attributes, see the library reference pages
for pthread_rwlockattr_init(), pthread_rwlockattr_destroy(),
pthread_rwlockattr_getpshared(), and pthread_rwlockattr_setpshared().

When done with the rwlock, you’d typically call pthread_rwlock_destroy() to destroy
the lock, which invalidates it. You should never use a lock that is either destroyed or
hasn’t been initialized yet.

Next we need to fetch a lock of the appropriate type. As mentioned above, there are
basically two modes of locks: a reader will want “non-exclusive” access, and a writer
will want “exclusive” access. To keep the names simple, the functions are named after
the user of the locks:

int
pthread_rwlock_rdlock (pthread_rwlock_t *lock);

int
pthread_rwlock_tryrdlock (pthread_rwlock_t *lock);

int
pthread_rwlock_wrlock (pthread_rwlock_t *lock);

int
pthread_rwlock_trywrlock (pthread_rwlock_t *lock);

There are four functions instead of the two that you may have expected. The
“expected” functions are pthread_rwlock_rdlock() and pthread_rwlock_wrlock(),
which are used by readers and writers, respectively. These are blocking calls — if the
lock isn’t available for the selected operation, the thread will block. When the lock
becomes available in the appropriate mode, the thread will unblock. Because the
thread unblocked from the call, it can now assume that it’s safe to access the resource
protected by the lock.

Sometimes, though, a thread won’t want to block, but instead will want to see if it
could get the lock. That’s what the “try” versions are for. It’s important to note that the
“try” versions will obtain the lock if they can, but if they can’t, then they won’t block,
but instead will just return an error indication. The reason they have to obtain the lock
if they can is simple. Suppose that a thread wanted to obtain the lock for reading, but
didn’t want to wait in case it wasn’t available. The thread calls
pthread_rwlock_tryrdlock(), and is told that it could have the lock. If the
pthread_rwlock_tryrdlock() didn’t allocate the lock, then bad things could happen —
another thread could preempt the one that was told to go ahead, and the second thread
could lock the resource in an incompatible manner. Since the first thread wasn’t
actually given the lock, when the first thread goes to actually acquire the lock (because

58 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

it was told it could), it would use pthread_rwlock_rdlock(), and now it would block,
because the resource was no longer available in that mode. So, if we didn’t lock it if
we could, the thread that called the “try” version could still potentially block anyway!

Finally, regardless of the way that the lock was used, we need some way of releasing
the lock:

int
pthread_rwlock_unlock (pthread_rwlock_t *lock);

Once a thread has done whatever operation it wanted to do on the resource, it would
release the lock by calling pthread_rwlock_unlock(). If the lock is now available in a
mode that corresponds to the mode requested by another waiting thread, then that
thread would be made READY.

Note that we can’t implement this form of synchronization with just a mutex. The
mutex acts as a single-threading agent, which would be okay for the writing case
(where you want only one thread to be using the resource at a time) but would fall flat
in the reading case, because only one reader would be allowed. A semaphore couldn’t
be used either, because there’s no way to distinguish the two modes of access — a
semaphore would allow multiple readers, but if a writer were to acquire the
semaphore, as far as the semaphore is concerned this would be no different from a
reader acquiring it, and now you’d have the ugly situation of multiple readers and one
or more writers!

Sleepon locks
Another common situation that occurs in multithreaded programs is the need for a
thread to wait until “something happens.” This “something” could be anything! It
could be the fact that data is now available from a device, or that a conveyor belt has
now moved to the proper position, or that data has been committed to disk, or
whatever. Another twist to throw in here is that several threads may need to wait for
the given event.

To accomplish this, we’d use either a condition variable (which we’ll see next) or the
much simpler “sleepon” lock.

To use sleepon locks, you actually need to perform several operations. Let’s look at
the calls first, and then look at how you’d use the locks.

int
pthread_sleepon_lock (void);

int
pthread_sleepon_unlock (void);

int
pthread_sleepon_broadcast (void *addr);

int
pthread_sleepon_signal (void *addr);

int
pthread_sleepon_wait (void *addr);

October 20, 2008 Chapter 1 • Processes and Threads 59

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

Don’t be tricked by the prefix pthread_ into thinking that these are POSIX functions
— they’re not.

As described above, a thread needs to wait for something to happen. The most obvious
choice in the list of functions above is the pthread_sleepon_wait(). But first, the
thread needs to check if it really does have to wait. Let’s set up an example. One
thread is a producer thread that’s getting data from some piece of hardware. The other
thread is a consumer thread that’s doing some form of processing on the data that just
arrived. Let’s look at the consumer first:

volatile int data_ready = 0;

consumer ()
{

while (1) {
while (!data_ready) {

// WAIT
}
// process data

}
}

The consumer is sitting in its main processing loop (the while (1)); it’s going to do
its job forever. The first thing it does is look at the data_ready flag. If this flag is a 0, it
means there’s no data ready. Therefore, the consumer should wait. Somehow, the
producer will wake it up, at which point the consumer should reexamine its
data_ready flag. Let’s say that’s exactly what happens, and the consumer looks at the
flag and decides that it’s a 1, meaning data is now available. The consumer goes off
and processes the data, and then goes to see if there’s more work to do, and so on.

We’re going to run into a problem here. How does the consumer reset the data_ready
flag in a synchronized manner with the producer? Obviously, we’re going to need
some form of exclusive access to the flag so that only one of those threads is
modifying it at a given time. The method that’s used in this case is built with a mutex,
but it’s a mutex that’s buried in the implementation of the sleepon library, so we can
access it only via two functions: pthread_sleepon_lock() and
pthread_sleepon_unlock(). Let’s modify our consumer:

consumer ()
{

while (1) {
pthread_sleepon_lock ();
while (!data_ready) {

// WAIT
}
// process data
data_ready = 0;
pthread_sleepon_unlock ();

}
}

Now we’ve added the lock and unlock around the operation of the consumer. This
means that the consumer can now reliably test the data_ready flag, with no race
conditions, and also reliably set the flag.

60 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

Okay, great. Now what about the “WAIT” call? As we suggested earlier, it’s
effectively the pthread_sleepon_wait() call. Here’s the second while loop:

while (!data_ready) {
pthread_sleepon_wait (&data_ready);

}

The pthread_sleepon_wait() actually does three distinct steps!

1 Unlock the sleepon library mutex.

2 Perform the waiting operation.

3 Re-lock the sleepon library mutex.

The reason it has to unlock and lock the sleepon library’s mutex is simple — since the
whole idea of the mutex is to ensure mutual exclusion to the data_ready variable, this
means that we want to lock out the producer from touching the data_ready variable
while we’re testing it. But, if we don’t do the unlock part of the operation, the
producer would never be able to set it to tell us that data is indeed available! The
re-lock operation is done purely as a convenience; this way the user of the
pthread_sleepon_wait() doesn’t have to worry about the state of the lock when it
wakes up.

Let’s switch over to the producer side and see how it uses the sleepon library. Here’s
the full implementation:

producer ()
{

while (1) {
// wait for interrupt from hardware here...
pthread_sleepon_lock ();
data_ready = 1;
pthread_sleepon_signal (&data_ready);
pthread_sleepon_unlock ();

}
}

As you can see, the producer locks the mutex as well so that it can have exclusive
access to the data_ready variable in order to set it.

It’s not the act of writing a 1 to data_ready that awakens the client! It’s the call to
pthread_sleepon_signal() that does it.

Let’s examine in detail what happens. We’ve identified the consumer and producer
states as:

October 20, 2008 Chapter 1 • Processes and Threads 61

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

State Meaning

CONDVAR Waiting for the underlying condition variable associated with the
sleepon

MUTEX Waiting for a mutex

READY Capable of using, or already using, the CPU

INTERRUPT Waiting for an interrupt from the hardware

Action Mutex owner Consumer state Producer state

Consumer locks mutex Consumer READY INTERRUPT

Consumer examines data_ready Consumer READY INTERRUPT

Consumer calls pthread_sleepon_wait() Consumer READY INTERRUPT

pthread_sleepon_wait() unlocks mutex Free READY INTERRUPT

pthread_sleepon_wait() blocks Free CONDVAR INTERRUPT

Time passes Free CONDVAR INTERRUPT

Hardware generates data Free CONDVAR READY

Producer locks mutex Producer CONDVAR READY

Producer sets data_ready Producer CONDVAR READY

Producer calls pthread_sleepon_signal() Producer CONDVAR READY

Consumer wakes up, pthread_sleepon_wait() tries
to lock mutex

Producer MUTEX READY

Producer releases mutex Free MUTEX READY

Consumer gets mutex Consumer READY READY

Consumer processes data Consumer READY READY

Producer waits for more data Consumer READY INTERRUPT

Time passes (consumer processing) Consumer READY INTERRUPT

Consumer finishes processing, unlocks mutex Free READY INTERRUPT

Consumer loops back to top, locks mutex Consumer READY INTERRUPT

The last entry in the table is a repeat of the first entry — we’ve gone around one
complete cycle.

What’s the purpose of the data_ready variable? It actually serves two purposes:

62 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

• It’s the status flag between the consumer and the producer that indicates the state of
the system. If it’s set to a 1, it means that data is available for processing; if it’s set
to a 0, it means that no data is available, and the consumer should block.

• It serves as “the place where sleepon synchronization occurs.” More formally, the
address of data_ready is used as a unique identifier, that serves as the rendezvous
object for sleepon locks. We just as easily could have used “(void *) 12345”
instead of “&data_ready” — so long as the identifier is unique and used
consistently, the sleepon library really doesn’t care. Actually, using the address of a
variable in a process is a guaranteed way to generate a process-unique number —
after all, no two variables in a process will have the same address!

We’ll defer the discussion of “What’s the difference between
pthread_sleepon_signal() and pthread_sleepon_broadcast() ” to the discussion of
condition variables next.

Condition variables
Condition variables (or “condvars”) are remarkably similar to the sleepon locks we
just saw above. In fact, sleepon locks are built on top of condvars, which is why we
had a state of CONDVAR in the explanation table for the sleepon example. It bears
repeating that the pthread_cond_wait() function releases the mutex, waits, and then
reacquires the mutex, just like the pthread_sleepon_wait() function did.

Let’s skip the preliminaries and redo the example of the producer and consumer from
the sleepon section, using condvars instead. Then we’ll discuss the calls.

/*
* cp1.c

*/

#include <stdio.h>
#include <pthread.h>

int data_ready = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;

void *
consumer (void *notused)
{

printf ("In consumer thread...\n");
while (1) {

pthread_mutex_lock (&mutex);
while (!data_ready) {

pthread_cond_wait (&condvar, &mutex);
}
// process data
printf ("consumer: got data from producer\n");
data_ready = 0;
pthread_cond_signal (&condvar);
pthread_mutex_unlock (&mutex);

}
}

void *

October 20, 2008 Chapter 1 • Processes and Threads 63

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

producer (void *notused)
{

printf ("In producer thread...\n");
while (1) {

// get data from hardware
// we’ll simulate this with a sleep (1)
sleep (1);
printf ("producer: got data from h/w\n");
pthread_mutex_lock (&mutex);
while (data_ready) {

pthread_cond_wait (&condvar, &mutex);
}
data_ready = 1;
pthread_cond_signal (&condvar);
pthread_mutex_unlock (&mutex);

}
}

main ()
{

printf ("Starting consumer/producer example...\n");

// create the producer and consumer threads
pthread_create (NULL, NULL, producer, NULL);
pthread_create (NULL, NULL, consumer, NULL);

// let the threads run for a bit
sleep (20);

}

Pretty much identical to the sleepon example we just saw, with a few variations (we
also added some printf() functions and a main() so that the program would run!).
Right away, the first thing that we see is a new data type: pthread_cond_t. This is
simply the declaration of the condition variable; we’ve called ours condvar.

Next thing we notice is that the structure of the consumer is identical to that of the
consumer in the previous sleepon example. We’ve replaced the
pthread_sleepon_lock() and pthread_sleepon_unlock() with the standard mutex
versions (pthread_mutex_lock() and pthread_mutex_unlock()). The
pthread_sleepon_wait() was replaced with pthread_cond_wait(). The main difference
is that the sleepon library has a mutex buried deep within it, whereas when we use
condvars, we explicitly pass the mutex. We get a lot more flexibility this way.

Finally, we notice that we’ve got pthread_cond_signal() instead of
pthread_sleepon_signal() (again with the mutex passed explicitly).

Signal versus broadcast

In the sleepon section, we promised to talk about the difference between the
pthread_sleepon_signal() and pthread_sleepon_broadcast() functions. In the same
breath, we’ll talk about the difference between the two condvar functions
pthread_cond_signal() and pthread_cond_broadcast().

The short story is this: the “signal” version will wake up only one thread. So, if there
were multiple threads blocked in the “wait” function, and a thread did the “signal,”
then only one of the threads would wake up. Which one? The highest priority one. If

64 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

there are two or more at the same priority, the ordering of wakeup is indeterminate.
With the “broadcast” version, all blocked threads will wake up.

It may seem wasteful to wake up all threads. On the other hand, it may seem sloppy to
wake up only one (effectively random) thread.

Therefore, we should look at where it makes sense to use one over the other.
Obviously, if you have only one thread waiting, as we did in either version of the
consumer program, a “signal” will do just fine — one thread will wake up and, guess
what, it’ll be the only thread that’s currently waiting.

In a multithreaded situation, we’ve got to ask: “Why are these threads waiting?” There
are usually two possible answers:

• All the threads are considered equivalent and are effectively forming a “pool” of
available threads that are ready to handle some form of request.

Or:

• The threads are all unique and are each waiting for a very specific condition to
occur.

In the first case, we can imagine that all the threads have code that might look like the
following:

/*
* cv1.c

*/

#include <stdio.h>
#include <pthread.h>

pthread_mutex_t mutex_data = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv_data = PTHREAD_COND_INITIALIZER;
int data;

thread1 ()
{

for (;;) {
pthread_mutex_lock (&mutex_data);
while (data == 0) {

pthread_cond_wait (&cv_data, &mutex_data);
}
// do something
pthread_mutex_unlock (&mutex_data);

}
}

// thread2, thread3, etc have the identical code.

In this case, it really doesn’t matter which thread gets the data, provided that one of
them gets it and does something with it.

However, if you have something like this, things are a little different:

/*
* cv2.c

*/

October 20, 2008 Chapter 1 • Processes and Threads 65

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

#include <stdio.h>
#include <pthread.h>

pthread_mutex_t mutex_xy = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv_xy = PTHREAD_COND_INITIALIZER;
int x, y;

int isprime (int);

thread1 ()
{

for (;;) {
pthread_mutex_lock (&mutex_xy);
while ((x > 7) && (y != 15)) {

pthread_cond_wait (&cv_xy, &mutex_xy);
}
// do something
pthread_mutex_unlock (&mutex_xy);

}
}

thread2 ()
{

for (;;) {
pthread_mutex_lock (&mutex_xy);
while (!isprime (x)) {

pthread_cond_wait (&cv_xy, &mutex_xy);
}
// do something
pthread_mutex_unlock (&mutex_xy);

}
}

thread3 ()
{

for (;;) {
pthread_mutex_lock (&mutex_xy);
while (x != y) {

pthread_cond_wait (&cv_xy, &mutex_xy);
}
// do something
pthread_mutex_unlock (&mutex_xy);

}
}

In these cases, waking up one thread isn’t going to cut it! We must wake up all three
threads and have each of them check to see if its predicate has been satisfied or not.

This nicely reflects the second case in our question above (“Why are these threads
waiting?”). Since the threads are all waiting on different conditions (thread1() is
waiting for x to be less than or equal to 7 or y to be 15, thread2() is waiting for x to be a
prime number, and thread3() is waiting for x to be equal to y), we have no choice but
to wake them all.

Sleepons versus condvars

Sleepons have one principal advantage over condvars. Suppose that you want to
synchronize many objects. With condvars, you’d typically associate one condvar per
object. Therefore, if you had M objects, you’d most likely have M condvars. With

66 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

sleepons, the underlying condvars (on top of which sleepons are implemented) are
allocated dynamically as threads wait for a particular object. Therefore, using sleepons
with M objects and N threads blocked, you’d have (at most) N condvars (instead of
M).

However, condvars are more flexible than sleepons, because:

1 Sleepons are built on top of condvars anyway.

2 Sleepons have the mutex buried in the library; condvars allow you to specify it
explicitly.

The first point might just be viewed as being argumentative. :-) The second point,
however, is significant. When the mutex is buried in the library, this means that there
can be only one per process — regardless of the number of threads in that process, or
the number of different “sets” of data variables. This can be a very limiting factor,
especially when you consider that you must use the one and only mutex to access any
and all data variables that any thread in the process needs to touch!

A much better design is to use multiple mutexes, one for each data set, and explicitly
combine them with condition variables as required. The true power and danger of this
approach is that there is absolutely no compile time or run time checking to make sure
that you:

• have locked the mutex before manipulating a variable

• are using the correct mutex for the particular variable

• are using the correct condvar with the appropriate mutex and variable

The easiest way around these problems is to have a good design and design review,
and also to borrow techniques from object-oriented programming (like having the
mutex contained in a data structure, having routines to access the data structure, etc.).
Of course, how much of one or both you apply depends not only on your personal
style, but also on performance requirements.

The key points to remember when using condvars are:

1 The mutex is to be used for testing and accessing the variables.

2 The condvar is to be used as a rendezvous point.

Here’s a picture:

October 20, 2008 Chapter 1 • Processes and Threads 67

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

x y z

MutexXYZ

CondvarXYZ

(Used for access and testing)

(Used for waiting and waking)

One-to-one mutex and condvar associations.

One interesting note. Since there is no checking, you can do things like associate one
set of variables with mutex “ABC,” and another set of variables with mutex “DEF,”
while associating both sets of variables with condvar “ABCDEF:”

MutexABC

CondvarABCDEF

(Used for access and testing)

(Used for waiting and waking)

MutexDEF

a b c d e f

Many-to-one mutex and condvar associations.

This is actually quite useful. Since the mutex is always to be used for “access and
testing,” this implies that I have to choose the correct mutex whenever I want to look at
a particular variable. Fair enough — if I’m examining variable “C,” I obviously need
to lock mutex “MutexABC.” What if I changed variable “E”? Well, before I change it,
I had to acquire the mutex “MutexDEF.” Then I changed it, and hit condvar
“CondvarABCDEF” to tell others about the change. Shortly thereafter, I would release
the mutex.

Now, consider what happens. Suddenly, I have a bunch of threads that had been
waiting on “CondvarABCDEF” that now wake up (from their pthread_cond_wait()).
The waiting function immediately attempts to reacquire the mutex. The critical point
here is that there are two mutexes to acquire. This means that on an SMP system, two
concurrent streams of threads can run, each examining what it considers to be
independent variables, using independent mutexes. Cool, eh?

Additional Neutrino services
Neutrino lets you do something else that’s elegant. POSIX says that a mutex must
operate between threads in the same process, and lets a conforming implementation
extend that. Neutrino extends this by allowing a mutex to operate between threads in
different processes. To understand why this works, recall that there really are two parts
to what’s viewed as the “operating system” — the kernel, which deals with scheduling,

68 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

and the process manager, which worries about memory protection and “processes”
(among other things). A mutex is really just a synchronization object used between
threads. Since the kernel worries only about threads, it really doesn’t care that the
threads are operating in different processes — this is an issue for the process manager.

So, if you’ve set up a shared memory area between two processes, and you’ve
initialized a mutex in that shared memory, there’s nothing stopping you from
synchronizing multiple threads in those two (or more!) processes via the mutex. The
same pthread_mutex_lock() and pthread_mutex_unlock() functions will still work.

Pools of threads
Another thing that Neutrino has added is the concept of thread pools. You’ll often
notice in your programs that you want to be able to run a certain number of threads,
but you also want to be able to control the behavior of those threads within certain
limits. For example, in a server you may decide that initially just one thread should be
blocked, waiting for a message from a client. When that thread gets a message and is
off servicing a request, you may decide that it would be a good idea to create another
thread, so that it could be blocked waiting in case another request arrived. This second
thread would then be available to handle that request. And so on. After a while, when
the requests had been serviced, you would now have a large number of threads sitting
around, waiting for further requests. In order to conserve resources, you may decide to
kill off some of those “extra” threads.

This is in fact a common operation, and Neutrino provides a library to help with this.
We’ll see the thread pool functions again in the Resource Managers chapter.

It’s important for the discussions that follow to realize there are really two distinct
operations that threads (that are used in thread pools) perform:

• a blocking (waiting operation)

• a processing operation

The blocking operation doesn’t generally consume CPU. In a typical server, this is
where the thread is waiting for a message to arrive. Contrast that with the processing
operation, where the thread may or may not be consuming CPU (depending on how
the process is structured). In the thread pool functions that we’ll look at later, you’ll
see that we have the ability to control the number of threads in the blocking operation
as well as the number of threads that are in the processing operations.

Neutrino provides the following functions to deal with thread pools:

#include <sys/dispatch.h>

thread_pool_t *
thread_pool_create (thread_pool_attr_t *attr,

unsigned flags);

int
thread_pool_destroy (thread_pool_t *pool);

int

October 20, 2008 Chapter 1 • Processes and Threads 69

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

thread_pool_start (void *pool);

int
thread_pool_limits (thread_pool_t *pool,

int lowater,
int hiwater,
int maximum,
int increment,
unsigned flags);

int
thread_pool_control (thread_pool_t *pool,

thread_pool_attr_t *attr,
uint16_t lower,
uint16_t upper,
unsigned flags);

As you can see from the functions provided, you first create a thread pool definition
using thread_pool_create(), and then start the thread pool via thread_pool_start().
When you’re done with the thread pool, you can use thread_pool_destroy() to clean
up after yourself. Note that you might never call thread_pool_destroy(), as in the case
where the program is a server that runs “forever.” The thread_pool_limits() function is
used to specify thread pool behavior and adjust attributes of the thread pool, and the
thread_pool_control() function is a convenience wrapper for the thread_pool_limits()
function.

So, the first function to look at is thread_pool_create(). It takes two parameters, attr
and flags. The attr is an attributes structure that defines the operating characteristics of
the thread pool (from <sys/dispatch.h>):

typedef struct _thread_pool_attr {
// thread pool functions and handle
THREAD_POOL_HANDLE_T *handle;

THREAD_POOL_PARAM_T
*(*block_func)(THREAD_POOL_PARAM_T *ctp);

void
(*unblock_func)(THREAD_POOL_PARAM_T *ctp);

int
(*handler_func)(THREAD_POOL_PARAM_T *ctp);

THREAD_POOL_PARAM_T
*(*context_alloc)(THREAD_POOL_HANDLE_T *handle);

void
(*context_free)(THREAD_POOL_PARAM_T *ctp);

// thread pool parameters
pthread_attr_t *attr;
unsigned short lo_water;
unsigned short increment;
unsigned short hi_water;
unsigned short maximum;

} thread_pool_attr_t;

I’ve broken the thread_pool_attr_t type into two sections, one that contains the
functions and handle for the threads in the thread pool, and another that contains the
operating parameters for the thread pool.

70 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

Controlling the number of threads

Let’s first look at the “thread pool parameters” to see how you control the number and
attributes of threads that will be operating in this thread pool. Keep in mind that we’ll
be talking about the “blocking operation” and the “processing operation” (when we
look at the callout functions, we’ll see how these relate to each other).

The following diagram illustrates the relationship of the lo_water, hi_water, and
maximum parameters:

processing
operation

< lo_water

lo_water hi_waterto

maximum

> hi_water

CA
blocking
operation CF

<= hi_water

create
thread

destroy
thread

Thread flow when using thread pools.

(Note that “CA” is the context_alloc() function, “CF” is the context_free() function,
“blocking operation” is the block_func() function, and “processing operation” is the
handler_func().)

attr This is the attributes structure that’s used during thread creation. We’ve
already discussed this structure above (in “The thread attributes
structure”). You’ll recall that this is the structure that controls things
about the newly created thread like priority, stack size, and so on.

lo_water There should always be at least lo_water threads sitting in the blocking
operation. In a typical server, this would be the number of threads
waiting to receive a message, for example. If there are less than
lo_water threads sitting in the blocking operation (because, for
example, we just received a message and have started the processing
operation on that message), then more threads are created, according to
the increment parameter. This is represented in the diagram by the first
step labeled “create thread.”

increment Indicates how many threads should be created at once if the count of
blocking operation threads ever drops under lo_water. In deciding how
to choose a value for this, you’d most likely start with 1. This means
that if the number of threads in the blocking operation drops under
lo_water, exactly one more thread would be created by the thread pool.
To fine-tune the number that you’ve selected for increment, you could
observe the behavior of the process and determine whether this number
needs to be anything other than one. If, for example, you notice that
your process gets “bursts” of requests, then you might decide that once

October 20, 2008 Chapter 1 • Processes and Threads 71

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

you’ve dropped below lo_water blocking operation threads, you’re
probably going to encounter this “burst” of requests, so you might
decide to request the creation of more than one thread at a time.

hi_water Indicates the upper limit on the number of threads that should be in the
blocking operation. As threads complete their processing operations,
they will normally return to the blocking operation. However, the
thread pool library keeps count of how many threads are currently in
the blocking operation, and if that number ever exceeds hi_water, the
thread pool library will kill the thread that caused the overflow (i.e., the
thread that had just finished and was about to go back to the blocking
operation). This is shown in the diagram as the “split” out of the
“processing operation” block, with one path going to the “blocking
operation” and the other path going to “CF” to destroy the thread. The
combination of lo_water and hi_water, therefore, allows you to
specify a range indicating how many threads should be in the blocking
operation.

maximum Indicates the absolute maximum number of threads that will ever run
concurrently as a result of the thread pool library. For example, if
threads were being created as a result of an underflow of the lo_water
mark, the maximum parameter would limit the total number of threads.

One other key parameter to controlling the threads is the flags parameter passed to the
thread_pool_create() function. It can have one of the following values:

POOL_FLAG_EXIT_SELF

The thread_pool_start() function will not return, nor will the calling thread be
incorporated into the pool of threads.

POOL_FLAG_USE_SELF

The thread_pool_start() function will not return, but the calling thread will be
incorporated into the pool of threads.

0 The thread_pool_start() function will return, with new threads being created as
required.

The above descriptions may seem a little dry. Let’s look at an example.

You can find the complete version of tp1.c in the Sample Programs appendix. Here,
we’ll just focus on the lo_water, hi_water, increment, and the maximum members of
the thread pool control structure:

/*
* part of tp1.c

*/

#include <sys/dispatch.h>

72 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

int
main ()
{

thread_pool_attr_t tp_attr;
void *tpp;

...
tp_attr.lo_water = 3;
tp_attr.increment = 2;
tp_attr.hi_water = 7;
tp_attr.maximum = 10;
...

tpp = thread_pool_create (&tp_attr, POOL_FLAG_USE_SELF);
if (tpp == NULL) {

fprintf (stderr,
"%s: can’t thread_pool_create, errno %s\n",
progname, strerror (errno));

exit (EXIT_FAILURE);
}

thread_pool_start (tpp);
...

After setting the members, we call thread_pool_create() to create a thread pool.

This returns a pointer to a thread pool control structure (tpp), which we check against
NULL (which would indicate an error). Finally we call thread_pool_start() with the
tpp thread pool control structure.

I’ve specified POOL_FLAG_USE_SELF which means that the thread that called
thread_pool_start() will be considered an available thread for the thread pool. So, at
this point, there is only that one thread in the thread pool library. Since we have a
lo_water value of 3, the library immediately creates increment number of threads (2 in
this case). At this point, 3 threads are in the library, and all 3 of them are in the
blocking operation. The lo_water condition is satisfied, because there are at least that
number of threads in the blocking operation; the hi_water condition is satisfied,
because there are less than that number of threads in the blocking operation; and
finally, the maximum condition is satisfied as well, because we don’t have more than
that number of threads in the thread pool library.

Now, one of the threads in the blocking operation unblocks (e.g., in a server
application, a message was received). This means that now one of the three threads is
no longer in the blocking operation (instead, that thread is now in the processing
operation). Since the count of blocking threads is less than the lo_water, it trips the
lo_water trigger and causes the library to create increment (2) threads. So now there
are 5 threads total (4 in the blocking operation, and 1 in the processing operation).

More threads unblock. Let’s assume that none of the threads in the processing
operation none completes any of their requests yet. Here’s a table illustrating this,
starting at the initial state (we’ve used “Proc Op” for the processing operation, and
“Blk Op” for the blocking operation, as we did in the previous diagram, “Thread flow
when using thread pools.”):

October 20, 2008 Chapter 1 • Processes and Threads 73

More on synchronization © 2008, QNX Software Systems GmbH & Co. KG.

Event Proc Op Blk Op Total

Initial 0 1 1

lo_water trip 0 3 3

Unblock 1 2 3

lo_water trip 1 4 5

Unblock 2 3 5

Unblock 3 2 5

lo_water trip 3 4 7

Unblock 4 3 7

Unblock 5 2 7

lo_water trip 5 4 9

Unblock 6 3 9

Unblock 7 2 9

lo_water trip 7 3 10

Unblock 8 2 10

Unblock 9 1 10

Unblock 10 0 10

As you can see, the library always checks the lo_water variable and creates increment
threads at a time until it hits the limit of the maximum variable (as it did when the
“Total” column reached 10 — no more threads were being created, even though the
count had underflowed the lo_water).

This means that at this point, there are no more threads waiting in the blocking
operation. Let’s assume that the threads are now finishing their requests (from the
processing operation); watch what happens with the hi_water trigger:

Event Proc Op Blk Op Total

Completion 9 1 10

Completion 8 2 10

Completion 7 3 10

Completion 6 4 10

Completion 5 5 10

continued. . .

74 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. More on synchronization

Event Proc Op Blk Op Total

Completion 4 6 10

Completion 3 7 10

Completion 2 8 10

hi_water trip 2 7 9

Completion 1 8 9

hi_water trip 1 7 8

Completion 0 8 8

hi_water trip 0 7 7

Notice how nothing really happened during the completion of processing for the
threads until we tripped over the hi_water trigger. The implementation is that as soon
as the thread finishes, it looks at the number of receive blocked threads and decides to
kill itself if there are too many (i.e., more than hi_water) waiting at that point. The
nice thing about the lo_water and hi_water limits in the structures is that you can
effectively have an “operating range” where a sufficient number of threads are
available, and you’re not unnecessarily creating and destroying threads. In our case,
after the operations performed by the above tables, we now have a system that can
handle up to 4 requests simultaneously without creating more threads (7 - 4 = 3, which
is the lo_water trip).

The thread pool functions

Now that we have a good feel for how the number of threads is controlled, let’s turn
our attention to the other members of the thread pool attribute structure (from above):

// thread pool functions and handle
THREAD_POOL_HANDLE_T *handle;

THREAD_POOL_PARAM_T
*(*block_func)(THREAD_POOL_PARAM_T *ctp);

void
(*unblock_func)(THREAD_POOL_PARAM_T *ctp);

int
(*handler_func)(THREAD_POOL_PARAM_T *ctp);

THREAD_POOL_PARAM_T
*(*context_alloc)(THREAD_POOL_HANDLE_T *handle);

void
(*context_free)(THREAD_POOL_PARAM_T *ctp);

Recall from the diagram “Thread flow when using thread pools,” that the
context_alloc() function gets called for every new thread being created. (Similarly, the
context_free() function gets called for every thread being destroyed.)

The handle member of the structure (above) is passed to the context_alloc() function
as its sole parameter. The context_alloc() function is responsible for performing any

October 20, 2008 Chapter 1 • Processes and Threads 75

Scheduling and the real world © 2008, QNX Software Systems GmbH & Co. KG.

per-thread setup required and for returning a context pointer (called ctp in the
parameter lists). Note that the contents of the context pointer are entirely up to you —
the library doesn’t care what you put into the context pointer.

Now that the context has been created by context_alloc(), the block_func() function is
called to perform the blocking operation. Note that the block_func() function gets
passed the results of the context_alloc() function. Once the block_func() function
unblocks, it returns a context pointer, which gets passed by the library to the
handler_func(). The handler_func() is responsible for performing the “work” — for
example, in a typical server, this is where the message from the client is processed.
The handler_func() must return a zero for now — non-zero values are reserved for
future expansion by QSS. The unblock_func() is also reserved at this time; just leave it
as NULL. Perhaps this pseudo code sample will clear things up (it’s based on the same
flow as shown in “Thread flow when using thread pools,” above):

FOREVER DO
IF (#threads < lo_water) THEN

IF (#threads_total < maximum) THEN
create new thread
context = (*context_alloc) (handle);

ENDIF
ENDIF
retval = (*block_func) (context);
(*handler_func) (retval);
IF (#threads > hi_water) THEN

(*context_free) (context)
kill thread

ENDIF
DONE

Note that the above is greatly simplified; its only purpose is to show you the data flow
of the ctp and handle parameters and to give some sense of the algorithms used to
control the number of threads.

Scheduling and the real world
So far we’ve talked about scheduling algorithms and thread states, but we haven’t said
much yet about why and when things are rescheduled. There’s a common
misconception that rescheduling just “occurs,” without any real causes. Actually, this
is a useful abstraction during design! But it’s important to understand the conditions
that cause rescheduling. Recall the diagram “Scheduling roadmap” (in the “The
kernel’s role” section).

Rescheduling occurs only because of:

• a hardware interrupt

• a kernel call

• a fault

76 Chapter 1 • Processes and Threads October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Scheduling and the real world

Rescheduling — hardware interrupts
Rescheduling due to a hardware interrupt occurs in two cases:

• timers

• other hardware

The realtime clock generates periodic interrupts for the kernel, causing time-based
rescheduling.

For example, if you issue a sleep (10); call, a number of realtime clock interrupts
will occur; the kernel increments the time-of-day clock at each interrupt. When the
time-of-day clock indicates that 10 seconds have elapsed, the kernel reschedules your
thread as READY.

(This is discussed in more detail in the Clocks, Timers, and Getting a Kick Every So
Often chapter.)

Other threads might wait for hardware interrupts from peripherals, such as the serial
port, a hard disk, or an audio card. In this case, they are blocked in the kernel waiting
for a hardware interrupt; the thread will be rescheduled by the kernel only after that
“event” is generated.

Rescheduling — kernel calls
If the rescheduling is caused by a thread issuing a kernel call, the rescheduling is done
immediately and can be considered asynchronous to the timer and other interrupts.

For example, above we called sleep(10);. This C library function is eventually
translated into a kernel call. At that point, the kernel made a rescheduling decision to
take your thread off of the READY queue for that priority, and then schedule another
thread that was READY.

There are many kernel calls that cause a process to be rescheduled. Most of them are
fairly obvious. Here are a few:

• timer functions (e.g., sleep())

• messaging functions (e.g., MsgSendv())

• thread primitives, (e.g., pthread_cancel(), pthread_join())

Rescheduling — exceptions
The final cause of rescheduling, a CPU fault, is an exception, somewhere between a
hardware interrupt and a kernel call. It operates asynchronously to the kernel (like an
interrupt) but operates synchronously with the user code that caused it (like a kernel
call — for example, a divide-by-zero exception). The same discussion as above (for
hardware interrupts and kernel calls) applies to faults.

October 20, 2008 Chapter 1 • Processes and Threads 77

Scheduling and the real world © 2008, QNX Software Systems GmbH & Co. KG.

Summary
Neutrino offers a rich set of scheduling options with threads, the primary scheduling
elements. Processes are defined as a unit of resource ownership (e.g., a memory area)
and contain one or more threads.

Threads can use any of the following synchronization methods:

• mutexes — allow only one thread to own the mutex at a given point in time.

• semaphores — allow a fixed number of threads to “own” the semaphore.

• sleepons — allow a number of threads to block on a number of objects, while
allocating the underlying condvars dynamically to the blocked threads.

• condvars — similar to sleepons except that the allocation of the condvars is
controlled by the programmer.

• joining — allows a thread to synchronize to the termination of another thread.

• barriers — allows threads to wait until a number of threads have reached the
synchronization point.

Note that mutexes, semaphores, and condition variables can be used between threads
in the same or different processes, but that sleepons can be used only between threads
in the same process (because the library has a mutex “hidden” in the process’s address
space).

As well as synchronization, threads can be scheduled (using a priority and a
scheduling algorithm), and they’ll automatically run on a single-processor box or an
SMP box.

Whenever we talk about creating a “process” (mainly as a means of porting code from
single-threaded implementations), we’re really creating an address space with one
thread running in it — that thread starts at main() or at fork() or vfork() depending on
the function called.

78 Chapter 1 • Processes and Threads October 20, 2008

Chapter 2

Message Passing

In this chapter. . .
Messaging fundamentals 81
Message passing and client/server 82
Network-distributed message passing 85
What it means for you 85
Multiple threads 86
Using message passing 90
Pulses 113
Message passing over a network 124
Priority inheritance 130

October 20, 2008 Chapter 2 • Message Passing 79

© 2008, QNX Software Systems GmbH & Co. KG. Messaging fundamentals

Messaging fundamentals
In this chapter, we’ll look at the most distinctive feature of Neutrino, message passing.
Message passing lies at the heart of the operating system’s microkernel architecture,
giving the OS its modularity.

A small microkernel and message passing
One of the principal advantages of Neutrino is that it’s scalable. By “scalable” I mean
that it can be tailored to work on tiny embedded boxes with tight memory constraints,
right up to large networks of multiprocessor SMP boxes with almost unlimited
memory.

Neutrino achieves its scalability by making each service-providing component
modular. This way, you can include only the components you need in the final system.
By using threads in the design, you’ll also help to make it scalable to SMP systems
(we’ll see some more uses for threads in this chapter).

This is the philosophy that was used during the initial design of the QNX family of
operating systems and has been carried through to this day. The key is a small
microkernel architecture, with modules that would traditionally be incorporated into a
monolithic kernel as optional components.

Microkernel

Process
manager

Serial
driver

SCSI
driver

Application

ApplicationFilesystemPOSIX
Mqueue

Neutrino’s modular architecture.

You, the system architect, decide which modules you want. Do you need a filesystem
in your project? If so, then add one. If you don’t need one, then don’t bother including
one. Do you need a serial port driver? Whether the answer is yes or no, this doesn’t
affect (nor is it affected by) your previous decision about the filesystem.

At run time, you can decide which system components are included in the running
system. You can dynamically remove components from a live system and reinstall
them, or others, at some other time. Is there anything special about these “drivers”?
Nope, they’re just regular, user-level programs that happen to perform a specific job
with the hardware. In fact, we’ll see how to write them in the Resource Managers
chapter.

October 20, 2008 Chapter 2 • Message Passing 81

Message passing and client/server © 2008, QNX Software Systems GmbH & Co. KG.

The key to accomplishing this is message passing. Instead of having the OS modules
bound directly into the kernel, and having some kind of “special” arrangement with
the kernel, under Neutrino the modules communicate via message passing among
themselves. The kernel is basically responsible only for thread-level services (e.g.,
scheduling). In fact, message passing isn’t used just for this installation and
deinstallation trick — it’s the fundamental building block for almost all other services
(for example, memory allocation is performed by a message to the process manager).
Of course, some services are provided by direct kernel calls.

Consider opening a file and writing a block of data to it. This is accomplished by a
number of messages sent from the application to an installable component of Neutrino
called the filesystem. The message tells the filesystem to open a file, and then another
message tells it to write some data (and contains that data). Don’t worry though — the
Neutrino operating system performs message passing very quickly.

Message passing and client/server
Imagine an application reading data from the filesystem. In QNX lingo, the
application is a client requesting the data from a server.

This client/server model introduces several process states associated with message
passing (we talked about these in the Processes and Threads chapter). Initially, the
server is waiting for a message to arrive from somewhere. At this point, the server is
said to be receive-blocked (also known as the RECV state). Here’s some sample pidin
output:

pid tid name prio STATE Blocked
4 1 devc-pty 10r RECEIVE 1

In the above sample, the pseudo-tty server (called devc-pty) is process ID 4, has one
thread (thread ID 1), is running at priority 10 Round-Robin, and is receive-blocked,
waiting for a message from channel ID 1 (we’ll see all about “channels” shortly).

READY RECEIVE

State transitions of server.

When a message is received, the server goes into the READY state, and is capable of
running. If it happens to be the highest-priority READY process, it gets the CPU and
can perform some processing. Since it’s a server, it looks at the message it just got and
decides what to do about it. At some point, the server will complete whatever job the
message told it to do, and then will “reply” to the client.

Let’s switch over to the client. Initially the client was running along, consuming CPU,
until it decided to send a message. The client changed from READY to either
send-blocked or reply-blocked, depending on the state of the server that it sent a
message to.

82 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Message passing and client/server

REPLY

SENDREADY

State transitions of clients.

Generally, you’ll see the reply-blocked state much more often than the send-blocked
state. That’s because the reply-blocked state means:

The server has received the message and is now processing it. At some
point, the server will complete processing and will reply to the client. The
client is blocked waiting for this reply.

Contrast that with the send-blocked state:

The server hasn’t yet received the message, most likely because it was
busy handling another message first. When the server gets around to
“receiving” your (client) message, then you’ll go from the send-blocked
state to the reply-blocked state.

In practice, if you see a process that is send-blocked it means one of two things:

1 You happened to take a snapshot of the system in a situation where the server
was busy servicing a client, and a new request arrived for that server.

This is a normal situation — you can verify it by running pidin again to get a
new snapshot. This time you’ll probably see that the process is no longer
send-blocked.

2 The server has encountered a bug and for whatever reason isn’t listening to
requests anymore.

When this happens, you’ll see many processes that are send-blocked on one
server. To verify this, run pidin again, observing that there’s no change in the
blocked state of the client processes.

Here’s a sample showing a reply-blocked client and the server it’s blocked on:

pid tid name prio STATE Blocked
1 1 to/x86/sys/procnto 0f READY
1 2 to/x86/sys/procnto 10r RECEIVE 1
1 3 to/x86/sys/procnto 10r NANOSLEEP
1 4 to/x86/sys/procnto 10r RUNNING
1 5 to/x86/sys/procnto 15r RECEIVE 1

16426 1 esh 10r REPLY 1

October 20, 2008 Chapter 2 • Message Passing 83

Message passing and client/server © 2008, QNX Software Systems GmbH & Co. KG.

This shows that the program esh (the embedded shell) has sent a message to process
number 1 (the kernel and process manager, procnto) and is now waiting for a reply.

Now you know the basics of message passing in a client/server architecture.

So now you might be thinking, “Do I have to write special Neutrino message-passing
calls just to open a file or write some data?!?”

You don’t have to write any message-passing functions, unless you want to get “under
the hood” (which I’ll talk about a little later). In fact, let me show you some client
code that does message passing:

#include <fcntl.h>
#include <unistd.h>

int
main (void)
{

int fd;

fd = open ("filename", O_WRONLY);
write (fd, "This is message passing\n", 24);
close (fd);

return (EXIT_SUCCESS);
}

See? Standard C code, nothing tricky.

The message passing is done by the Neutrino C library. You simply issue standard
POSIX 1003.1 or ANSI C function calls, and the C library does the message-passing
work for you.

In the above example, we saw three functions being called and three distinct messages
being sent:

• open() sent an “open” message

• write() sent a “write” message

• close() sent a “close” message

We’ll be discussing the messages themselves in a lot more detail when we look at
resource managers (in the Resource Managers chapter), but for now all you need to
know is the fact that different types of messages were sent.

Let’s step back for a moment and contrast this to the way the example would have
worked in a traditional operating system.

The client code would remain the same and the differences would be hidden by the C
library provided by the vendor. On such a system, the open() function call would
invoke a kernel function, which would then call directly into the filesystem, which
would execute some code, and return a file descriptor. The write() and close() calls
would do the same thing.

So? Is there an advantage to doing things this way? Keep reading!

84 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Network-distributed message passing

Network-distributed message passing
Suppose we want to change our example above to talk to a different node on the
network. You might think that we’ll have to invoke special function calls to “get
networked.” Here’s the network version’s code:

#include <fcntl.h>
#include <unistd.h>

int
main (void)
{

int fd;

fd = open ("/net/wintermute/home/rk/filename", O_WRONLY);
write (fd, "This is message passing\n", 24);
close (fd);

return (EXIT_SUCCESS);
}

You’re right if you think the code is almost the same in both versions. It is.

In a traditional OS, the C library open() calls into the kernel, which looks at the
filename and says “oops, this is on a different node.” The kernel then calls into the
network filesystem (NFS) code, which figures out where
/net/wintermute/home/rk/filename actually is. Then, NFS calls into the
network driver and sends a message to the kernel on node wintermute, which then
repeats the process that we described in our original example. Note that in this case,
there are really two filesystems involved; one is the NFS client filesystem, and one is
the remote filesystem. Unfortunately, depending on the implementation of the remote
filesystem and NFS, certain operations may not work as expected (e.g., file locking)
due to incompatibilities.

Under Neutrino, the C library open() creates the same message that it would have sent
to the local filesystem and sends it to the filesystem on node wintermute. In the local
and remote cases, the exact same filesystem is used.

This is another fundamental characteristic of Neutrino: network-distributed operations
are essentially “free,” as the work to decouple the functionality requirements of the
clients from the services provided by the servers is already done, by virtue of message
passing.

On a traditional kernel there’s a “double standard” where local services are
implemented one way, and remote (network) services are implemented in a totally
different way.

What it means for you
Message passing is elegant and network-distributed. So what? What does it buy you,
the programmer?

Well, it means that your programs inherit those characteristics — they too can become
network-distributed with far less work than on other systems. But the benefit that I
find most useful is that they let you test software in a nice, modular manner.

October 20, 2008 Chapter 2 • Message Passing 85

Multiple threads © 2008, QNX Software Systems GmbH & Co. KG.

You’ve probably worked on large projects where many people have to provide
different pieces of the software. Of course, some of these people are done sooner or
later than others.

These projects often have problems at two stages: initially at project definition time,
when it’s hard to decide where one person’s development effort ends and another’s
begins, and then at testing/integration time, when it isn’t possible to do full systems
integration testing because all the pieces aren’t available.

With message passing, the individual components of a project can be decoupled very
easily, leading to a very simple design and reasonably simple testing. If you want to
think about this in terms of existing paradigms, it’s very similar to the concepts used in
Object Oriented Programming (OOP).

What this boils down to is that testing can be performed on a piece-by-piece basis.
You can set up a simple program that sends messages to your server process, and since
the inputs and outputs of that server process are (or should be!) well documented, you
can determine if that process is functioning. Heck, these test cases can even be
automated and placed in a regression suite that runs periodically!

The philosophy of Neutrino
Message passing is at the heart of the philosophy of Neutrino. Understanding the uses
and implications of message passing will be the key to making effective use of the OS.
Before we go into the details, let’s look at a little bit of theory first.

Multiple threads
Although the client/server model is easy to understand, and the most commonly used,
there are two other variations on the theme. The first is the use of multiple threads (the
topic of this section), and the second is a model called server/subserver that’s
sometimes useful for general design, but really shines in network-distributed designs.
The combination of the two can be extremely powerful, especially on a network of
SMP boxes!

As we discussed in the Processes and Threads chapter, Neutrino has the ability to run
multiple threads of execution in the same process. How can we use this to our
advantage when we combine this with message passing?

The answer is fairly simple. We can start a pool of threads (using the thread_pool_*()
functions that we talked about in the Processes and Threads chapter), each of which
can handle a message from a client:

86 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Multiple threads

Client 1

Client 2

Server

Clients accessing threads in a server.

This way, when a client sends us a message, we really don’t care which thread gets it,
as long as the work gets done. This has a number of advantages. The ability to service
multiple clients with multiple threads, versus servicing multiple clients with just one
thread, is a powerful concept. The main advantage is that the kernel can multitask the
server among the various clients, without the server itself having to perform the
multitasking.

On a single-processor machine, having a bunch of threads running means that they’re
all competing with each other for CPU time.

But, on an SMP box, we can have multiple threads competing for multiple CPUs,
while sharing the same data area across those multiple CPUs. This means that we’re
limited only by the number of available CPUs on that particular machine.

Server/subserver
Let’s now look at the server/subserver model, and then we’ll combine it with the
multiple threads model.

In this model, a server still provides a service to clients, but because these requests
may take a long time to complete, we need to be able to start a request and still be able
to handle new requests as they arrive from other clients.

If we tried to do this with the traditional single-threaded client/server model, once one
request was received and started, we wouldn’t be able to receive any more requests
unless we periodically stopped what we were doing, took a quick peek to see if there
were any other requests pending, put those on a work queue, and then continued on,
distributing our attention over the various jobs in the work queue. Not very efficient.
You’re practically duplicating the work of the kernel by “time slicing” between
multiple jobs!

Imagine what this would look like if you were doing it. You’re at your desk, and
someone walks up to you with a folder full of work. You start working on it. As you’re
busy working, you notice that someone else is standing in the doorway of your cubicle
with more work of equally high priority (of course)! Now you’ve got two piles of
work on your desk. You’re spending a few minutes on one pile, switching over to the

October 20, 2008 Chapter 2 • Message Passing 87

Multiple threads © 2008, QNX Software Systems GmbH & Co. KG.

other pile, and so on, all the while looking at your doorway to see if someone else is
coming around with even more work.

The server/subserver model would make a lot more sense here. In this model, we have
a server that creates several other processes (the subservers). These subservers each
send a message to the server, but the server doesn’t reply to them until it gets a request
from a client. Then it passes the client’s request to one of the subservers by replying to
it with the job that it should perform. The following diagram illustrates this. Note the
direction of the arrows — they indicate the direction of the sends!

Client 1

Client 2

Server

Subserver 1

Subserver2

Server/subserver model.

If you were doing a job like this, you’d start by hiring some extra employees. These
employees would all come to you (just as the subservers send a message to the server
— hence the note about the arrows in the diagram above), looking for work to do.
Initially, you might not have any, so you wouldn’t reply to their query. When someone
comes into your office with a folder full of work, you say to one of your employees,
“Here’s some work for you to do.” That employee then goes off and does the work. As
other jobs come in, you’d delegate them to the other employees.

The trick to this model is that it’s reply-driven — the work starts when you reply to
your subservers. The standard client/server model is send-driven because the work
starts when you send the server a message.

So why would the clients march into your office, and not the offices of the employees
that you hired? Why are you “arbitrating” the work? The answer is fairly simple:
you’re the coordinator responsible for performing a particular task. It’s up to you to
ensure that the work is done. The clients that come to you with their work know you,
but they don’t know the names or locations of your (perhaps temporary) employees.

As you probably suspected, you can certainly mix multithreaded servers with the
server/subserver model. The main trick is going to be determining which parts of the
“problem” are best suited to being distributed over a network (generally those parts
that won’t use up the network bandwidth too much) and which parts are best suited to
being distributed over the SMP architecture (generally those parts that want to use
common data areas).

So why would we use one over the other? Using the server/subserver approach, we
can distribute the work over multiple machines on a network. This effectively means

88 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Multiple threads

that we’re limited only by the number of available machines on the network (and
network bandwidth, of course). Combining this with multiple threads on a bunch of
SMP boxes distributed over a network yields “clusters of computing,” where the
central “arbitrator” delegates work (via the server/subserver model) to the SMP boxes
on the network.

Some examples
Now we’ll consider a few examples of each method.

Send-driven (client/server)

Filesystems, serial ports, consoles, and sound cards all use the client/server model. A
C language application program takes on the role of the client and sends requests to
these servers. The servers perform whatever work was specified, and reply with the
answer.

Some of these traditional “client/server” servers may in fact actually be reply-driven
(server/subserver) servers! This is because, to the ultimate client, they appear as a
standard server, even though the server itself uses server/subserver methods to get the
work done. What I mean by that is, the client still sends a message to what it thinks is
the “service providing process.” What actually happens is that the “service providing
process” simply delegates the client’s work to a different process (the subserver).

Reply-driven (server/subserver)

One of the more popular reply-driven programs is a fractal graphics program
distributed over the network. The master program divides the screen into several areas,
for example, 64 regions. At startup, the master program is given a list of nodes that
can participate in this activity. The master program starts up worker (subserver)
programs, one on each of the nodes, and then waits for the worker programs to send to
the master.

The master then repeatedly picks “unfilled” regions (of the 64 on screen) and delegates
the fractal computation work to the worker program on another node by replying to it.
When the worker program has completed the calculations, it sends the results back to
the master, which displays the result on the screen.

Because the worker program sent to the master, it’s now up to the master to again
reply with more work. The master continues doing this until all 64 areas on the screen
have been filled.

An important subtlety

Because the master program is delegating work to worker programs, the master
program can’t afford to become blocked on any one program! In a traditional
send-driven approach, you’d expect the master to create a program and then send to it.
Unfortunately, the master program wouldn’t be replied to until the worker program
was done, meaning that the master program couldn’t send simultaneously to another
worker program, effectively negating the advantages of having multiple worker nodes.

October 20, 2008 Chapter 2 • Message Passing 89

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Worker 1

Master

Worker 2 Worker 3 Worker 5Worker 4

One master, multiple workers.

The solution to this problem is to have the worker programs start up, and ask the
master program if there’s any work to do by sending it a message. Once again, we’ve
used the direction of the arrows in the diagram to indicate the direction of the send.
Now the worker programs are waiting for the master to reply. When something tells
the master program to do some work, it replies to one or more of the workers, which
causes them to go off and do the work. This lets the workers go about their business;
the master program can still respond to new requests (it’s not blocked waiting for a
reply from one of the workers).

Multi-threaded server

Multi-threaded servers are indistinguishable from single-threaded servers from the
client’s point of view. In fact, the designer of a server can just “turn on”
multi-threading by starting another thread.

In any event, the server can still make use of multiple CPUs in an SMP configuration,
even if it is servicing only one “client.” What does that mean? Let’s revisit the fractal
graphics example. When a subserver gets a request from the server to “compute,”
there’s absolutely nothing stopping the subserver from starting up multiple threads on
multiple CPUs to service the one request. In fact, to make the application scale better
across networks that have some SMP boxes and some single-CPU boxes, the server
and subserver can initially exchange a message whereby the subserver tells the server
how many CPUs it has — this lets it know how many requests it can service
simultaneously. The server would then queue up more requests for SMP boxes,
allowing the SMP boxes to do more work than single-CPU boxes.

Using message passing
Now that we’ve seen the basic concepts involved in message passing, and learned that
even common everyday things like the C library use it, let’s take a look at some of the
details.

90 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

Architecture & structure
We’ve been talking about “clients” and “servers.” I’ve also used three key phrases:

• “The client sends to the server.”

• “The server receives from the client.”

• “The server replies to the client.”

I specifically used those phrases because they closely reflect the actual function names
used in Neutrino message-passing operations.

Here’s the complete list of functions dealing with message passing available under
Neutrino (in alphabetical order):

• ChannelCreate(), ChannelDestroy()

• ConnectAttach(), ConnectDetach()

• MsgDeliverEvent()

• MsgError()

• MsgRead(), MsgReadv()

• MsgReceive(), MsgReceivePulse(), MsgReceivev()

• MsgReply(), MsgReplyv()

• MsgSend(), MsgSendnc(), MsgSendsv(), MsgSendsvnc(), MsgSendv(),
MsgSendvnc(), MsgSendvs(), MsgSendvsnc()

• MsgWrite(), MsgWritev()

Don’t let this list overwhelm you! You can write perfectly useful client/server
applications using just a small subset of the calls from the list — as you get used to the
ideas, you’ll see that some of the other functions can be very useful in certain cases.

A useful minimal set of functions is ChannelCreate(), ConnectAttach(), MsgReply(),
MsgSend(), and MsgReceive().

We’ll break our discussion up into the functions that apply on the client side, and those
that apply on the server side.

The client
The client wants to send a request to a server, block until the server has completed the
request, and then when the request is completed and the client is unblocked, to get at
the “answer.”

This implies two things: the client needs to be able to establish a connection to the
server and then to transfer data via messages — a message from the client to the server
(the “send” message) and a message back from the server to the client (the “reply”
message, the server’s reply).

October 20, 2008 Chapter 2 • Message Passing 91

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Establishing a connection

So, let’s look at these functions in turn. The first thing we need to do is to establish a
connection. We do this with the function ConnectAttach(), which looks like this:

#include <sys/neutrino.h>

int ConnectAttach (int nd,
pid_t pid,
int chid,
unsigned index,
int flags);

ConnectAttach() is given three identifiers: the nd, which is the Node Descriptor, the
pid, which is the process ID, and the chid, which is the channel ID. These three IDs,
commonly referred to as “ND/PID/CHID,” uniquely identify the server that the client
wants to connect to. We’ll ignore the index and flags (just set them to 0).

So, let’s assume that we want to connect to process ID 77, channel ID 1 on our node.
Here’s the code sample to do that:

int coid;

coid = ConnectAttach (0, 77, 1, 0, 0);

As you can see, by specifying a nd of zero, we’re telling the kernel that we wish to
make a connection on our node.

How did I figure out I wanted to talk to process ID 77 and channel ID 1? We’ll see that
shortly (see “Finding the server’s ND/PID/CHID,” below).

At this point, I have a connection ID — a small integer that uniquely identifies a
connection from my client to a specific channel on a particular server.

I can use this connection ID when sending to the server as many times as I like. When
I’m done with it, I can destroy it via:

ConnectDetach (coid);

So let’s see how I actually use it.

Sending messages

Message passing on the client is achieved using some variant of the MsgSend*()
function family. We’ll look at the simplest member, MsgSend():

#include <sys/neutrino.h>

int MsgSend (int coid,
const void *smsg,
int sbytes,
void *rmsg,
int rbytes);

MsgSend()’s arguments are:

• the connection ID of the target server (coid),

92 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

• a pointer to the send message (smsg),

• the size of the send message (sbytes),

• a pointer to the reply message (rmsg), and

• the size of the reply message (rbytes).

It couldn’t get any simpler than that!

Let’s send a simple message to process ID 77, channel ID 1:

#include <sys/neutrino.h>

char *smsg = "This is the outgoing buffer";
char rmsg [200];
int coid;

// establish a connection
coid = ConnectAttach (0, 77, 1, 0, 0);
if (coid == -1) {

fprintf (stderr, "Couldn’t ConnectAttach to 0/77/1!\n");
perror (NULL);
exit (EXIT_FAILURE);

}

// send the message
if (MsgSend (coid,

smsg,
strlen (smsg) + 1,
rmsg,
sizeof (rmsg)) == -1) {

fprintf (stderr, "Error during MsgSend\n");
perror (NULL);
exit (EXIT_FAILURE);

}

if (strlen (rmsg) > 0) {
printf ("Process ID 77 returns \"%s\"\n", rmsg);

}

Let’s assume that process ID 77 was an active server expecting that particular format
of message on its channel ID 1. After the server received the message, it would
process it and at some point reply with a result. At that point, the MsgSend() would
return a 0 indicating that everything went well. If the server sends us any data in the
reply, we’d print it with the last line of code (we’re assuming we’re getting
NUL-terminated ASCII data back).

The server
Now that we’ve seen the client, let’s look at the server. The client used
ConnectAttach() to create a connection to a server, and then used MsgSend() for all its
message passing.

October 20, 2008 Chapter 2 • Message Passing 93

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Creating the channel

This implies that the server has to create a channel — this is the thing that the client
connected to when it issued the ConnectAttach() function call. Once the channel has
been created, the server usually leaves it up forever.

The channel gets created via the ChannelCreate() function, and destroyed via the
ChannelDestroy() function:

#include <sys/neutrino.h>

int ChannelCreate (unsigned flags);

int ChannelDestroy (int chid);

We’ll come back to the flags argument later (in the “Channel flags” section, below).
For now, let’s just use a 0. Therefore, to create a channel, the server issues:

int chid;

chid = ChannelCreate (0);

So we have a channel. At this point, clients could connect (via ConnectAttach()) to
this channel and start sending messages:

Client

Server

coid = ConnectAttach();

chid = ChannelCreate();

Relationship between a server channel and a client connection.

Message handling

As far as the message-passing aspects are concerned, the server handles message
passing in two stages; a “receive” stage and a “reply” stage:

Client

Server

sts = MsgSend (coid,...)

rcvid = MsgReceive (chid, ...)
// Processing happens
MsgReply (rcvid,...)

Relationship of client and server message-passing functions.

94 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

We’ll look initially at two simple versions of these functions, MsgReceive() and
MsgReply(), and then later see some of the variants.

#include <sys/neutrino.h>

int MsgReceive (int chid,
void *rmsg,
int rbytes,
struct _msg_info *info);

int MsgReply (int rcvid,
int status,
const void *msg,
int nbytes);

Let’s look at how the parameters relate:

sts = MsgSend(coid, smsg, sbytes, rmsg, rbytes)

rcvid = MsgReceive(chid, rmsg, rbytes, NULL)

MsgReply(rcvid, sts, smsg, sbytes)

Client:

Server:

4

3

2

1

Message data flow.

As you can see from the diagram, there are four things we need to talk about:

1 The client issues a MsgSend() and specifies its transmit buffer (the smsg pointer
and the sbytes length). This gets transferred into the buffer provided by the
server’s MsgReceive() function, at rmsg for rbytes in length. The client is now
blocked.

2 The server’s MsgReceive() function unblocks, and returns with a rcvid, which
the server will use later for the reply. At this point, the data is available for the
server to use.

3 The server has completed the processing of the message, and now uses the rcvid
it got from the MsgReceive() by passing it to the MsgReply(). Note that the
MsgReply() function takes a buffer (smsg) with a defined size (sbytes) as the
location of the data to transmit to the client. The data is now transferred by the
kernel.

4 Finally, the sts parameter is transferred by the kernel, and shows up as the return
value from the client’s MsgSend(). The client now unblocks.

October 20, 2008 Chapter 2 • Message Passing 95

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

You may have noticed that there are two sizes for every buffer transfer (in the client
send case, there’s sbytes on the client side and rbytes on the server side; in the server
reply case, there’s sbytes on the server side and rbytes on the client side.) The two sets
of sizes are present so that the programmers of each component can specify the sizes
of their buffers. This is done for added safety.

In our example, the MsgSend() buffer’s size was the same as the message string’s
length. Let’s look at the server and see how the size is used there.

Server framework

Here’s the overall structure of a server:

#include <sys/neutrino.h>

...

void
server (void)
{

int rcvid; // indicates who we should reply to
int chid; // the channel ID
char message [512]; // big enough for our purposes

// create a channel
chid = ChannelCreate (0);

// this is typical of a server: it runs forever
while (1) {

// get the message, and print it
rcvid = MsgReceive (chid, message, sizeof (message),

NULL);
printf ("Got a message, rcvid is %X\n", rcvid);
printf ("Message was \"%s\".\n", message);

// now, prepare the reply. We reuse "message"
strcpy (message, "This is the reply");
MsgReply (rcvid, EOK, message, sizeof (message));

}
}

As you can see, MsgReceive() tells the kernel that it can handle messages up to
sizeof (message) (or 512 bytes). Our sample client (above) sent only 28 bytes
(the length of the string). The following diagram illustrates:

ServerClient

28
bytes

484
bytes
not

written

28
bytes

Transferring less data than expected.

96 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

The kernel transfers the minimum specified by both sizes. In our case, the kernel
would transfer 28 bytes. The server would be unblocked and print out the client’s
message. The remaining 484 bytes (of the 512 byte buffer) will remain unaffected.

We run into the same situation again with MsgReply(). The MsgReply() function says
that it wants to transfer 512 bytes, but our client’s MsgSend() function has specified
that a maximum of 200 bytes can be transferred. So the kernel once again transfers the
minimum. In this case, the 200 bytes that the client can accept limits the transfer size.
(One interesting aspect here is that once the server transfers the data, if the client
doesn’t receive all of it, as in our example, there’s no way to get the data back — it’s
gone forever.)

Keep in mind that this “trimming” operation is normal and expected behavior.

When we discuss message passing over a network, you’ll see that there’s a tiny
“gotcha” with the amount of data transferred. We’ll see this in “Networked
message-passing differences,” below.

The send-hierarchy
One thing that’s perhaps not obvious in a message-passing environment is the need to
follow a strict send-hierarchy. What this means is that two threads should never send
messages to each other; rather, they should be organized such that each thread
occupies a “level”; all sends go from one level to a higher level, never to the same or
lower level. The problem with having two threads send messages to each other is that
eventually you’ll run into the problem of deadlock — both threads are waiting for each
other to reply to their respective messages. Since the threads are blocked, they’ll never
get a chance to run and perform the reply, so you end up with two (or more!) hung
threads.

The way to assign the levels to the threads is to put the outermost clients at the highest
level, and work down from there. For example, if you have a graphical user interface
that relies on some database server, and the database server in turn relies on the
filesystem, and the filesystem in turn relies on a block filesystem driver, then you’ve
got a natural hierarchy of different processes. The sends will flow from the outermost
client (the graphical user interface) down to the lower servers; the replies will flow in
the opposite direction.

While this certainly works in the majority of cases, you will encounter situations
where you need to “break” the send hierarchy. This is never done by simply violating
the send hierarchy and sending a message “against the flow,” but rather by using the
MsgDeliverEvent() function, which we’ll take a look at later.

Receive IDs, channels, and other parameters
We haven’t talked about the various parameters in the examples above so that we
could focus just on the message passing. Now let’s take a look.

October 20, 2008 Chapter 2 • Message Passing 97

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

More about channels

In the server example above, we saw that the server created just one channel. It could
certainly have created more, but generally, servers don’t do that. (The most obvious
example of a server with two channels is the Transparent Distributed Processing (TDP,
also known as Qnet) native network manager — definitely an “odd” piece of
software!)

As it turns out, there really isn’t much need to create multiple channels in the real
world. The main purpose of a channel is to give the server a well-defined place to
“listen” for messages, and to give the clients a well-defined place to send their
messages (via a connection). About the only time that you’d have multiple channels in
a server is if the server wanted to provide either different services, or different classes
of services, depending on which channel the message arrived on. The second channel
could be used, for example, as a place to drop wake up pulses — this ensures that
they’re treated as a different “class” of service than messages arriving on the first
channel.

In a previous paragraph I had said that you could have a pool of threads running in a
server, ready to accept messages from clients, and that it didn’t really matter which
thread got the request. This is another aspect of the channel abstraction. Under
previous versions of the QNX family of operating systems (notably QNX 4), a client
would target messages at a server identified by a node ID and process ID. Since QNX
4 is single-threaded, this means that there cannot be confusion about “to whom” the
message is being sent. However, once you introduce threads into the picture, the
design decision had to be made as to how you would address the threads (really, the
“service providers”). Since threads are ephemeral, it really didn’t make sense to have
the client connect to a particular node ID, process ID, and thread ID. Also, what if that
particular thread was busy? We’d have to provide some method to allow a client to
select a “non-busy thread within a defined pool of service-providing threads.”

Well, that’s exactly what a channel is. It’s the “address” of a “pool of
service-providing threads.” The implication here is that a bunch of threads can issue a
MsgReceive() function call on a particular channel, and block, with only one thread
getting a message at a time.

Who sent the message?

Often a server will need to know who sent it a message. There are a number of reasons
for this:

• accounting

• access control

• context association

• class of service

• etc.

98 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

It would be cumbersome (and a security hole) to have the client provide this
information with each and every message sent. Therefore, there’s a structure filled in
by the kernel whenever the MsgReceive() function unblocks because it got a message.
This structure is of type struct _msg_info, and contains the following:

struct _msg_info
{

int nd;
int srcnd;
pid_t pid;
int32_t chid;
int32_t scoid;
int32_t coid;
int32_t msglen;
int32_t tid;
int16_t priority;
int16_t flags;
int32_t srcmsglen;
int32_t dstmsglen;

};

You pass it to the MsgReceive() function as the last argument. If you pass a NULL,
then nothing happens. (The information can be retrieved later via the MsgInfo() call,
so it’s not gone forever!)

Let’s look at the fields:

nd, srcnd, pid, and tid

Node Descriptors, process ID, and thread ID of the client. (Note that
nd is the receiving node’s node descriptor for the transmitting node;
srcnd is the transmitting node’s node descriptor for the receiving node.
There’s a very good reason for this :-), which we’ll see below in
“Some notes on NDs”).

priority The priority of the sending thread.

chid, coid Channel ID that the message was sent to, and the connection ID used.

scoid Server Connection ID. This is an internal identifier used by the kernel
to route the message from the server back to the client. You don’t need
to know about it, except for the interesting fact that it will be a small
integer that uniquely represents the client.

flags Contains a variety of flag bits, _NTO_MI_ENDIAN_BIG,
_NTO_MI_ENDIAN_DIFF, _NTO_MI_NET_CRED_DIRTY, and
_NTO_MI_UNBLOCK_REQ. The _NTO_MI_ENDIAN_BIG and
_NTO_MI_ENDIAN_DIFF tell you about the endian-ness of the
sending machine (in case the message came over the network from a
machine with a different endian-ness), _NTO_MI_NET_CRED_DIRTY
is used internally; we’ll look at _NTO_MI_UNBLOCK_REQ in the
section “Using the _NTO_MI_UNBLOCK_REQ”, below.

msglen Number of bytes received.

October 20, 2008 Chapter 2 • Message Passing 99

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

srcmsglen The length of the source message, in bytes, as sent by the client. This
may be greater than the value in msglen, as would be the case when
receiving less data than what was sent. Note that this member is valid
only if _NTO_CHF_SENDER_LEN was set in the flags argument to
ChannelCreate() for the channel that the message was received on.

dstmsglen The length of the client’s reply buffer, in bytes. This field is only valid
if the _NTO_CHF_REPLY_LEN flag is set in the argument to
ChannelCreate() for the channel that the message was received on.

The receive ID (a.k.a. the client cookie)

In the code sample above, notice how we:

rcvid = MsgReceive (...);
...
MsgReply (rcvid, ...);

This is a key snippet of code, because it illustrates the binding between receiving a
message from a client, and then being able to (sometime later) reply to that particular
client. The receive ID is an integer that acts as a “magic cookie” that you’ll need to
hold onto if you want to interact with the client later. What if you lose it? It’s gone.
The client will not unblock from the MsgSend() until you (the server) die, or if the
client has a timeout on the message-passing call (and even then it’s tricky; see the
TimerTimeout() function in the Neutrino Library Reference, and the discussion about
its use in the Clocks, Timers, and Getting A Kick Every So Often chapter, under
“Kernel timeouts”).

Don’t depend on the value of the receive ID to have any particular meaning — it may
change in future versions of the operating system. You can assume that it will be
unique, in that you’ll never have two outstanding clients identified by the same receive
IDs (in that case, the kernel couldn’t tell them apart either when you do the
MsgReply()).

Also, note that except in one special case (the MsgDeliverEvent() function which we’ll
look at later), once you’ve done the MsgReply(), that particular receive ID ceases to
have meaning.

This brings us to the MsgReply() function.

Replying to the client

MsgReply() accepts a receive ID, a status, a message pointer, and a message size.
We’ve just finished discussing the receive ID; it identifies who the reply message
should be sent to. The status variable indicates the return status that should be passed
to the client’s MsgSend() function. Finally, the message pointer and size indicate the
location and size of the optional reply message that should be sent.

The MsgReply() function may appear to be very simple (and it is), but its applications
require some examination.

100 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

Not replying to the client

There’s absolutely no requirement that you reply to a client before accepting new
messages from other clients via MsgReceive()! This can be used in a number of
different scenarios.

In a typical device driver, a client may make a request that won’t be serviced for a long
time. For example, the client may ask an Analog-to-Digital Converter (ADC) device
driver to “Go out and collect 45 seconds worth of samples.” In the meantime, the ADC
driver shouldn’t just close up shop for 45 seconds! Other clients might wish to have
requests serviced (for example, there might be multiple analog channels, or there
might be status information that should be available immediately, etc.).

Architecturally, the ADC driver will simply queue the receive ID that it got from the
MsgReceive(), start up the 45-second accumulation process, and go off and handle
other requests. When the 45 seconds are up and the samples have been accumulated,
the ADC driver can find the receive ID associated with the request and then reply to
the client.

You’d also want to hold off replying to a client in the case of the reply-driven
server/subserver model (where some of the “clients” are the subservers). Since the
subservers are looking for work, you’d simply make a note of their receive IDs and
store those away. When actual work arrived, then and only then would you reply to the
subserver, thus indicating that it should do some work.

Replying with no data, or an errno

When you finally reply to the client, there’s no requirement that you transfer any data.
This is used in two scenarios.

You may choose to reply with no data if the sole purpose of the reply is to unblock the
client. Let’s say the client just wants to be blocked until some particular event occurs,
but it doesn’t need to know which event. In this case, no data is required by the
MsgReply() function; the receive ID is sufficient:

MsgReply (rcvid, EOK, NULL, 0);

This unblocks the client (but doesn’t return any data) and returns the EOK “success”
indication.

As a slight modification of that, you may wish to return an error status to the client. In
this case, you can’t do that with MsgReply(), but instead must use MsgError():

MsgError (rcvid, EROFS);

In the above example, the server detects that the client is attempting to write to a
read-only filesystem, and, instead of returning any actual data, simply returns an errno
of EROFS back to the client.

Alternatively (and we’ll look at the calls shortly), you may have already transferred
the data (via MsgWrite()), and there’s no additional data to transfer.

Why the two calls? They’re subtly different. While both MsgError() and MsgReply()
will unblock the client, MsgError() will not transfer any additional data, will cause the

October 20, 2008 Chapter 2 • Message Passing 101

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

client’s MsgSend() function to return -1, and will cause the client to have errno set to
whatever was passed as the second argument to MsgError().

On the other hand, MsgReply() could transfer data (as indicated by the third and fourth
arguments), and will cause the client’s MsgSend() function to return whatever was
passed as the second argument to MsgReply(). MsgReply() has no effect on the client’s
errno.

Generally, if you’re returning only a pass/fail indication (and no data), you’d use
MsgError(), whereas if you’re returning data, you’d use MsgReply(). Traditionally,
when you do return data, the second argument to MsgReply() will be a positive integer
indicating the number of bytes being returned.

Finding the server’s ND/PID/CHID

You’ve noticed that in the ConnectAttach() function, we require a Node Descriptor
(ND), a process ID (PID), and a channel ID (CHID) in order to be able to attach to a
server. So far we haven’t talked about how the client finds this ND/PID/CHID
information.

If one process creates the other, then it’s easy — the process creation call returns with
the process ID of the newly created process. Either the creating process can pass its
own PID and CHID on the command line to the newly created process or the newly
created process can issue the getppid() function call to get the PID of its parent and
assume a “well-known” CHID.

What if we have two perfect strangers? This would be the case if, for example, a third
party created a server and an application that you wrote wanted to talk to that server.
The real issue is, “How does a server advertise its location?”

There are many ways of doing this; we’ll look at four of them, in increasing order of
programming “elegance”:

1 Open a well-known filename and store the ND/PID/CHID there. This is the
traditional approach taken by UNIX-style servers, where they open a file (for
example, /etc/httpd.pid), write their process ID there as an ASCII string,
and expect that clients will open the file and fetch the process ID.

2 Use global variables to advertise the ND/PID/CHID information. This is
typically used in multi-threaded servers that need to send themselves messages,
and is, by its nature, a very limited case.

3 Use the name-location functions (name_attach() and name_detach(), and then
the name_open() and name_close() functions on the client side).

4 Take over a portion of the pathname space and become a resource manager.
We’ll talk about this when we look at resource managers in the Resource
Managers chapter.

The first approach is very simple, but can suffer from “pathname pollution,” where the
/etc directory has all kinds of *.pid files in it. Since files are persistent (meaning
they survive after the creating process dies and the machine reboots), there’s no

102 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

obvious method of cleaning up these files, except perhaps to have a “grim reaper” task
that runs around seeing if these things are still valid.

There’s another related problem. Since the process that created the file can die without
removing the file, there’s no way of knowing whether or not the process is still alive
until you try to send a message to it. Worse yet, the ND/PID/CHID specified in the file
may be so stale that it would have been reused by another program! The message that
you send to that program will at best be rejected, and at worst may cause damage. So
that approach is out.

The second approach, where we use global variables to advertise the ND/PID/CHID
values, is not a general solution, as it relies on the client’s being able to access the
global variables. And since this requires shared memory, it certainly won’t work
across a network! This generally gets used in either tiny test case programs or in very
special cases, but always in the context of a multithreaded program. Effectively, all
that happens is that one thread in the program is the client, and another thread is the
server. The server thread creates the channel and then places the channel ID into a
global variable (the node ID and process ID are the same for all threads in the process,
so they don’t need to be advertised.) The client thread then picks up the global channel
ID and performs the ConnectAttach() to it.

The third approach, where we use the name_attach() and name_detach() functions,
works well for simple client/server situations.

The last approach, where the server becomes a resource manager, is definitely the
cleanest and is the recommended general-purpose solution. The mechanics of “how”
will become clear in the Resource Managers chapter, but for now, all you need to
know is that the server registers a particular pathname as its “domain of authority,” and
a client performs a simple open() of that pathname.

I can’t emphasize this enough:

POSIX file descriptors are implemented using connection IDs; that is, a file descriptor
is a connection ID! The beauty of this scheme is that since the file descriptor that’s
returned from the open() is the connection ID, no further work is required on the
client’s end to be able to use that particular connection. For example, when the client
calls read() later, passing it the file descriptor, this translates with very little overhead
into a MsgSend() function.

What about priorities?

What if a low-priority process and a high-priority process send a message to a server
at the same time?

October 20, 2008 Chapter 2 • Message Passing 103

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Messages are always delivered in priority order.

If two processes send a message “simultaneously,” the entire message from the
higher-priority process is delivered to the server first.

If both processes are at the same priority, then the messages will be delivered in time
order (since there’s no such thing as absolutely simultaneous on a single-processor
machine — even on an SMP box there will be some ordering as the CPUs arbitrate
kernel access among themselves).

We’ll come back to some of the other subtleties introduced by this question when we
look at priority inversions later in this chapter.

Reading and writing data

So far you’ve seen the basic message-passing primitives. As I mentioned earlier, these
are all that you need. However, there are a few extra functions that make life much
easier.

Let’s consider an example using a client and server where we might need other
functions.

The client issues a MsgSend() to transfer some data to the server. After the client
issues the MsgSend() it blocks; it’s now waiting for the server to reply.

An interesting thing happens on the server side. The server has called MsgReceive() to
receive the message from the client. Depending on the design that you choose for your
messages, the server may or may not know how big the client’s message is. Why on
earth would the server not know how big the message is? Consider the filesystem
example that we’ve been using. Suppose the client does:

write (fd, buf, 16);

This works as expected if the server does a MsgReceive() and specifies a buffer size of,
say, 1024 bytes. Since our client sent only a tiny message (28 bytes), we have no
problems.

However, what if the client sends something bigger than 1024 bytes, say 1 megabyte?

write (fd, buf, 1000000);

How is the server going to gracefully handle this? We could, arbitrarily, say that the
client isn’t allowed to write more than n bytes. Then, in the client-side C library code
for write(), we could look at this requirement and split up the write request into several
requests of n bytes each. This is awkward.

The other problem with this example would be, “How big should n be?”

You can see that this approach has major disadvantages:

• All functions that use message transfer with a limited size will have to be modified
in the C library so that the function packetizes the requests. This in itself can be a
fair amount of work. Also, it can have unexpected side effects for multi-threaded

104 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

functions — what if the first part of the message from one thread gets sent, and
then another thread in the client preempts the current thread and sends its own
message. Where does that leave the original thread?

• All servers must now be prepared to handle the largest possible message size that
may arrive. This means that all servers will have to have a data area that’s big, or
the library will have to break up big requests into many smaller ones, thereby
impacting speed.

Luckily, this problem has a fairly simple workaround that also gives us some
advantages.

Two functions, MsgRead() and MsgWrite(), are especially useful here. The important
fact to keep in mind is that the client is blocked. This means that the client isn’t going
to go and change data structures while the server is trying to examine them.

In a multi-threaded client, the potential exists for another thread to mess around with
the data area of a client thread that’s blocked on a server. This is considered a bug (bad
design) — the server thread assumes that it has exclusive access to a client’s data area
until the server thread unblocks the client.

The MsgRead() function looks like this:

#include <sys/neutrino.h>

int MsgRead (int rcvid,
void *msg,
int nbytes,
int offset);

MsgRead() lets your server read data from the blocked client’s address space, starting
offset bytes from the beginning of the client-specified “send” buffer, into the buffer
specified by msg for nbytes. The server doesn’t block, and the client doesn’t unblock.
MsgRead() returns the number of bytes it actually read, or -1 if there was an error.

So let’s think about how we’d use this in our write() example. The C Library write()
function constructs a message with a header that it sends to the filesystem server,
fs-qnx4. The server receives a small portion of the message via MsgReceive(), looks
at it, and decides where it’s going to put the rest of the message. The fs-qnx4 server
may decide that the best place to put the data is into some cache buffers it’s already
allocated.

Let’s track an example:

October 20, 2008 Chapter 2 • Message Passing 105

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Actual data sent
to the filesystem

manager, fs-qnx4

write(fd, buf, 4096);

header

buf

The fs-qnx4 message example, showing contiguous data view.

So, the client has decided to send 4 KB to the filesystem. (Notice how the C Library
stuck a tiny header in front of the data so that the filesystem could tell just what kind
of request it actually was — we’ll come back to this when we look at multi-part
messages, and in even more detail when we look at resource managers.) The
filesystem reads just enough data (the header) to figure out what kind of a message it
is:

// part of the headers, fictionalized for example purposes
struct _io_write {

uint16_t type;
uint16_t combine_len;
int32_t nbytes;
uint32_t xtype;

};

typedef union {
uint16_t type;
struct _io_read io_read;
struct _io_write io_write;
...

} header_t;

header_t header; // declare the header

rcvid = MsgReceive (chid, &header, sizeof (header), NULL);

switch (header.type) {
...
case _IO_WRITE:

number_of_bytes = header.io_write.nbytes;
...

At this point, fs-qnx4 knows that 4 KB are sitting in the client’s address space
(because the message told it in the nbytes member of the structure) and that it should
be transferred to a cache buffer. The fs-qnx4 server could issue:

MsgRead (rcvid, cache_buffer [index].data,
cache_buffer [index].size, sizeof (header.io_write));

106 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

Notice that the message transfer has specified an offset of sizeof
(header.io_write) in order to skip the write header that was added by the client’s
C library. We’re assuming here that cache_buffer [index].size is actually 4096
(or more) bytes.

Similarly, for writing data to the client’s address space, we have:

#include <sys/neutrino.h>

int MsgWrite (int rcvid,
const void *msg,
int nbytes,
int offset);

MsgWrite() lets your server write data to the client’s address space, starting offset
bytes from the beginning of the client-specified “receive” buffer. This function is most
useful in cases where the server has limited space but the client wishes to get a lot of
information from the server.

For example, with a data acquisition driver, the client may specify a 4-megabyte data
area and tell the driver to grab 4 megabytes of data. The driver really shouldn’t need to
have a big area like this lying around just in case someone asks for a huge data
transfer.

The driver might have a 128 KB area for DMA data transfers, and then message-pass
it piecemeal into the client’s address space using MsgWrite() (incrementing the offset
by 128 KB each time, of course). Then, when the last piece of data has been written,
the driver will MsgReply() to the client.

128 KB chunk

Client's address space Driver's address space

128 KB chunk

128 KB chunk

128 KB chunk
2

3

1

Transferring several chunks with MsgWrite().

Note that MsgWrite() lets you write the data components at various places, and then
either just wake up the client using MsgReply():

MsgReply (rcvid, EOK, NULL, 0);

or wake up the client after writing a header at the start of the client’s buffer:

MsgReply (rcvid, EOK, &header, sizeof (header));

This is a fairly elegant trick for writing unknown quantities of data, where you know
how much data you wrote only when you’re done writing it. If you’re using this
method of writing the header after the data’s been transferred, you must remember to
leave room for the header at the beginning of the client’s data area!

October 20, 2008 Chapter 2 • Message Passing 107

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Multipart messages
Until now, we’ve shown only message transfers happening from one buffer in the
client’s address space into another buffer in the server’s address space. (And one
buffer in the server’s space into another buffer in the client’s space during the reply.)

While this approach is good enough for most applications, it can lead to inefficiencies.
Recall that our write() C library code took the buffer that you passed to it, and stuck a
small header on the front of it. Using what we’ve learned so far, you’d expect that the
C library would implement write() something like this (this isn’t the real source):

ssize_t write (int fd, const void *buf, size_t nbytes)
{

char *newbuf;
io_write_t *wptr;
int nwritten;

newbuf = malloc (nbytes + sizeof (io_write_t));

// fill in the write_header at the beginning
wptr = (io_write_t *) newbuf;
wptr -> type = _IO_WRITE;
wptr -> nbytes = nbytes;

// store the actual data from the client
memcpy (newbuf + sizeof (io_write_t), buf, nbytes);

// send the message to the server
nwritten = MsgSend (fd,

newbuf,
nbytes + sizeof (io_write_t),
newbuf,
sizeof (io_write_t));

free (newbuf);
return (nwritten);

}

See what happened? A few bad things:

• The write() now has to be able to malloc() a buffer big enough for both the client
data (which can be fairly big) and the header. The size of the header isn’t the issue
— in this case, it was 12 bytes.

• We had to copy the data twice: once via the memcpy(), and then again during the
message transfer.

• We had to establish a pointer to the io_write_t type and point it to the beginning
of the buffer, rather than access it natively (this is a minor annoyance).

Since the kernel is going to copy the data anyway, it would be nice if we could tell it
that one part of the data (the header) is located at a certain address, and that the other
part (the data itself) is located somewhere else, without the need for us to manually
assemble the buffers and to copy the data.

As luck would have it, Neutrino implements a mechanism that lets us do just that! The
mechanism is something called an IOV , standing for “Input/Output Vector.”

Let’s look at some code first, then we’ll discuss what happens:

108 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

#include <sys/neutrino.h>

ssize_t write (int fd, const void *buf, size_t nbytes)
{

io_write_t whdr;
iov_t iov [2];

// set up the IOV to point to both parts:
SETIOV (iov + 0, &whdr, sizeof (whdr));
SETIOV (iov + 1, buf, nbytes);

// fill in the io_write_t at the beginning
whdr.type = _IO_WRITE;
whdr.nbytes = nbytes;

// send the message to the server
return (MsgSendv (coid, iov, 2, iov, 1));

}

First of all, notice there’s no malloc() and no memcpy(). Next, notice the use of the
iov_t type. This is a structure that contains an address and length pair, and we’ve
allocated two of them (named iov).

The iov_t type definition is automatically included by <sys/neutrino.h>, and is
defined as:

typedef struct iovec
{

void *iov_base;
size_t iov_len;

} iov_t;

Given this structure, we fill the address and length pairs with the write header (for the
first part) and the data from the client (in the second part). There’s a convenience
macro called SETIOV() that does the assignments for us. It’s formally defined as:

#include <sys/neutrino.h>

#define SETIOV(_iov, _addr, _len) \
((_iov)->iov_base = (void *)(_addr), \
(_iov)->iov_len = (_len))

SETIOV() accepts an iov_t, and the address and length data to be stuffed into the
IOV.

Also notice that since we’re creating an IOV to point to the header, we can allocate the
header on the stack without using malloc(). This can be a blessing and a curse — it’s a
blessing when the header is quite small, because you avoid the headaches of dynamic
memory allocation, but it can be a curse when the header is huge, because it can
consume a fair chunk of stack space. Generally, the headers are quite small.

In any event, the important work is done by MsgSendv(), which takes almost the same
arguments as the MsgSend() function that we used in the previous example:

#include <sys/neutrino.h>

int MsgSendv (int coid,
const iov_t *siov,
int sparts,
const iov_t *riov,
int rparts);

October 20, 2008 Chapter 2 • Message Passing 109

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

Let’s examine the arguments:

coid The connection ID that we’re sending to, just as with
MsgSend().

sparts and rparts The number of send and receive parts specified by the iov_t
parameters. In our example, we set sparts to 2 indicating that
we’re sending a 2-part message, and rparts to 1 indicating that
we’re receiving a 1-part reply.

siov and riov The iov_t arrays indicate the address and length pairs that we
wish to send. In the above example, we set up the 2 part siov to
point to the header and the client data, and the 1 part riov to
point to just the header.

This is how the kernel views the data:

Header

Client's address space Driver's address space

Data chunk

Header and
data chunk

Kernel copying data

Header

Data chunk

How the kernel sees a multipart message.

The kernel just copies the data seamlessly from each part of the IOV in the client’s
space into the server’s space (and back, for the reply). Effectively, the kernel is
performing a gather-scatter operation.

A few points to keep in mind:

• The number of parts is “limited” to 512 KB; however, our example of 2 is typical.

• The kernel simply copies the data specified in one IOV from one address space into
another.

• The source and the target IOVs don’t have to be identical.

Why is the last point so important? To answer that, let’s take a look at the big picture.
On the client side, let’s say we issued:

write (fd, buf, 12000);

which generated a two-part IOV of:

• header (12 bytes)

• data (12000 bytes)

110 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using message passing

On the server side, (let’s say it’s the filesystem, fs-qnx4), we have a number of 4 KB
cache blocks, and we’d like to efficiently receive the message directly into the cache
blocks. Ideally, we’d like to write some code like this:

// set up the IOV structure to receive into:
SETIOV (iov + 0, &header, sizeof (header.io_write));
SETIOV (iov + 1, &cache_buffer [37], 4096);
SETIOV (iov + 2, &cache_buffer [16], 4096);
SETIOV (iov + 3, &cache_buffer [22], 4096);
rcvid = MsgReceivev (chid, iov, 4, NULL);

This code does pretty much what you’d expect: it sets up a 4-part IOV structure, sets
the first part of the structure to point to the header, and the next three parts to point to
cache blocks 37, 16, and 22. (These numbers represent cache blocks that just
happened to be available at that particular time.) Here’s a graphical representation:

header (12)

data chunk
(12000)

Client’s address space Kernel copying data

header and
data chunk

Driver’s address space

header (12)

cache_buffer [37]

cache_buffer [16]

cache_buffer [22]

Converting contiguous data to separate buffers.

Then the MsgReceivev() function is called, indicating that we’ll receive a message
from the specified channel (the chid parameter) and that we’re supplying a 4-part IOV
structure. This also shows the IOV structure itself.

(Apart from its IOV functionality, MsgReceivev() operates just like MsgReceive().)

Oops! We made the same mistake as we did before, when we introduced the
MsgReceive() function.

How do we know what kind of message we’re receiving, and how much data is
associated with it, until we actually receive the message?

We can solve this the same way as before:

rcvid = MsgReceive (chid, &header, sizeof (header), NULL);
switch (header.message_type) {
...
case _IO_WRITE:

number_of_bytes = header.io_write.nbytes;

October 20, 2008 Chapter 2 • Message Passing 111

Using message passing © 2008, QNX Software Systems GmbH & Co. KG.

// allocate / find cache buffer entries
// fill 3-part IOV with cache buffers
MsgReadv (rcvid, iov, 3, sizeof (header.io_write));

This does the initial MsgReceive() (note that we didn’t use the IOV form for this —
there’s really no need to do that with a one-part message), figures out what kind of
message it is, and then continues reading the data out of the client’s address space
(starting at offset sizeof (header.io_write)) into the cache buffers specified by
the 3-part IOV.

Notice that we switched from using a 4-part IOV (in the first example) to a 3-part IOV.
That’s because in the first example, the first part of the 4-part IOV was the header,
which we read directly using MsgReceive(), and the last three parts of the 4-part IOV
are the same as the 3-part IOV — they specify where we’d like the data to go.

You can imagine how we’d perform the reply for a read request:

1 Find the cache entries that correspond to the requested data.

2 Fill an IOV structure with those entries.

3 Use MsgWritev() (or MsgReplyv()) to transfer the data to the client.

Note that if the data doesn’t start right at the beginning of a cache block (or other data
structure), this isn’t a problem. Simply offset the first IOV to point to where the data
does start, and modify the size.

What about the other versions?

All the message-passing functions except the MsgSend*() family have the same
general form: if the function has a “v” at the end of it, it takes an IOV and a
number-of-parts; otherwise, it takes a pointer and a length.

The MsgSend*() family has four major variations in terms of the source and
destinations for the message buffers, combined with two variations of the kernel call
itself.

Look at the following table:

Function Send buffer Receive buffer

MsgSend() Linear Linear

MsgSendnc() Linear Linear

MsgSendsv() Linear IOV

MsgSendsvnc() Linear IOV

MsgSendvs() IOV Linear

MsgSendvsnc() IOV Linear

continued. . .

112 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Pulses

Function Send buffer Receive buffer

MsgSendv() IOV IOV

MsgSendvnc() IOV IOV

By “linear,” I mean a single buffer of type void * is passed, along with its length.
The easy way to remember this is that the “v” stands for “vector,” and is in the same
place as the appropriate parameter — first or second, referring to “send” or “receive,”
respectively.

Hmmm. . . looks like the MsgSendsv() and MsgSendsvnc() functions are identical,
doesn’t it? Well, yes, as far as their parameters go, they indeed are. The difference lies
in whether or not they are cancellation points. The “nc” versions are not cancellation
points, whereas the non-“nc” versions are. (For more information about cancellation
points and cancelability in general, please consult the Neutrino Library Reference,
under pthread_cancel().)

Implementation

You’ve probably already suspected that all the variants of the MsgRead(),
MsgReceive(), MsgSend(), and MsgWrite() functions are closely related. (The only
exception is MsgReceivePulse() — we’ll look at this one shortly.)

Which ones should you use? Well, that’s a bit of a philosophical debate. My own
personal preference is to mix and match.

If I’m sending or receiving only one-part messages, why bother with the complexity of
setting up IOVs? The tiny amount of CPU overhead in setting them up is basically the
same regardless of whether you set it up yourself or let the kernel/library do it. The
single-part message approach saves the kernel from having to do address space
manipulations and is a little bit faster.

Should you use the IOV functions? Absolutely! Use them any time you find yourself
dealing with multipart messages. Never copy the data when you can use a multipart
message transfer with only a few lines of code. This keeps the system screaming along
by minimizing the number of times data gets copied around the system; passing the
pointers is much faster than copying the data into a new buffer.

Pulses
All the messaging we’ve talked about so far blocks the client. It’s nap time for the
client as soon as it calls MsgSend(). The client sleeps until the server gets around to
replying.

However, there are instances where the sender of a message can’t afford to block.
We’ll look at some examples in the Interrupts and Clocks, Timers, and Getting a Kick
Every So Often chapters, but for now we should understand the concept.

The mechanism that implements a non-blocking send is called a pulse. A pulse is a
tiny message that:

October 20, 2008 Chapter 2 • Message Passing 113

Pulses © 2008, QNX Software Systems GmbH & Co. KG.

• can carry 40 bits of payload (an 8-bit code and 32 bits of data)

• is non-blocking for the sender

• can be received just like any other message

• is queued if the receiver isn’t blocked waiting for it.

Receiving a pulse message
Receiving a pulse is very simple: a tiny, well-defined message is presented to the
MsgReceive(), as if a thread had sent a normal message. The only difference is that
you can’t MsgReply() to this message — after all, the whole idea of a pulse is that it’s
asynchronous. In this section, we’ll take a look at another function,
MsgReceivePulse(), that’s useful for dealing with pulses.

The only “funny” thing about a pulse is that the receive ID that comes back from the
MsgReceive() function is zero. That’s your indication that this is a pulse, rather than a
regular message from a client. You’ll often see code in servers that looks like this:

#include <sys/neutrino.h>

rcvid = MsgReceive (chid, ...);
if (rcvid == 0) { // it’s a pulse

// determine the type of pulse

// handle it
} else { // it’s a regular message

// determine the type of message

// handle it
}

What’s in a pulse?

Okay, so you receive this message with a receive ID of zero. What does it actually
look like? From the <sys/neutrino.h> header file, here’s the definition of the
_pulse structure:

struct _pulse {
_uint16 type;
_uint16 subtype;
_int8 code;
_uint8 zero [3];
union sigval value;
_int32 scoid;

};

Both the type and subtype members are zero (a further indication that this is a pulse).
The code and value members are set to whatever the sender of the pulse determined.
Generally, the code will be an indication of why the pulse was sent; the value will be a
32-bit data value associated with the pulse. Those two fields are where the “40 bits” of
content comes from; the other fields aren’t user adjustable.

The kernel reserves negative values of code, leaving 127 values for programmers to
use as they see fit.

114 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Pulses

The value member is actually a union:

union sigval {
int sival_int;
void *sival_ptr;

};

Therefore (expanding on the server example above), you often see code like:

#include <sys/neutrino.h>

rcvid = MsgReceive (chid, ...

if (rcvid == 0) { // it’s a pulse

// determine the type of pulse
switch (msg.pulse.code) {

case MY_PULSE_TIMER:
// One of your timers went off, do something
// about it...

break;

case MY_PULSE_HWINT:
// A hardware interrupt service routine sent
// you a pulse. There’s a value in the "value"
// member that you need to examine:

val = msg.pulse.value.sival_int;

// Do something about it...

break;

case _PULSE_CODE_UNBLOCK:
// A pulse from the kernel, indicating a client
// unblock was received, do something about it...

break;

// etc...

} else { // it’s a regular message

// determine the type of message
// handle it

}

This code assumes, of course, that you’ve set up your msg structure to contain a
struct _pulse pulse; member, and that the manifest constants
MY_PULSE_TIMER and MY_PULSE_HWINT are defined. The pulse code
_PULSE_CODE_UNBLOCK is one of those negative-numbered kernel pulses
mentioned above. You can find a complete list of them in <sys/neutrino.h> along
with a brief description of the value field.

October 20, 2008 Chapter 2 • Message Passing 115

Pulses © 2008, QNX Software Systems GmbH & Co. KG.

The MsgReceivePulse() function

The MsgReceive() and MsgReceivev() functions will receive either a “regular”
message or a pulse. There may be situations where you want to receive only pulses.
The best example of this is in a server where you’ve received a request from a client to
do something, but can’t complete the request just yet (perhaps you have to do a long
hardware operation). In such a design, you’d generally set up the hardware (or a timer,
or whatever) to send you a pulse whenever a significant event occurs.

If you write your server using the classic “wait in an infinite loop for messages”
design, you might run into a situation where one client sends you a request, and then,
while you’re waiting for the pulse to come in (to signal completion of the request),
another client sends you another request. Generally, this is exactly what you want —
after all, you want to be able to service multiple clients at the same time. However,
there might be good reasons why this is not acceptable — servicing a client might be
so resource-intensive that you want to limit the number of clients.

In that case, you now need to be able to “selectively” receive only a pulse, and not a
regular message. This is where MsgReceivePulse() comes into play:

#include <sys/neutrino.h>

int MsgReceivePulse (int chid,
void *rmsg,
int rbytes,
struct _msg_info *info);

As you can see, you use the same parameters as MsgReceive(); the channel ID, the
buffer (and its size), as well as the info parameter. (We discussed the info parameter
above, in “Who sent the message?”.) Note that the info parameter is not used in the
case of a pulse; you might ask why it’s present in the parameter list. Simple answer: it
was easier to do it that way in the implementation. Just pass a NULL!

The MsgReceivePulse() function will receive nothing but pulses. So, if you had a
channel with a number of threads blocked on it via MsgReceivePulse(), (and no
threads blocked on it via MsgReceive()), and a client attempted to send your server a
message, the client would remain SEND-blocked until a thread issued the
MsgReceive() call. Pulses would be transferred via the MsgReceivePulse() functions in
the meantime.

The only thing you can guarantee if you mix both MsgReceivePulse() and
MsgReceive() is that the MsgReceivePulse() will get pulses only. The MsgReceive()
could get pulses or messages! This is because, generally, the use of the
MsgReceivePulse() function is reserved for the cases where you want to exclude
regular message delivery to the server.

This does introduce a bit of confusion. Since the MsgReceive() function can receive
both a message and a pulse, but the MsgReceivePulse() function can receive only a
pulse, how do you deal with a server that makes use of both functions? Generally, the
answer here is that you’d have a pool of threads that are performing MsgReceive().
This pool of threads (one or more threads; the number depends on how many clients
you’re prepared to service concurrently) is responsible for handling client calls

116 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Pulses

(requests for service). Since you’re trying to control the number of “service-providing
threads,” and since some of these threads may need to block, waiting for a pulse to
arrive (for example, from some hardware or from another thread), you’d typically
block the service-providing thread using MsgReceivePulse(). This ensures that a client
request won’t “sneak in” while you’re waiting for the pulse (since MsgReceivePulse()
will receive only a pulse).

The MsgDeliverEvent() function
As mentioned above in “The send-hierarchy,” there are cases when you need to break
the natural flow of sends.

Such a case might occur if you had a client that sent a message to the server, the result
might not be available for a while, and the client didn’t want to block. Of course, you
could also partly solve this with threads, by having the client simply “use up” a thread
on the blocking server call, but this may not scale well for larger systems (where you’d
be using up lots of threads to wait for many different servers). Let’s say you didn’t
want to use a thread, but instead wanted the server to reply immediately to the client,
“I’ll get around to your request shortly.” At this point, since the server replied, the
client is now free to continue processing. Once the server has completed whatever task
the client gave it, the server now needs some way to tell the client, “Hey, wake up, I’m
done.” Obviously, as we saw in the send-hierarchy discussion above, you can’t have
the server send a message to the client, because this might cause deadlock if the client
sent a message to the server at that exact same instant. So, how does the server “send”
a message to a client without violating the send hierarchy?

It’s actually a multi-step operation. Here’s how it works:

1 The client creates a struct sigevent structure, and fills it in.

2 The client sends a message to the server, effectively stating, “Perform this
specific task for me, reply right away, and by the way, here’s a struct
sigevent that you should use to notify me when the work is completed.”

3 The server receives the message (which includes the struct sigevent),
stores the struct sigevent and the receive ID away, and replies immediately
to the client.

4 The client is now running, as is the server.

5 When the server completes the work, the server uses MsgDeliverEvent() to
inform the client that the work is now complete.

We’ll take a look in detail at the struct sigevent in the Clocks, Timers, and
Getting a Kick Every So Often chapter, under “How to fill in the struct
sigevent.” For now, just think of the struct sigevent as a “black box” that
somehow contains the event that the server uses to notify the client.

Since the server stored the struct sigevent and the receive ID from the client, the
server can now call MsgDeliverEvent() to deliver the event, as selected by the client, to
the client:

October 20, 2008 Chapter 2 • Message Passing 117

Pulses © 2008, QNX Software Systems GmbH & Co. KG.

int
MsgDeliverEvent (int rcvid,

const struct sigevent *event);

Notice that the MsgDeliverEvent() function takes two parameters, the receive ID (in
rcvid) and the event to deliver in event. The server does not modify or examine the
event in any way! This point is important, because it allows the server to deliver
whatever kind of event the client chose, without any specific processing on the server’s
part.

(The server can, however, verify that the event is valid by using the MsgVerifyEvent()
function.)

The rcvid is a receive ID that the server got from the client. Note that this is indeed a
special case. Generally, after the server has replied to a client, the receive ID ceases to
have any meaning (the reasoning being that the client is unblocked, and the server
couldn’t unblock it again, or read or write data from/to the client, etc.). But in this
case, the receive ID contains just enough information for the kernel to be able to
decide which client the event should be delivered to. When the server calls the
MsgDeliverEvent() function, the server doesn’t block — this is a non-blocking call for
the server. The client has the event delivered to it (by the kernel), and may then
perform whatever actions are appropriate.

Channel flags
When we introduced the server (in “The server”), we mentioned that the
ChannelCreate() function takes a flags parameter and that we’d just leave it as zero.

Now it’s time to explain the flags. We’ll examine only a few of the possible flags
values:

_NTO_CHF_FIXED_PRIORITY

The receiving thread will not change priority based on the priority of the sender.
(We talk more about priority issues in the “Priority inheritance” section, below).
Ordinarily (i.e., if you don’t specify this flag), the receiving thread’s priority is
changed to that of the sender.

_NTO_CHF_UNBLOCK

The kernel delivers a pulse whenever a client thread attempts to unblock. The
server must reply to the client in order to allow the client to unblock. We’ll
discuss this one below, because it has some very interesting consequences, for
both the client and the server.

_NTO_CHF_THREAD_DEATH

The kernel delivers a pulse whenever a thread blocked on this channel dies. This
is useful for servers that want to maintain a fixed “pool of threads” available to
service requests at all times.

_NTO_CHF_DISCONNECT

The kernel delivers a pulse whenever all connections from a single client have
been disconnected from the server.

118 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Pulses

_NTO_CHF_SENDER_LEN

The kernel delivers the client’s message size as part of the information given to
the server (the srcmsglen member of the struct _msg_info structure).

_NTO_CHF_REPLY_LEN

The kernel delivers the client’s reply message buffer size as part of the
information given to the server (the dstmsglen member of the struct
_msg_info structure).

_NTO_CHF_COID_DISCONNECT

The kernel delivers a pulse whenever any connection owned by this process is
terminated due to the channel on the other end going away.

_NTO_CHF_UNBLOCK

Let’s look at the _NTO_CHF_UNBLOCK flag; it has a few interesting wrinkles for
both the client and the server.

Normally (i.e., where the server does not specify the _NTO_CHF_UNBLOCK flag)
when a client wishes to unblock from a MsgSend() (and related MsgSendv(),
MsgSendvs(), etc. family of functions), the client simply unblocks. The client could
wish to unblock due to receiving a signal or a kernel timeout (see the TimerTimeout()
function in the Neutrino Library Reference, and the Clocks, Timers, and Getting a
Kick Every So Often chapter). The unfortunate aspect to this is that the server has no
idea that the client has unblocked and is no longer waiting for a reply. Note that it isn’t
possible to write a reliable server with this flag off, except in very special situations
which require cooperation between the server and all its clients.

Let’s assume that you have a server with multiple threads, all blocked on the server’s
MsgReceive() function. The client sends a message to the server, and one of the
server’s threads receives it. At this point, the client is blocked, and a thread in the
server is actively processing the request. Now, before the server thread has a chance to
reply to the client, the client unblocks from the MsgSend() (let’s assume it was because
of a signal).

Remember, a server thread is still processing the request on behalf of the client. But
since the client is now unblocked (the client’s MsgSend() would have returned with
EINTR), the client is free to send another request to the server. Thanks to the
architecture of Neutrino servers, another thread would receive another message from
the client, with the exact same receive ID! The server has no way to tell these two
requests apart! When the first thread completes and replies to the client, it’s really
replying to the second message that the client sent, not the first message (as the thread
actually believes that it’s doing). So, the server’s first thread replies to the client’s
second message.

This is bad enough; but let’s take this one step further. Now the server’s second thread
completes the request and tries to reply to the client. But since the server’s first thread
already replied to the client, the client is now unblocked and the server’s second thread
gets an error from its reply.

October 20, 2008 Chapter 2 • Message Passing 119

Pulses © 2008, QNX Software Systems GmbH & Co. KG.

This problem is limited to multithreaded servers, because in a single-threaded server,
the server thread would still be busy working on the client’s first request. This means
that even though the client is now unblocked and sends again to the server, the client
would now go into the SEND-blocked state (instead of the REPLY-blocked state),
allowing the server to finish the processing, reply to the client (which would result in
an error, because the client isn’t REPLY-blocked any more), and then the server would
receive the second message from the client. The real problem here is that the server is
performing useless processing on behalf of the client (the client’s first request). The
processing is useless because the client is no longer waiting for the results of that
work.

The solution (in the multithreaded server case) is to have the server specify the
_NTO_CHF_UNBLOCK flag to its ChannelCreate() call. This says to the kernel, “Tell
me when a client tries to unblock from me (by sending me a pulse), but don’t let the
client unblock! I’ll unblock the client myself.”

The key thing to keep in mind is that this server flag changes the behavior of the client
by not allowing the client to unblock until the server says it’s okay to do so.

In a single-threaded server, the following happens:

Action Client Server

Client sends to server Blocked Processing

Client gets hit with signal Blocked Processing

Kernel sends pulse to server Blocked Processing (first message)

Server completes the first request,
replies to client

Unblocked with
correct data

Processing (pulse)

This didn’t help the client unblock when it should have, but it did ensure that the server
didn’t get confused. In this kind of example, the server would most likely simply
ignore the pulse that it got from the kernel. This is okay to do — the assumption being
made here is that it’s safe to let the client block until the server is ready with the data.

If you want the server to act on the pulse that the kernel sent, there are two ways to do
this:

• Create another thread in the server that listens for messages (specifically, listening
for the pulse from the kernel). This second thread would be responsible for
canceling the operation that’s under way in the first thread. One of the two threads
would reply to the client.

• Don’t do the client’s work in the thread itself, but rather queue up the work. This is
typically done in applications where the server is going to store the client’s work on
a queue and the server is event driven. Usually, one of the messages arriving at the
server indicates that the client’s work is now complete, and that the server should
reply. In this case, when the kernel pulse arrives, the server cancels the work being
performed on behalf of the client and replies.

120 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Pulses

Which method you choose depends on the type of work the server does. In the first
case, the server is actively performing the work on behalf of the client, so you really
don’t have a choice — you’ll have to have a second thread that listens for
unblock-pulses from the kernel (or you could poll periodically within the thread to see
if a pulse has arrived, but polling is generally discouraged).

In the second case, the server has something else doing the work — perhaps a piece of
hardware has been commanded to “go and collect data.” In that case, the server’s
thread will be blocked on the MsgReceive() function anyway, waiting for an indication
from the hardware that the command has completed.

In either case, the server must reply to the client, otherwise the client will remain
blocked.

Synchronization problem

Even if you use the _NTO_CHF_UNBLOCK flag as described above, there’s still one
more synchronization problem to deal with. Suppose that you have multiple server
threads blocked on the MsgReceive() function, waiting for messages or pulses, and the
client sends you a message. One thread goes off and begins the client’s work. While
that’s happening, the client wishes to unblock, so the kernel generates the unblock
pulse. Another thread in the server receives this pulse. At this point, there’s a race
condition — the first thread could be just about ready to reply to the client. If the
second thread (that got the pulse) does the reply, then there’s a chance that the client
would unblock and send another message to the server, with the server’s first thread
now getting a chance to run and replying to the client’s second request with the first
request’s data:

October 20, 2008 Chapter 2 • Message Passing 121

Pulses © 2008, QNX Software Systems GmbH & Co. KG.

MsgReceive
(gets 1st message)

Processing...

MsgReply
(to 1st message)

MsgReceive
(gets unblock pulse)

MsgReply
(to unblock)

Tim
e

Server Threads Client Thread

MsgSend
(to server)

(gets hit with a
signal here)

1

5

3

4

2

6

client unblocks
from MsgSend

Processing

MsgSend
(to server)

MsgReceive
(gets 2nd message)

client unblocks
from
with data from
1st request!

MsgSend

Processing...

T1 T2

6

Confusion in a multithreaded server.

Or, if the thread that got the pulse is just about to reply to the client, and the first
thread does the reply, then you have the same situation — the first thread unblocks the
client, who sends another request, and the second thread (that got the pulse) now
unblocks the client’s second request.

The situation is that you have two parallel flows of execution (one caused by the
message, and one caused by the pulse). Ordinarily, we’d immediately recognize this as
a situation that requires a mutex. Unfortunately, this causes a problem — the mutex
would have to be acquired immediately after the MsgReceive() and released before the
MsgReply(). While this will indeed work, it defeats the whole purpose of the unblock
pulse! (The server would either get the message and ignore the unblock pulse until
after it had replied to the client, or the server would get the unblock pulse and cancel
the client’s second operation.)

A solution that looks promising (but is ultimately doomed to failure) would be to have
a fine-grained mutex. What I mean by that is a mutex that gets locked and unlocked
only around small portions of the control flow (the way that you’re supposed to use a
mutex, instead of blocking the entire processing section, as proposed above). You’d
set up a “Have we replied yet?” flag in the server, and this flag would be cleared when

122 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Pulses

you received a message and set when you replied to a message. Just before you replied
to the message, you’d check the flag. If the flag indicates that the message has already
been replied to, you’d skip the reply. The mutex would be locked and unlocked around
the checking and setting of the flag.

Unfortunately, this won’t work because we’re not always dealing with two parallel
flows of execution — the client won’t always get hit with a signal during processing
(causing an unblock pulse). Here’s the scenario where it breaks:

• The client sends a message to the server; the client is now blocked, the server is
now running.

• Since the server received a request from the client, the flag is reset to 0, indicating
that we still need to reply to the client.

• The server replies normally to the client (because the flag was set to 0) and sets the
flag to 1 indicating that, if an unblock-pulse arrives, it should be ignored.

• (Problems begin here.) The client sends a second message to the server, and almost
immediately after sending it gets hit with a signal; the kernel sends an
unblock-pulse to the server.

• The server thread that receives the message was about to acquire the mutex in order
to check the flag, but didn’t quite get there (it got preempted).

• Another server thread now gets the pulse and, because the flag is still set to a 1
from the last time, ignores the pulse.

• Now the server’s first thread gets the mutex and clears the flag.

• At this point, the unblock event has been lost.

If you refine the flag to indicate more states (such as pulse received, pulse replied to,
message received, message replied to), you’ll still run into a synchronization race
condition because there’s no way for you to create an atomic binding between the flag
and the receive and reply function calls. (Fundamentally, that’s where the problem lies
— the small timing windows after a MsgReceive() and before the flag is adjusted, and
after the flag is adjusted just before the MsgReply().) The only way to get around this
is to have the kernel keep track of the flag for you.

Using the _NTO_MI_UNBLOCK_REQ

Luckily, the kernel keeps track of the flag for you as a single bit in the message info
structure (the struct _msg_info that you pass as the last parameter to
MsgReceive(), or that you can fetch later, given the receive ID, by calling MsgInfo()).

This flag is called _NTO_MI_UNBLOCK_REQ and is set if the client wishes to
unblock (for example, after receiving a signal).

This means that in a multithreaded server, you’d typically have a “worker” thread
that’s performing the client’s work, and another thread that’s going to receive the
unblock message (or some other message; we’ll just focus on the unblock message for

October 20, 2008 Chapter 2 • Message Passing 123

Message passing over a network © 2008, QNX Software Systems GmbH & Co. KG.

now). When you get the unblock message from the client, you’d set a flag to yourself,
letting your program know that the thread wishes to unblock.

There are two cases to consider:

• the “worker” thread is blocked; or

• the “worker” thread is running.

If the worker thread is blocked, you’ll need to have the thread that got the unblock
message awaken it. It might be blocked if it’s waiting for a resource, for example.
When the worker thread wakes up, it should examine the _NTO_MI_UNBLOCK_REQ
flag, and, if set, reply with an abort status. If the flag isn’t set, then the thread can do
whatever normal processing it does when it wakes up.

Alternatively, if the worker thread is running, it should periodically check the “flag to
self” that the unblock thread may have set, and if the flag is set, it should reply to the
client with an abort status. Note that this is just an optimization: in the unoptimized
case, the worker thread would constantly call “MsgInfo” on the receive ID and check
the _NTO_MI_UNBLOCK_REQ bit itself.

Message passing over a network
To keep things clear, I’ve avoided talking about how you’d use message passing over a
network, even though this is a crucial part of Neutrino’s flexibility!

Everything you’ve learned so far applies to message passing over the network.

Earlier in this chapter, I showed you an example:

#include <fcntl.h>
#include <unistd.h>

int
main (void)
{

int fd;

fd = open ("/net/wintermute/home/rk/filename", O_WRONLY);
write (fd, "This is message passing\n", 24);
close (fd);

return (EXIT_SUCCESS);
}

At the time, I said that this was an example of “using message passing over a
network.” The client creates a connection to a ND/PID/CHID (which just happens to
be on a different node), and the server performs a MsgReceive() on its channel. The
client and server are identical in this case to the local, single-node case. You could stop
reading right here — there really isn’t anything “tricky” about message passing over
the network. But for those readers who are curious about the how of this, read on!

Now that we’ve seen some of the details of local message passing, we can discuss in a
little more depth how message passing over a network works. While this discussion

124 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Message passing over a network

may seem complicated, it really boils down to two phases: name resolution, and once
that’s been taken care of, simple message passing.

Here’s a diagram that illustrates the steps we’ll be talking about:

Process
Manager

ServerClient

Process
Manager

qnet
resmgr

qnet
network
handler

qnet
resmgr

qnet
network
handler

magenta wintermute

4

3

4

3

2

3

4

1

Message passing over a network. Notice that Qnet is divided into two sections.

In the diagram, our node is called magenta, and, as implied by the example, the target
node is called wintermute.

Let’s analyze the interactions that occur when a client program uses Qnet to access a
server over the network:

1 The client’s open() function was told to open a filename that happened to have
/net in front of it. (The name /net is the default name manifested by Qnet.)
This client has no idea who is responsible for that particular pathname, so it
connects to the process manager (step 1) in order to find out who actually owns
the resource. This is done regardless of whether we’re passing messages over a
network and happens automatically. Since the native Neutrino network manager,
Qnet, “owns” all pathnames that begin with /net, the process manager returns
information to the client telling it to ask Qnet about the pathname.

2 The client now sends a message to Qnet’s resource manager thread, hoping that
Qnet will be able to handle the request. However, Qnet on this node isn’t
responsible for providing the ultimate service that the client wants, so it tells the
client that it should actually contact the process manager on node wintermute.
(The way this is done is via a “redirect” response, which gives the client the
ND/PID/CHID of a server that it should contact instead.) This redirect response
is also handled automatically by the client’s library.

3 The client now connects to the process manager on wintermute. This involves
sending an off-node message through Qnet’s network-handler thread. The Qnet
process on the client’s node gets the message and transports it over the medium
to the remote Qnet, which delivers it to the process manager on wintermute.
The process manager there resolves the rest of the pathname (in our example,

October 20, 2008 Chapter 2 • Message Passing 125

Message passing over a network © 2008, QNX Software Systems GmbH & Co. KG.

that would be the “/home/rk/filename” part) and sends a redirect message
back. This redirect message follows the reverse path (from the server’s Qnet
over the medium to the Qnet on the client’s node, and finally back to the client).
This redirect message now contains the location of the server that the client
wanted to contact in the first place, that is, the ND/PID/CHID of the server
that’s going to service the client’s requests. (In our example, the server was a
filesystem.)

4 The client now sends the request to that server. The path followed here is
identical to the path followed in step 3 above, except that the server is contacted
directly instead of going through the process manager.

Once steps 1 through 3 have been established, step 4 is the model for all future
communications. In our client example above, the open(), read(), and close()
messages all take path number 4. Note that the client’s open() is what triggered this
sequence of events to happen in the first place — but the actual open message flows as
described (through path number 4).

For the really interested reader: I’ve left out one step. During step 2, when the client
asks Qnet about wintermute, Qnet needs to figure out who wintermute is. This
may result in Qnet performing one more network transaction to resolve the nodename.
The diagram presented above is correct if we assume that Qnet already knew about
wintermute.

We’ll come back to the messages used for the open(), read(), and close() (and others)
in the Resource Managers chapter.

Networked message passing differences
So, once the connection is established, all further messaging flows using step 4 in the
diagram above. This may lead you to the erroneous belief that message passing over a
network is identical to message passing in the local case. Unfortunately, this is not
true. Here are the differences:

• longer delays

• ConnectAttach() returns success regardless of whether the node is alive or not —
the real error indication happens on the first message pass

• MsgDeliverEvent() isn’t guaranteed reliable

• MsgReply(), MsgRead(), MsgWrite() are now blocking calls, whereas in the local
case they are not

• MsgReceive() might not receive all the data sent by the client; the server might
need to call MsgRead() to get the rest.

126 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Message passing over a network

Longer delays

Since message passing is now being done over some medium, rather than a direct
kernel-controlled memory-to-memory copy, you can expect that the amount of time
taken to transfer messages will be significantly higher (100 MB Ethernet versus 100
MHz 64-bit wide DRAM is going to be an order of magnitude or two slower). Plus, on
top of this will be protocol overhead (minimal) and retries on lossy networks.

Impact on ConnectAttach()

When you call ConnectAttach(), you’re specifying an ND, a PID, and a CHID. All that
happens in Neutrino is that the kernel returns a connection ID to the Qnet “network
handler” thread pictured in the diagram above. Since no message has been sent, you’re
not informed as to whether the node that you’ve just attached to is still alive or not. In
normal use, this isn’t a problem, because most clients won’t be doing their own
ConnectAttach() — rather, they’ll be using the services of the library call open(),
which does the ConnectAttach() and then almost immediately sends out an “open”
message. This has the effect of indicating almost immediately if the remote node is
alive or not.

Impact on MsgDeliverEvent()

When a server calls MsgDeliverEvent() locally, it’s the kernel’s responsibility to
deliver the event to the target thread. With the network, the server still calls
MsgDeliverEvent(), but the kernel delivers a “proxy” of that event to Qnet, and it’s up
to Qnet to deliver the proxy to the other (client-side) Qnet, who’ll then deliver the
actual event to the client. Things can get screwed up on the server side, because the
MsgDeliverEvent() function call is non-blocking — this means that once the server
has called MsgDeliverEvent() it’s running. It’s too late to turn around and say, “I hate
to tell you this, but you know that MsgDeliverEvent() that I said succeeded? Well, it
didn’t!”

Impact on MsgReply(), MsgRead(), and MsgWrite()

To prevent the problem I just mentioned with MsgDeliverEvent() from happening with
MsgReply(), MsgRead(), and MsgWrite(), these functions were transformed into
blocking calls when used over the network. Locally they’d simply transfer the data
and unblock immediately. On the network, we have to (in the case of MsgReply())
ensure that the data has been delivered to the client or (in the case of the other two) to
actually transfer the data to or from the client over the network.

Impact on MsgReceive()

Finally, MsgReceive() is affected as well (in the networked case). Not all the client’s
data may have been transferred over the network by Qnet when the server’s
MsgReceive() unblocks. This is done for performance reasons.

There are two flags in the struct _msg_info that’s passed as the last parameter to
MsgReceive() (we’ve seen this structure in detail in “Who sent the message?” above):

msglen indicates how much data was actually transferred by the MsgReceive()

October 20, 2008 Chapter 2 • Message Passing 127

Message passing over a network © 2008, QNX Software Systems GmbH & Co. KG.

(Qnet likes to transfer 8 KB).
srcmsglen indicates how much data the client wanted to transfer (determined by

the client).

So, if the client wanted to transfer 1 megabyte of data over the network, the server’s
MsgReceive() would unblock and msglen would be set to 8192 (indicating that 8192
bytes were available in the buffer), while srcmsglen would be set to 1048576
(indicating that the client tried to send 1 megabyte).

The server then uses MsgRead() to get the rest of the data from the client’s address
space.

Some notes on NDs
The other “funny” thing that we haven’t yet talked about when it comes to message
passing is this whole business of a “node descriptor” or just “ND” for short.

Recall that we used symbolic node names, like /net/wintermute in our examples.
Under QNX 4 (the previous version of the OS before Neutrino), native networking
was based on the concept of a node ID, a small integer that was unique on the network.
Thus, we’d talk about “node 61,” or “node 1,” and this was reflected in the function
calls.

Under Neutrino, all nodes are internally referred to by a 32-bit quantity, but it’s not
network unique! What I mean by that is that wintermute might think of spud as
node descriptor number “7,” while spud might think of magenta as node descriptor
number “7” as well. Let me expand that to give you a better picture. This table shows
some sample node descriptors that might be used by three nodes, wintermute, spud,
and foobar:

Node wintermute spud foobar

wintermute 0 7 4

spud 4 0 6

foobar 5 7 0

Notice how each node’s node descriptor for itself is zero. Also notice how
wintermute’s node descriptor for spud is “7,” as is foobar’s node descriptor for
spud. But wintermute’s node descriptor for foobar is “4” while spud’s node
descriptor for foobar is “6.” As I said, they’re not unique across the network,
although they are unique on each node. You can effectively think of them as file
descriptors — two processes might have the same file descriptor if they access the
same file, but they might not; it just depends on who opened which file when.

Fortunately, you don’t have to worry about node descriptors, for a number of reasons:

1 Most of the off-node message passing you’ll typically be doing will be through
higher-level function calls (such as open(), as shown in the example above).

128 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Message passing over a network

2 Node descriptors are not to be cached — if you get one, you’re supposed to use
it immediately and then forget about it.

3 There are library calls to convert a pathname (like /net/magenta) to a node
descriptor.

To work with node descriptors, you’ll want to include the file <sys/netmgr.h>
because it includes a bunch of netmgr_*() functions.

You’d use the function netmgr_strtond() to convert a string into a node descriptor.
Once you have this node descriptor, you’d use it immediately in the ConnectAttach()
function call. Specifically, you shouldn’t ever cache it in a data structure! The reason
is that the native networking manager may decide to reuse it once all connections to
that particular node are disconnected. So, if you got a node descriptor of “7” for
/net/magenta, and you connected to it, sent a message, and then disconnected,
there’s a possibility that the native networking manager will return a node descriptor
of “7” again for a different node.

Since node descriptors aren’t unique per network, the question that arises is, “How do
you pass these things around the network?” Obviously, magenta’s view of what node
descriptor “7” is will be radically different from wintermute’s. There are two
solutions here:

• Don’t pass around node descriptors; use the symbolic names (e.g.,
/net/wintermute) instead.

• Use the netmgr_remote_nd() function.

The first is a good general-purpose solution. The second solution is reasonably simple
to use:

int
netmgr_remote_nd (int remote_nd, int local_nd);

This function takes two parameters: the remote_nd is the node descriptor of the target
machine, and local_nd is the node descriptor (from the local machine’s point of view)
to be translated to the remote machine’s point of view. The result is the node
descriptor that is valid from the remote machine’s point of view.

For example, let’s say wintermute is our local machine. We have a node descriptor
of “7” that is valid on our local machine and points to magenta. What we’d like to
find out is what node descriptor magenta uses to talk to us:

int remote_nd;
int magenta_nd;

magenta_nd = netmgr_strtond ("/net/magenta", NULL);
printf ("Magenta’s ND is %d\n", magenta_nd);
remote_nd = netmgr_remote_nd (magenta_nd, ND_LOCAL_NODE);
printf ("From magenta’s point of view, we’re ND %d\n",

remote_nd);

This might print something similar to:

October 20, 2008 Chapter 2 • Message Passing 129

Priority inheritance © 2008, QNX Software Systems GmbH & Co. KG.

Magenta’s ND is 7
From magenta’s point of view, we’re ND 4

This says that on magenta, the node descriptor “4” refers to our node. (Notice the use
of the special constant ND_LOCAL_NODE, which is really zero, to indicate “this
node.”)

Now, recall that we said (in “Who sent the message?”) that the struct _msg_info

contains, among other things, two node descriptors:

struct _msg_info
{

int nd;
int srcnd;
...

};

We stated in the description for those two fields that:

• nd is the receiving node’s node descriptor for the transmitting node

• srcnd is the transmitting node’s node descriptor for the receiving node

So, for our example above, where wintermute is the local node and magenta is the
remote node, when magenta sends a message to us (wintermute), we’d expect that:

• nd would contain 7

• srcnd would contain 4.

Priority inheritance
One of the interesting issues in a realtime operating system is a phenomenon known as
priority inversion.

Priority inversion manifests itself as, for example, a low-priority thread consuming all
available CPU time, even though a higher-priority thread is ready to run.

Now you’re probably thinking, “Wait a minute! You said that a higher-priority thread
will always preempt a lower-priority thread! How can this be?”

This is true — a higher-priority thread will always preempt a lower-priority thread.
But something interesting can happen. Let’s look at a scenario where we have three
threads (in three different processes, just to keep things simple), “L” is our low-priority
thread, “H” is our high-priority thread, and “S” is a server. This diagram shows the
three threads and their priorities:

130 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Priority inheritance

L
(5)

H
(12)

S
(20)

Three threads at different priorities.

Currently, H is running. S, a higher-priority server thread, doesn’t have anything to do
right now so it’s waiting for a message and is blocked in MsgReceive(). L would like
to run but is at a lower priority than H, which is running. Everything is as you’d
expect, right?

Now H has decided that it would like to go to sleep for 100 milliseconds — perhaps it
needs to wait for some slow hardware. At this point, L is running.

This is where things get interesting.

As part of its normal operation, L sends a message to the server thread S, causing S to
go READY and (because it’s the highest-priority thread that’s READY) to start running.
Unfortunately, the message that L sent to S was “Compute pi to 5000 decimal places.”

Obviously, this takes more than 100 milliseconds. Therefore, when H’s 100
milliseconds are up and H goes READY, guess what? It won’t run, because S is
READY and at a higher priority!

What happened is that a low-priority thread prevented a higher-priority thread from
running by leveraging the CPU via an even higher-priority thread. This is priority
inversion.

To fix it, we need to talk about priority inheritance. A simple fix is to have the server,
S, inherit the priority of the client thread:

L
(5)

H
(12)

S
(5)

SEND-blocked

REPLY-blocked

READY

Blocked threads.

October 20, 2008 Chapter 2 • Message Passing 131

Priority inheritance © 2008, QNX Software Systems GmbH & Co. KG.

In this scenario, when H’s 100 millisecond sleep has completed, it goes READY and,
because it’s the highest-priority READY thread, runs.

Not bad, but there’s one more “gotcha.”

Suppose that H now decides that it too would like a computation performed. It wants
to compute the 5,034th prime number, so it sends a message to S and blocks.

However, S is still computing pi, at a priority of 5! In our example system, there are
lots of other threads running at priorities higher than 5 that are making use of the CPU,
effectively ensuring that S isn’t getting much time to calculate pi.

This is another form of priority inversion. In this case, a lower-priority thread has
prevented a higher-priority thread from getting access to a resource. Contrast this with
the first form of priority inversion, where the lower-priority thread was effectively
consuming CPU — in this case it’s only preventing a higher-priority thread from
getting CPU — it’s not consuming any CPU itself.

Luckily, the solution is fairly simple here too. Boost the server’s priority to be the
highest of all blocked clients:

L
(5)

H
(12)

S
(12)

SEND-blocked

REPLY-blocked

READY

Boosting the server’s priority.

This way we take a minor hit by letting L’s job run at a priority higher than L, but we
do ensure that H gets a fair crack at the CPU.

So what’s the trick?
There’s no trick! Neutrino does this automatically for you. (You can turn off priority
inheritance if you don’t want it; see the _NTO_CHF_FIXED_PRIORITY flag in the
ChannelCreate() function’s documentation.)

There’s a minor design issue here, however. How do you revert the priority to what it
was before it got changed?

Your server is running along, servicing requests from clients, adjusting its priority
automagically when it unblocks from the MsgReceive() call. But when should it adjust
its priority back to what it was before the MsgReceive() call changed it?

There are two cases to consider:

132 Chapter 2 • Message Passing October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Priority inheritance

• The server performs some additional processing after it properly services the client.
This should be done at the server’s priority, not the client’s.

• The server immediately does another MsgReceive() to handle the next client
request.

In the first case, it would be incorrect for the server to run at the client’s priority when
it’s no longer doing work for that client! The solution is fairly simple. Use the
pthread_setschedparam() function (discussed in the Processes and Threads chapter) to
revert the priority back to what it should be.

What about the other case? The answer is subtly simple: Who cares?

Think about it. What difference does it make if the server becomes RECEIVE-blocked
when it was priority 29 versus when it was priority 2? The fact of the matter is it’s
RECEIVE-blocked! It isn’t getting any CPU time, so its priority is irrelevant. As soon
as the MsgReceive() function unblocks the server, the (new) client’s priority is
inherited by the server and everything works as expected.

Summary
Message passing is an extremely powerful concept and is one of the main features on
which Neutrino (and indeed, all past QNX operating systems) is built.

With message passing, a client and a server exchange messages (thread-to-thread in
the same process, thread-to-thread in different processes on the same node, or
thread-to-thread in different processes on different nodes in a network). The client
sends a message and blocks until the server receives the message, processes it, and
replies to the client.

The main advantages of message passing are:

• The content of a message doesn’t change based on the location of the destination
(local versus networked).

• A message provides a “clean” decoupling point for clients and servers.

• Implicit synchronization and serialization helps simplify the design of your
applications.

October 20, 2008 Chapter 2 • Message Passing 133

Chapter 3

Clocks, Timers, and Getting a Kick Every So
Often

In this chapter. . .
Clocks and timers 137
Using timers 146
Advanced topics 159

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 135

© 2008, QNX Software Systems GmbH & Co. KG. Clocks and timers

Clocks and timers
It’s time to take a look at everything related to time in Neutrino. We’ll see how and
why you’d use timers and the theory behind them. Then we’ll take a look at getting
and setting the realtime clock.

This chapter uses a ticksize of 10 ms, but QNX Neutrino now uses a 1 ms ticksize by
default on most systems. This doesn’t affect the substance of the issues being
discussed.

Let’s look at a typical system, say a car. In this car, we have a bunch of programs,
most of which are running at different priorities. Some of these need to respond to
actual external events (like the brakes or the radio tuner), while others need to operate
periodically (such as the diagnostics system).

Operating periodically
So how does the diagnostics system “operate periodically?” You can imagine some
process in the car’s CPU that does something similar to the following:

// Diagnostics Process

int
main (void) // ignore arguments here
{

for (;;) {
perform_diagnostics ();
sleep (15);

}

// You’ll never get here.
return (EXIT_SUCCESS);

}

Here we see that the diagnostics process runs forever. It performs one round of
diagnostics and then goes to sleep for 15 seconds, wakes up, goes through the loop
again, and again, . . .

Way back in the dim, dark days of single-tasking, where one CPU was dedicated to
one user, these sorts of programs were implemented by having the sleep (15);

code do a busy-wait loop. You’d calculate how fast your CPU was and then write your
own sleep() function:

void
sleep (int nseconds)
{

long i;

while (nseconds--) {
for (i = 0; i < CALIBRATED_VALUE; i++) ;

}
}

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 137

Clocks and timers © 2008, QNX Software Systems GmbH & Co. KG.

In those days, since nothing else was running on the machine, this didn’t present much
of a problem, because no other process cared that you were hogging 100% of the CPU
in the sleep() function.

Even today, we sometimes hog 100% of the CPU to do timing functions. Notably, the
nanospin() function is used to obtain very fine-grained timing, but it does so at the
expense of burning CPU at its priority. Use with caution!

If you did have to perform some form of “multitasking,” it was usually done via an
interrupt routine that would hang off the hardware timer or be performed within the
“busy-wait” period, somewhat affecting the calibration of the timing. This usually
wasn’t a concern.

Luckily we’ve progressed far beyond that point. Recall from “Scheduling and the real
world,” in the Processes and Threads chapter, what causes the kernel to reschedule
threads:

• a hardware interrupt

• a kernel call

• a fault (exception)

In this chapter, we’re concerned with the first two items on the list: the hardware
interrupt and the kernel call.

When a thread calls sleep(), the C library contains code that eventually makes a kernel
call. This call tells the kernel, “Put this thread on hold for a fixed amount of time.” The
call removes the thread from the running queue and starts a timer.

Meanwhile, the kernel has been receiving regular hardware interrupts from the
computer’s clock hardware. Let’s say, for argument’s sake, that these hardware
interrupts occur at exactly 10-millisecond intervals.

Let’s restate: every time one of these interrupts is handled by the kernel’s clock
interrupt service routine (ISR), it means that 10 ms have gone by. The kernel keeps
track of the time of day by incrementing its time-of-day variable by an amount
corresponding to 10 ms every time the ISR runs.

So when the kernel implements a 15-second timer, all it’s really doing is:

1 Setting a variable to the current time plus 15 seconds.

2 In the clock ISR, comparing this variable against the time of day.

3 When the time of day is the same as (or greater than) the variable, putting the
thread back onto the READY queue.

When multiple timers are outstanding, as would be the case if several threads all
needed to be woken at different times, the kernel would simply queue the requests,
sorting them by time order — the nearest one would be at the head of the queue, and
so on. The variable that the ISR looks at is the one at the head of this queue.

138 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Clocks and timers

That’s the end of the timer five-cent tour.

Actually, there’s a little bit more to it than first meets the eye.

Clock interrupt sources
So where does the clock interrupt come from? Here’s a diagram that shows the
hardware components (and some typical values for a PC) responsible for generating
these clock interrupts:

1.1931816
MHz clock

82C54
÷ 11931

Clock
handler

Time of
day

Timers

Applications

Applications

PC clock interrupt sources.

As you can see, there’s a high-speed (MHz range) clock produced by the circuitry in
the PC. This high-speed clock is then divided by a hardware counter (the 82C54
component in the diagram), which reduces the clock rate to the kHz or hundreds of Hz
range (i.e., something that an ISR can actually handle). The clock ISR is a component
of the kernel and interfaces directly with the data structures and code of the kernel
itself. On non-x86 architectures (PowerPC), a similar sequence of events occurs; some
chips have clocks built into the processor.

Note that the high-speed clock is being divided by an integer divisor. This means the
rate isn’t going to be exactly 10 ms, because the high-speed clock’s rate isn’t an
integer multiple of 10 ms. Therefore, the kernel’s ISR in our example above might
actually be interrupted after 9.9999296004 ms.

Big deal, right? Well, sure, it’s fine for our 15-second counter. 15 seconds is 1500
timer ticks — doing the math shows that it’s approximately 106 μs off the mark:

15 s - 1500 × 9.9999296004 ms

= 15000 ms - 14999.8944006 ms
= 0.1055994 ms
= 105.5994 μs

Unfortunately, continuing with the math, that amounts to 608 ms per day, or about
18.5 seconds per month, or almost 3.7 minutes per year!

You can imagine that with other divisors, the error could be greater or smaller,
depending on the rounding error introduced. Luckily, the kernel knows about this and
corrects for it.

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 139

Clocks and timers © 2008, QNX Software Systems GmbH & Co. KG.

The point of this story is that regardless of the nice round value shown, the real value
is selected to be the next faster value.

Base timing resolution
Let’s say that the timer tick is operating at just slightly faster than 10 ms. Can I
reliably sleep for 3 milliseconds?

Nope.

Consider what happens in the kernel. You issue the C-library delay() call to go to sleep
for 3 milliseconds. The kernel has to set the variable in the ISR to some value. If it
sets it to the current time, this means the timer has already expired and that you should
wake up immediately. If it sets it to one tick more than the current time, this means
that you should wake up on the next tick (up to 10 milliseconds away).

The moral of this story is: “Don’t expect timing resolution any better than the input
timer tick rate.”

Getting more precision

Under Neutrino, a program can adjust the value of the hardware divisor component in
conjunction with the kernel (so that the kernel knows what rate the timer tick ISR is
being called at). We’ll look at this below in the “Getting and setting the realtime
clock” section.

Timing jitter
There’s one more thing you have to worry about. Let’s say the timing resolution is
10 ms and you want a 20 ms timeout.

Are you always going to get exactly 20 milliseconds worth of delay from the time that
you issue the delay() call to the time that the function call returns?

Absolutely not.

There are two good reasons why. The first is fairly simple: when you block, you’re
taken off the running queue. This means that another thread at your priority may now
be using the CPU. When your 20 milliseconds have expired, you’ll be placed at the
end of the READY queue for that priority so you’ll be at the mercy of whatever thread
happens to be running. This also applies to interrupt handlers running or
higher-priority threads running — just because you are READY doesn’t mean that
you’re consuming the CPU.

The second reason is a bit more subtle. The following diagram will help explain why:

140 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Clocks and timers

10 ms 10 ms10 ms10 ms

Process requests
20 ms sleep here

Kernel wakes up
process here

Actual elapsed
time is 22 ms

Clock jitter.

The problem is that your request is asynchronous to the clock source. You have no
way to synchronize the hardware clock with your request. Therefore, you’ll get from
just over 20 milliseconds to just under 30 milliseconds worth of delay, depending on
where in the hardware’s clock period you started your request.

This is a key point. Clock jitter is a sad fact of life. The way to get around it is to
increase the system’s timing resolution so your timing is within tolerance. (We’ll see
how to do this in the “Getting and setting the realtime clock” section, below.) Keep in
mind that jitter takes place only on the first tick — a 100-second delay with a
10-millisecond clock will delay for greater than 100 seconds and less than 100.01
seconds.

Types of timers
The type of timer that I showed you above is a relative timer. The timeout period
selected is relative to the current time. If you want the timer to delay your thread until
January 20, 2005 at 12:04:33 EDT, you’d have to calculate the number of seconds
from “now” until then, and set up a relative timer for that number of seconds. Because
this is a fairly common function, Neutrino implements an absolute timer that will
delay until the specified time (instead of for the specified time, like a relative timer).

What if you want to do something while you’re waiting for that date to come around?
Or, what if you want to do something and get a “kick” every 27 seconds? You
certainly couldn’t afford to be asleep!

As we discussed in the Processes and Threads chapter, you could simply start up
another thread to do the work, and your thread could take the delay. However, since
we’re talking about timers, we’ll look at another way of doing this.

You can do this with a periodic or one-shot timer, depending on your objectives. A
periodic timer is one that goes off periodically, notifying the thread (over and over
again) that a certain time interval has elapsed. A one-shot timer is one that goes off
just once.

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 141

Clocks and timers © 2008, QNX Software Systems GmbH & Co. KG.

The implementation in the kernel is still based on the same principle as the delay timer
that we used in our first example. The kernel takes the absolute time (if you specified
it that way) and stores it. In the clock ISR, the stored time is compared against the
time of day in the usual manner.

However, instead of your thread being removed from the running queue when you call
the kernel, your thread continues to run. When the time of day reaches the stored time,
the kernel notifies your thread that the designated time has been reached.

Notification schemes
How do you receive a timeout notification? With the delay timer, you received
notification by virtue of being made READY again.

With periodic and one-shot timers, you have a choice:

• send a pulse

• send a signal

• create a thread

We’ve talked about pulses in the Message Passing chapter; signals are a standard
UNIX-style mechanism, and we’ll see the thread creation notification type shortly.

How to fill in the struct sigevent

Let’s take a quick look at how you fill in the struct sigevent structure.

Regardless of the notification scheme you choose, you’ll need to fill in a struct
sigevent structure:

struct sigevent {
int sigev_notify;

union {
int sigev_signo;
int sigev_coid;
int sigev_id;
void (*sigev_notify_function) (union sigval);

};

union sigval sigev_value;

union {
struct {

short sigev_code;
short sigev_priority;

};
pthread_attr_t *sigev_notify_attributes;

};
};

142 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Clocks and timers

Note that the above definition uses anonymous unions and structures. Careful
examination of the header file will show you how this trick is implemented on
compilers that don’t support these features. Basically, there’s a #define that uses a
named union and structure to make it look like it’s an anonymous union. Check out
<sys/siginfo.h> for details.

The first field you have to fill in is the sigev_notify member. This determines the
notification type you’ve selected:

SIGEV_PULSE A pulse will be sent.

SIGEV_SIGNAL, SIGEV_SIGNAL_CODE, or SIGEV_SIGNAL_THREAD
A signal will be sent.

SIGEV_UNBLOCK Not used in this case; used with kernel timeouts (see “Kernel
timeouts” below).

SIGEV_INTR Not used in this case; used with interrupts (see the Interrupts
chapter).

SIGEV_THREAD Creates a thread.

Since we’re going to be using the struct sigevent with timers, we’re concerned
only with the SIGEV_PULSE, SIGEV_SIGNAL* and SIGEV_THREAD values for
sigev_notify; we’ll see the other types as mentioned in the list above.

Pulse notification

To send a pulse when the timer fires, set the sigev_notify field to SIGEV_PULSE and
provide some extra information:

Field Value and meaning

sigev_coid Send the pulse to the channel associated with this connection ID.

sigev_value A 32-bit value that gets sent to the connection identified in the
sigev_coid field.

sigev_code An 8-bit value that gets sent to the connection identified in the
sigev_coid field.

sigev_priority The pulse’s delivery priority. The value zero is not allowed (too
many people were getting bitten by running at priority zero when
they got a pulse — priority zero is what the idle task runs at, so
effectively they were competing with Neutrino’s IDLE process and
not getting much CPU time :-)).

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 143

Clocks and timers © 2008, QNX Software Systems GmbH & Co. KG.

Note that the sigev_coid could be a connection to any channel (usually, though not
necessarily, the channel associated with the process that’s initiating the event).

Signal notification

To send a signal, set the sigev_notify field to one of:

SIGEV_SIGNAL Send a regular signal to the process.

SIGEV_SIGNAL_CODE

Send a signal containing an 8-bit code to the process.

SIGEV_SIGNAL_THREAD

Send a signal containing an 8-bit code to a specific thread.

For SIGEV_SIGNAL*, the additional fields you’ll have to fill are:

Field Value and meaning

sigev_signo Signal number to send (from <signal.h>, e.g., SIGALRM).

sigev_code An 8-bit code (if using SIGEV_SIGNAL_CODE or
SIGEV_SIGNAL_THREAD).

Thread notification

To create a thread whenever the timer fires, set the sigev_notify field to
SIGEV_THREAD and fill these fields:

Field Value and meaning

sigev_notify_function Address of void * function that accepts a void * to be
called when the event triggers.

sigev_value Value passed as the parameter to the
sigev_notify_function() function.

sigev_notify_attributes Thread attributes structure (see the Processes and Threads
chapter, under “The thread attributes structure” for
details).

144 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Clocks and timers

This notification type is a little scary! You could have a whole slew of threads created
if the timer fires often enough and, if there are higher priority threads waiting to run,
this could chew up all available resources on the system! Use with caution!

General tricks for notification

There are some convenience macros in <sys/siginfo.h> to make filling in the
notification structures easier (see the entry for sigevent in the Neutrino Library
Reference):

SIGEV_SIGNAL_INIT (eventp, signo)

Fill eventp with SIGEV_SIGNAL, and the appropriate signal number signo.

SIGEV_SIGNAL_CODE_INIT (eventp, signo, value, code)

Fill eventp with SIGEV_SIGNAL_CODE, the signal number signo, as well as the
value and code.

SIGEV_SIGNAL_THREAD_INIT (eventp, signo, value, code)

Fill eventp with SIGEV_SIGNAL_THREAD, the signal number signo, as well as
the value and code.

SIGEV_PULSE_INIT (eventp, coid, priority, code, value)

Fill eventp with SIGEV_SIGNAL_PULSE, the connection to the channel in coid
and a priority, code, and value. Note that there is a special value for priority of
SIGEV_PULSE_PRIO_INHERIT that causes the receiving thread to run at the
process’s initial priority.

SIGEV_UNBLOCK_INIT (eventp)

Fill eventp with SIGEV_UNBLOCK.

SIGEV_INTR_INIT (eventp)

Fill eventp with SIGEV_INTR.

SIGEV_THREAD_INIT (eventp, func, val, attributes)

Fill eventp with the thread function (func) and the attributes structure
(attributes). The value in val is passed to the function in func when the thread is
executed.

Pulse notification

Suppose you’re designing a server that spent most of its life RECEIVE blocked,
waiting for a message. Wouldn’t it be ideal to receive a special message, one that told
you that the time you had been waiting for finally arrived?

This scenario is exactly where you should use pulses as the notification scheme. In the
“Using timers” section below, I’ll show you some sample code that can be used to get
periodic pulse messages.

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 145

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

Signal notification

Suppose that, on the other hand, you’re performing some kind of work, but don’t want
that work to go on forever. For example, you may be waiting for some function call to
return, but you can’t predict how long it takes.

In this case, using a signal as the notification scheme, with perhaps a signal handler, is
a good choice (another choice we’ll discuss later is to use kernel timeouts; see
_NTO_CHF_UNBLOCK in the Message Passing chapter as well). In the “Using
timers” section below, we’ll see a sample that uses signals.

Alternatively, a signal with sigwait() is cheaper than creating a channel to receive a
pulse on, if you’re not going to be receiving messages in your application anyway.

Using timers
Having looked at all this wonderful theory, let’s turn our attention to some specific
code samples to see what you can do with timers.

To work with a timer, you must:

1 Create the timer object.

2 Decide how you wish to be notified (signal, pulse, or thread creation), and create
the notification structure (the struct sigevent).

3 Decide what kind of timer you wish to have (relative versus absolute, and
one-shot versus periodic).

4 Start it.

Let’s look at these in order.

Creating a timer
The first step is to create the timer with timer_create():

#include <time.h>
#include <sys/siginfo.h>

int
timer_create (clockid_t clock_id,

struct sigevent *event,
timer_t *timerid);

The clock_id argument tells the timer_create() function which time base you’re
creating this timer for. This is a POSIX thing — POSIX says that on different
platforms you can have multiple time bases, but that every platform must support at
least the CLOCK_REALTIME time base. Under Neutrino, there are three time bases to
choose from:

• CLOCK_REALTIME

• CLOCK_SOFTTIME

146 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using timers

• CLOCK_MONOTONIC

For now, we’ll ignore CLOCK_SOFTTIME and CLOCK_MONOTONIC but we will
come back to them in the “Other clock sources” section, below.

Signal, pulse, or thread?
The second parameter is a pointer to a struct sigevent data structure. This data
structure is used to inform the kernel about what kind of event the timer should deliver
whenever it “fires.” We discussed how to fill in the struct sigevent above in the
discussion of signals versus pulses versus thread creation.

So, you’d call timer_create() with CLOCK_REALTIME and a pointer to your struct
sigevent data structure, and the kernel would create a timer object for you (which
gets returned in the last argument). This timer object is just a small integer that acts as
an index into the kernel’s timer tables; think of it as a “handle.”

At this point, nothing else is going to happen. You’ve only just created the timer; you
haven’t triggered it yet.

What kind of timer?
Having created the timer, you now have to decide what kind of timer it is. This is done
by a combination of arguments to timer_settime(), the function used to actually start
the timer:

#include <time.h>

int
timer_settime (timer_t timerid,

int flags,
struct itimerspec *value,
struct itimerspec *oldvalue);

The timerid argument is the value that you got back from the timer_create() function
call — you can create a bunch of timers, and then call timer_settime() on them
individually to set and start them at your convenience.

The flags argument is where you specify absolute versus relative.

If you pass the constant TIMER_ABSTIME, then it’s absolute, pretty much as you’d
expect. You then pass the actual date and time when you want the timer to go off.

If you pass a zero, then the timer is considered relative to the current time.

Let’s look at how you specify the times. Here are key portions of two data structures
(in <time.h>):

struct timespec {
long tv_sec,

tv_nsec;
};

struct itimerspec {
struct timespec it_value,

it_interval;
};

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 147

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

There are two members in struct itimerspec:

it_value the one-shot value

it_interval the reload value

The it_value specifies either how long from now the timer should go off (in the case of
a relative timer), or when the timer should go off (in the case of an absolute timer).
Once the timer fires, the it_interval value specifies a relative value to reload the timer
with so that it can trigger again. Note that specifying a value of zero for the it_interval
makes it into a one-shot timer. You might expect that to create a “pure” periodic timer,
you’d just set the it_interval to the reload value, and set it_value to zero.
Unfortunately, the last part of that statement is false — setting the it_value to zero
disables the timer. If you want to create a pure periodic timer, set it_value equal to
it_interval and create the timer as a relative timer. This will fire once (for the it_value
delay) and then keep reloading with the it_interval delay.

Both the it_value and it_interval members are actually structures of type struct
timespec, another POSIX thing. The structure lets you specify sub-second
resolutions. The first member, tv_sec, is the number of seconds; the second member,
tv_nsec, is the number of nanoseconds in the current second. (What this means is that
you should never set tv_nsec past the value 1 billion — this would imply more than a
one-second offset.)

Here are some examples:

it_value.tv_sec = 5;
it_value.tv_nsec = 500000000;
it_interval.tv_sec = 0;
it_interval.tv_nsec = 0;

This creates a one-shot timer that goes off in 5.5 seconds. (We got the “.5” because of
the 500,000,000 nanoseconds value.)

We’re assuming that this is used as a relative timer, because if it weren’t, then that time
would have elapsed long ago (5.5 seconds past January 1, 1970, 00:00 GMT).

Here’s another example:

it_value.tv_sec = 987654321;
it_value.tv_nsec = 0;
it_interval.tv_sec = 0;
it_interval.tv_nsec = 0;

This creates a one-shot timer that goes off Thursday, April 19, 2001 at 00:25:21 EDT.
(There are a bunch of functions that help you convert between the human-readable date
and the “number of seconds since January 1, 1970, 00:00:00 GMT” representation.
Take a look in the C library at time(), asctime(), ctime(), mktime(), strftime(), etc.)

For this example, we’re assuming that it’s an absolute timer, because of the huge
number of seconds that we’d be waiting if it were relative (987654321 seconds is
about 31.3 years).

148 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using timers

Note that in both examples, I’ve said, “We’re assuming that. . . ” There’s nothing in the
code for timer_settime() that checks those assumptions and does the “right” thing! You
have to specify whether the timer is absolute or relative yourself. The kernel will
happily schedule something 31.3 years into the future.

One last example:

it_value.tv_sec = 1;
it_value.tv_nsec = 0;
it_interval.tv_sec = 0;
it_interval.tv_nsec = 500000000;

Assuming it’s relative, this timer will go off in one second, and then again every half
second after that. There’s absolutely no requirement that the reload values look
anything like the one-shot values.

A server with periodic pulses
The first thing we should look at is a server that wants to get periodic messages. The
most typical uses for this are:

• server-maintained timeouts on client requests

• periodic server maintenance cycles

Of course there are other, specialized uses for these things, such as network “keep
alive” messages that need to be sent periodically, retry requests, etc.

Server-maintained timeouts

In this scenario, a server is providing some kind of service to a client, and the client
has the ability to specify a timeout. There are lots of places where this is used. For
example, you may wish to tell a server, “Get me 15 second’s worth of data,” or “Let
me know when 10 seconds are up,” or “Wait for data to show up, but if it doesn’t show
up within 2 minutes, time out.”

These are all examples of server-maintained timeouts. The client sends a message to
the server, and blocks. The server receives periodic messages from a timer (perhaps
once per second, perhaps more or less often), and counts how many of those messages
it’s received. When the number of timeout messages exceeds the timeout specified by
the client, the server replies to the client with some kind of timeout indication or
perhaps with the data accumulated so far — it really depends on how the client/server
relationship is structured.

Here’s a complete example of a server that accepts one of two messages from clients
and a timeout message from a pulse. The first client message type says, “Let me know
if there’s any data available, but don’t block me for more than 5 seconds.” The second
client message type says, “Here’s some data.” The server should allow multiple clients
to be blocked on it, waiting for data, and must therefore associate a timeout with the
clients. This is where the pulse message comes in; it says, “One second has elapsed.”

In order to keep the code sample from being one overwhelming mass, I’ve included
some text before each of the major sections. You can find the complete version of
time1.c in the Sample Programs appendix.

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 149

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

Declarations

The first section of code here sets up the various manifest constants that we’ll be
using, the data structures, and includes all the header files required. We’ll present this
without comment. :-)

/*
* time1.c
*
* Example of a server that receives periodic messages from
* a timer, and regular messages from a client.
*
* Illustrates using the timer functions with a pulse.

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <sys/siginfo.h>
#include <sys/neutrino.h>

// message send definitions

// messages
#define MT_WAIT_DATA 2 // message from client
#define MT_SEND_DATA 3 // message from client

// pulses
#define CODE_TIMER 1 // pulse from timer

// message reply definitions
#define MT_OK 0 // message to client
#define MT_TIMEDOUT 1 // message to client

// message structure
typedef struct
{

// contains both message to and from client
int messageType;
// optional data, depending upon message
int messageData;

} ClientMessageT;

typedef union
{

// a message can be either from a client, or a pulse
ClientMessageT msg;
struct _pulse pulse;

} MessageT;

// client table
#define MAX_CLIENT 16 // max # of simultaneous clients

struct
{

int in_use; // is this client entry in use?
int rcvid; // receive ID of client
int timeout; // timeout left for client

} clients [MAX_CLIENT]; // client table

150 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using timers

int chid; // channel ID (global)
int debug = 1; // set debug value, 1=on, 0=off
char *progname = "time1.c";

// forward prototypes
static void setupPulseAndTimer (void);
static void gotAPulse (void);
static void gotAMessage (int rcvid, ClientMessageT *msg);

main()

This next section of code is the mainline. It’s responsible for:

• creating the channel (via ChannelCreate()),

• calling the setupPulseAndTimer() routine (to set up a once-per-second timer, with a
pulse as the event delivery method), and then

• sitting in a “do-forever” loop waiting for pulses or messages and processing them.

Notice the check against the return value from MsgReceive() — a zero indicates it’s a
pulse (and we don’t do any strong checking to ensure that it’s our pulse), a non-zero
indicates it’s a message. The processing of the pulse or message is done by
gotAPulse() and gotAMessage().

int
main (void) // ignore command-line arguments
{

int rcvid; // process ID of the sender
MessageT msg; // the message itself

if ((chid = ChannelCreate (0)) == -1) {
fprintf (stderr, "%s: couldn’t create channel!\n",

progname);
perror (NULL);
exit (EXIT_FAILURE);

}

// set up the pulse and timer
setupPulseAndTimer ();

// receive messages
for (;;) {

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL);

// determine who the message came from
if (rcvid == 0) {

// production code should check "code" field...
gotAPulse ();

} else {
gotAMessage (rcvid, &msg.msg);

}
}

// you’ll never get here
return (EXIT_SUCCESS);

}

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 151

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

setupPulseAndTimer()

In setupPulseAndTimer() you see the code where we define the type of timer and
notification scheme. When we talked about the timer function calls in the text above, I
said that the timer could deliver a signal, a pulse, or cause a thread to be created. That
decision is made here (in setupPulseAndTimer()).

Notice that we used the macro SIGEV_PULSE_INIT(). By using this macro, we’re
effectively assigning the value SIGEV_PULSE to the sigev_notify member. (Had we
used one of the SIGEV_SIGNAL*_INIT() macros instead, it would have delivered the
specified signal.) Notice that, for the pulse, we set the connection back to ourselves
via the ConnectAttach() call, and give it a code that uniquely identifies it (we chose the
manifest constant CODE_TIMER; something that we defined). The final parameter in
the initialization of the event structure is the priority of the pulse; we chose
SIGEV_PULSE_PRIO_INHERIT (the constant -1). This tells the kernel not to change
the priority of the receiving thread when the pulse arrives.

Near the bottom of this function, we call timer_create() to create a timer object within
the kernel, and then we fill it in with data saying that it should go off in one second
(the it_value member) and that it should reload with one-second repeats (the
it_interval member). Note that the timer is activated only when we call
timer_settime(), not when we create it.

The SIGEV_PULSE notification scheme is a Neutrino extension — POSIX has no
concept of pulses.

/*
* setupPulseAndTimer
*
* This routine is responsible for setting up a pulse so it
* sends a message with code MT_TIMER. It then sets up a
* periodic timer that fires once per second.

*/

void
setupPulseAndTimer (void)
{

timer_t timerid; // timer ID for timer
struct sigevent event; // event to deliver
struct itimerspec timer; // the timer data structure
int coid; // connection back to ourselves

// create a connection back to ourselves
coid = ConnectAttach (0, 0, chid, 0, 0);
if (coid == -1) {

fprintf (stderr, "%s: couldn’t ConnectAttach to self!\n",
progname);

perror (NULL);
exit (EXIT_FAILURE);

}

// set up the kind of event that we want to deliver -- a pulse
SIGEV_PULSE_INIT (&event, coid,

SIGEV_PULSE_PRIO_INHERIT, CODE_TIMER, 0);

// create the timer, binding it to the event

152 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using timers

if (timer_create (CLOCK_REALTIME, &event, &timerid) == -1) {
fprintf (stderr, "%s: couldn’t create a timer, errno %d\n",

progname, errno);
perror (NULL);
exit (EXIT_FAILURE);

}

// setup the timer (1s delay, 1s reload)
timer.it_value.tv_sec = 1;
timer.it_value.tv_nsec = 0;
timer.it_interval.tv_sec = 1;
timer.it_interval.tv_nsec = 0;

// and start it!
timer_settime (timerid, 0, &timer, NULL);

}

gotAPulse()

In gotAPulse(), you can see how we’ve implemented the server’s ability to timeout a
client. We walk down the list of clients, and since we know that the pulse is being
triggered once per second, we simply decrement the number of seconds that the client
has left before a timeout. If this value reaches zero, we reply back to that client with a
message saying, “Sorry, timed out” (the MT_TIMEDOUT message type). You’ll notice
that we prepare this message ahead of time (outside the for loop), and then send it as
needed. This is just a style/usage issue — if you expect to be doing a lot of replies,
then it might make sense to incur the setup overhead once. If you don’t expect to do a
lot of replies, then it might make more sense to set it up as needed.

If the timeout value hasn’t yet reached zero, we don’t do anything about it — the client
is still blocked, waiting for a message to show up.

/*
* gotAPulse
*
* This routine is responsible for handling the fact that a
* timeout has occurred. It runs through the list of clients
* to see which client has timed out, and replies to it with
* a timed-out response.
*/

void
gotAPulse (void)
{

ClientMessageT msg;
int i;

if (debug) {
time_t now;

time (&now);
printf ("Got a Pulse at %s", ctime (&now));

}

// prepare a response message
msg.messageType = MT_TIMEDOUT;

// walk down list of clients

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 153

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

for (i = 0; i < MAX_CLIENT; i++) {

// is this entry in use?
if (clients [i].in_use) {

// is it about to time out?
if (--clients [i].timeout == 0) {

// send a reply
MsgReply (clients [i].rcvid, EOK, &msg,

sizeof (msg));

// entry no longer used
clients [i].in_use = 0;

}
}

}
}

gotAMessage()

In gotAMessage(), you see the other half of the functionality, where we add a client to
the list of clients waiting for data (if it’s a MT_WAIT_DATA message), or we match up
a client with the message that just arrived (if it’s a MT_SEND_DATA message). Note
that for simplicity we didn’t add a queue of clients that are waiting to send data, but
for which no receiver is yet available — that’s a queue management issue left as an
exercise for the reader!

/*
* gotAMessage
*
* This routine is called whenever a message arrives. We
* look at the type of message (either a "wait for data"
* message, or a "here’s some data" message), and act
* accordingly. For simplicity, we’ll assume that there is
* never any data waiting. See the text for more discussion
* about this.

*/

void
gotAMessage (int rcvid, ClientMessageT *msg)
{

int i;

// determine the kind of message that it is
switch (msg -> messageType) {

// client wants to wait for data
case MT_WAIT_DATA:

// see if we can find a blank spot in the client table
for (i = 0; i < MAX_CLIENT; i++) {

if (!clients [i].in_use) {

// found one -- mark as in use, save rcvid, set timeout
clients [i].in_use = 1;
clients [i].rcvid = rcvid;
clients [i].timeout = 5;

154 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using timers

return;
}

}

fprintf (stderr, "Table full, message from rcvid %d ignored, "
"client blocked\n", rcvid);

break;

// client with data
case MT_SEND_DATA:

// see if we can find another client to reply to with
// this client’s data
for (i = 0; i < MAX_CLIENT; i++) {

if (clients [i].in_use) {

// found one -- reuse the incoming message
// as an outgoing message
msg -> messageType = MT_OK;

// reply to BOTH CLIENTS!
MsgReply (clients [i].rcvid, EOK, msg,

sizeof (*msg));
MsgReply (rcvid, EOK, msg, sizeof (*msg));

clients [i].in_use = 0;
return;

}
}

fprintf (stderr, "Table empty, message from rcvid %d ignored, "
"client blocked\n", rcvid);

break;
}

}

Notes

Some general notes about the code:

• If there’s no one waiting and a data message arrives, or there’s no room in the list
for a new waiter client, we print a message to standard error, but never reply to the
client. This means that some clients could be sitting there, REPLY-blocked forever
— we’ve lost their receive ID, so we have no way to reply to them later.

This is intentional in the design. You could modify this to add MT_NO_WAITERS
and MT_NO_SPACE messages, respectively, which can be returned whenever these
errors were detected.

• When a waiter client is waiting, and a data-supplying client sends to it, we reply to
both clients. This is crucial, because we want both clients to unblock.

• We reused the data-supplying client’s buffer for both replies. This again is a style
issue — in a larger application you’d probably have to have multiple types of return
values, in which case you may not want to reuse the same buffer.

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 155

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

• The implementation shown here uses a “cheesy” fixed-length array with an “in use”
flag (clients[i].in_use). Since my goal here isn’t to demonstrate owner-list
tricks and techniques for singly linked list management, I’ve shown the version
that’s the easiest to understand. Of course, in your production code, you’d probably
use a linked list of dynamically managed storage blocks.

• When the message arrives in the MsgReceive(), our decision as to whether it was in
fact “our” pulse is done on weak checking — we assume (as per the comments)
that all pulses are the CODE_TIMER pulse. Again, in your production code you’d
want to check the pulse’s code value and report on any anomalies.

Note that the example above shows just one way of implementing timeouts for clients.
Later in this chapter (in “Kernel timeouts”), we’ll talk about kernel timeouts, which
are another way of implementing almost the exact same thing, except that it’s driven
by the client, rather than a timer.

Periodic server maintenance cycles

Here we have a slightly different use for the periodic timeout messages. The messages
are purely for the internal use of the server and generally have nothing to do with the
client at all.

For example, some hardware might require that the server poll it periodically, as might
be the case with a network connection — the server should see if the connection is still
“up,” regardless of any instructions from clients.

Another case could occur if the hardware has some kind of “inactivity shutdown”
timer. For example, since keeping a piece of hardware powered up for long periods of
time may waste power, if no one has used that hardware for, say, 10 seconds, the
hardware could be powered down. Again, this has nothing to do with the client (except
that a client request will cancel this inactivity powerdown) — it’s just something that
the server has to be able to provide for its hardware.

Code-wise, this would be very similar to the example above, except that instead of
having a list of clients that are waiting, you’d have only one timeout variable.
Whenever a timer event arrives, this variable would be decremented; if zero, it would
cause the hardware to shut down (or whatever other activity you wish to perform at
that point). If it’s still greater than zero, nothing would happen.

The only “twist” in the design would be that whenever a message comes in from a
client that uses the hardware, you’d have to reset that timeout variable back to its full
value — having someone use that resource resets the “countdown.” Conversely, the
hardware may take a certain “warm-up” time in order to recover from being powered
down. In this case, once the hardware has been powered down, you would have to set
a different timer once a request arrived from a client. The purpose of this timer would
be to delay the client’s request from going to the hardware until the hardware has been
powered up again.

156 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Using timers

Timers delivering signals
So far, we’ve seen just about all there is to see with timers, except for one small thing.
We’ve been delivering messages (via a pulse), but you can also deliver POSIX signals.
Let’s see how this is done:
timer_create (CLOCK_REALTIME, NULL, &timerid);

This is the simplest way to create a timer that sends you a signal. This method raises
SIGALRM when the timer fires. If we had actually supplied a struct sigevent, we
could specify which signal we actually want to get:

struct sigevent event;

SIGEV_SIGNAL_INIT (&event, SIGUSR1);
timer_create (CLOCK_REALTIME, &event, &timerid);

This hits us with SIGUSR1 instead of SIGALRM.

You catch timer signals with normal signal handlers, there’s nothing special about
them.

Timers creating threads
If you’d like to create a new thread every time a timer fires, then you can do so with
the struct sigevent and all the other timer stuff we just discussed:

struct sigevent event;

SIGEV_THREAD_INIT (&event, maintenance_func, NULL);

You’ll want to be particularly careful with this one, because if you specify too short an
interval, you’ll be flooded with new threads! This could eat up all your CPU and
memory resources!

Getting and setting the realtime clock and more
Apart from using timers, you can also get and set the current realtime clock, and adjust
it gradually. The following functions can be used for these purposes:

Function Type? Description

ClockAdjust() Neutrino Gradually adjust the time

ClockCycles() Neutrino High-resolution snapshot

clock_getres() POSIX Fetch the base timing resolution

clock_gettime() POSIX Get the current time of day

ClockPeriod() Neutrino Get or set the base timing resolution

clock_settime() POSIX Set the current time of day

ClockTime() Neutrino Get or set the current time of day

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 157

Using timers © 2008, QNX Software Systems GmbH & Co. KG.

Getting and setting

The functions clock_gettime() and clock_settime() are the POSIX functions based on
the kernel function ClockTime(). These functions can be used to get or set the current
time of day. Unfortunately, setting this is a “hard” adjustment, meaning that whatever
time you specify in the buffer is immediately taken as the current time. This can have
startling consequences, especially when time appears to move “backwards” because
the time was ahead of the “real” time. Generally, setting a clock using this method
should be done only during power up or when the time is very much out of
synchronization with the real time.

That said, to effect a gradual change in the current time, the function ClockAdjust()
can be used:

int
ClockAdjust (clockid_t id,

const struct _clockadjust *new,
const struct _clockadjust *old);

The parameters are the clock source (always use CLOCK_REALTIME), and a new and
old parameter. Both the new and old parameters are optional, and can be NULL. The
old parameter simply returns the current adjustment. The operation of the clock
adjustment is controlled through the new parameter, which is a pointer to a structure
that contains two elements, tick_nsec_inc and tick_count. Basically, the operation of
ClockAdjust() is very simple. Over the next tick_count clock ticks, the adjustment
contained in tick_nsec_inc is added to the current system clock. This means that to
move the time forward (to “catch up” with the real time), you’d specify a positive value
for tick_nsec_inc. Note that you’d never move the time backwards! Instead, if your
clock was too fast, you’d specify a small negative number to tick_nsec_inc, which
would cause the current time to not advance as fast as it would. So effectively, you’ve
slowed down the clock until it matches reality. A rule of thumb is that you shouldn’t
adjust the clock by more than 10% of the base timing resolution of your system (as
indicated by the functions we’ll talk about next, ClockPeriod() and friends).

Adjusting the timebase

As we’ve been saying throughout this chapter, the timing resolution of everything in
the system is going to be no more accurate than the base timing resolution coming
into the system. So the obvious question is, how do you set the base timing resolution?
You can use the ClockPeriod() function for this:

int
ClockPeriod (clockid_t id,

const struct _clockperiod *new,
struct _clockperiod *old,
int reserved);

As with the ClockAdjust() function described above, the new and the old parameters
are how you get and/or set the values of the base timing resolution.

The new and old parameters are pointers to structures of struct _clockperiod,
which contains two members, nsec and fract. Currently, the fract member must be set
to zero (it’s the number of femtoseconds; we probably won’t use this kind of

158 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

resolution for a little while yet!) The nsec member indicates how many nanoseconds
elapse between ticks of the base timing clock. The default is 10 milliseconds (1
millisecond on machines with CPU speeds of greater than 40 MHz), so the nsec
member (if you use the “get” form of the call by specifying the old parameter) will
show approximately 10 million nanoseconds. (As we discussed above, in “Clock
interrupt sources,” it’s not going to be exactly 10 millisecond.)

While you can certainly feel free to try to set the base timing resolution on your
system to something ridiculously small, the kernel will step in and prevent you from
doing that. Generally, you can set most systems in the 1 millisecond to hundreds of
microseconds range.

An accurate timestamp

There is one timebase that might be available on your processor that doesn’t obey the
rules of “base timing resolution” we just described. Some processors have a
high-frequency (high-accuracy) counter built right into them, which Neutrino can let
you have access to via the ClockCycles() call. For example, on a Pentium processor
running at 200 MHz, this counter increments at 200 MHz as well, so it can give you
timing samples right down to 5 nanoseconds. This is particularly useful if you want to
figure out exactly how long a piece of code takes to execute (assuming of course, that
you don’t get preempted). You’d call ClockCycles() before your code and after your
code, and then compute the delta. See the Neutrino Library Reference for more
details.

Note that on an SMP system, you may run into a little problem. If your thread gets a
ClockCycles() value from one CPU and then eventually runs on another CPU, you
may get inconsistent results. This stems from the fact that the counters used by
ClockCycles() are stored in the CPU chips themselves, and are not synchronized
between CPUs. The solution to this is to use thread affinity to force the thread to run
on a particular CPU.

Advanced topics
Now that we’ve seen the basics of timers, we’ll look at a few advanced topics:

1 the CLOCK_SOFTTIME and CLOCK_MONOTONIC timer types, and

2 kernel timeouts

Other clock sources
We’ve seen the clock source CLOCK_REALTIME, and mentioned that a POSIX
conforming implementation may supply as many different clock sources as it feels
like, provided that it at least provides CLOCK_REALTIME.

What is a clock source? Simply put, it’s an abstract source of timing information. If
you want to put it into real life concepts, your personal watch is a clock source; it
measures how fast time goes by. Your watch will have a different level of accuracy

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 159

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

than someone else’s watch. You may forget to wind your watch, or get it new batteries,
and time may seem to “freeze” for a while. Or, you may adjust your watch, and all of a
sudden time seems to “jump.” These are all characteristics of a clock source.

Under Neutrino, CLOCK_REALTIME is based off of the “current time of day” clock
that Neutrino provides. (In the examples below, we refer to this as “Neutrino Time.”)
This means that if the system is running, and suddenly someone adjusts the time
forward by 5 seconds, the change may or may not adversely affect your programs
(depending on what you’re doing). Let’s look at a sleep (30); call:

Real Time Neutrino Time Activity

11:22:05 11:22:00 sleep (30);

11:22:15 11:22:15 Clock gets adjusted to 11:22:15; it was 5 seconds
too slow!

11:22:35 11:22:35 sleep (30); wakes up

Beautiful! The thread did exactly what you expected: at 11:22:00 it went to sleep for
thirty seconds, and at 11:22:35 (thirty elapsed seconds later) it woke up. Notice how
the sleep() “appeared” to sleep for 35 seconds, instead of 30; in real, elapsed time,
though, only 30 seconds went by because Neutrino’s clock got adjusted ahead by five
seconds (at 11:22:15).

The kernel knows that the sleep() call is a relative timer, so it takes care to ensure that
the specified amount of “real time” elapses.

Now, what if, on the other hand, we had used an absolute timer, and at 11:22:00 in
“Neutrino time” told the kernel to wake us up at 11:22:30?

Real Time Neutrino Time Activity

11:22:05 11:22:00 Wake up at 11:22:30

11:22:15 11:22:15 Clock gets adjusted as before

11:22:30 11:22:30 Wakes up

This too is just like what you’d expect — you wanted to be woken up at 11:22:30, and
(in spite of adjusting the time) you were.

However, there’s a small twist here. If you take a look at the
pthread_mutex_timedlock() function, for example, you’ll notice that it takes an
absolute timeout value, as opposed to a relative one:

int
pthread_mutex_timedlock (pthread_mutex_t *mutex,

const struct timespec *abs_timeout);

160 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

As you can imagine, there could be a problem if we try to implement a mutex that
times out in 30 seconds. Let’s go through the steps. At 11:22:00 (Neutrino time) we
decide that we’re going to try and lock a mutex, but we only want to block for a
maximum of 30 seconds. Since the pthread_mutex_timedlock() function takes an
absolute time, we perform a calculation: we add 30 seconds to the current time, giving
us 11:22:30. If we follow the example above, we would wake up at 11:22:30, which
means that we would have only locked the mutex for 25 seconds, instead of the full 30.

CLOCK_MONOTONIC

The POSIX people thought about this, and the solution they came up with was to make
the pthread_mutex_timedlock() function be based on CLOCK_MONOTONIC instead
of CLOCK_REALTIME. This is built in to the pthread_mutex_timedlock() function and
isn’t something that you can change.

They way CLOCK_MONOTONIC works is that its timebase is never adjusted. The
impact of that is that regardless of what time it is in the real world, if you base a timer
in CLOCK_MONOTONIC and add 30 seconds to it (and then do whatever adjustments
you want to the time), the timer will expire in 30 elapsed seconds.

The clock source CLOCK_MONOTONIC has the following characteristics:

• always increasing count

• based on real time

• starts at zero

The important thing about the clock starting at zero is that this is a different “epoch”
(or “base”) than CLOCK_REALTIME’s epoch of Jan 1 1970, 00:00:00 GMT. So, even
though both clocks run at the same rate, their values are not interchangeable.

So what does CLOCK_SOFTTIME do?

If we wanted to sort our clock sources by “hardness” we’d have the following
ordering. You can think of CLOCK_MONOTONIC as being a freight train — it doesn’t
stop for anyone. Next on the list is CLOCK_REALTIME, because it can be pushed
around a bit (as we saw with the time adjustment). Finally, we have
CLOCK_SOFTTIME, which we can push around a lot.

The main use of CLOCK_SOFTTIME is for things that are “soft” — things that aren’t
going to cause a critical failure if they don’t get done. CLOCK_SOFTTIME is “active”
only when the CPU is running. (Yes, this does sound obvious :-) but wait!) When the
CPU is powered down due to Power Management detecting that nothing is going to
happen for a little while, CLOCK_SOFTTIME gets powered down as well!

Here’s a timing chart showing the three clock sources:

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 161

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

Real Time Neutrino Time Activity

11:22:05 11:22:00 Wake up at “now” + 00:00:30 (see below)

11:22:15 11:22:15 Clock gets adjusted as before

11:22:20 11:22:20 Power management turns off CPU

11:22:30 11:22:30 CLOCK_REALTIME wakes up

11:22:35 11:22:35 CLOCK_MONOTONIC wakes up

11:45:07 11:45:07 Power management turns on CPU, and
CLOCK_SOFTTIME wakes up

There are a few things to note here:

• We precomputed our wakeup time as “now” plus 30 seconds and used an absolute
timer to wake us up at the computed time. This is different from waking up in 30
seconds using a relative timer.

• Note that for convenience of putting the example on one time-line, we’ve lied a
little bit. If the CLOCK_REALTIME thread did indeed wake up, (and later the same
for CLOCK_MONOTONIC) it would have caused us to exit out of power
management mode at that time, which would then cause CLOCK_SOFTTIME to
wake up.

When CLOCK_SOFTTIME “over-sleeps,” it wakes up as soon as it’s able — it doesn’t
stop “timing” while the CPU is powered down, it’s just not in a position to wake up
until after the CPU powers up. Other than that, CLOCK_SOFTTIME is just like
CLOCK_REALTIME.

Using different clock sources

To specify one of the different clock source, use a POSIX timing function that accepts
a clock ID. For example:

#include <time.h>

int
clock_nanosleep (clockid_t clock_id,

int flags,
const struct timespec *rqtp,
struct timespec *rmtp);

The clock_nanosleep() function accepts the clock_id parameter (telling it which clock
source to use), a flag (which determines if the time is relative or absolute), a
“requested sleep time” parameter (rqtp), as well as a pointer to an area where the
function can fill in the amount of time remaining (in the rmtp parameter, which can be
NULL if you don’t care).

162 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

Kernel timeouts
Neutrino lets you have a timeout associated with all kernel blocking states. We talked
about the blocking states in the Processes and Threads chapter, in the section “Kernel
states.” Most often, you’ll want to use this with message passing; a client will send a
message to a server, but the client won’t want to wait “forever” for the server to
respond. In that case, a kernel timeout is suitable. Kernel timeouts are also useful with
the pthread_join() function. You might want to wait for a thread to finish, but you
might not want to wait too long.

Here’s the definition for the TimerTimeout() function call, which is the kernel function
responsible for kernel timeouts:

#include <sys/neutrino.h>

int
TimerTimeout (clockid_t id,

int flags,
const struct sigevent *notify,
const uint64_t *ntime,
uint64_t *otime);

This says that TimerTimeout() returns an integer (a pass/fail indication, with -1
meaning the call failed and set errno, and zero indicating success). The time source
(CLOCK_REALTIME, etc.) is passed in id, and the flags parameter gives the relevant
kernel state or states. The notify should always be a notification event of type
SIGEV_UNBLOCK, and the ntime is the relative time when the kernel call should
timeout. The otime parameter indicates the previous value of the timeout — it’s not
used in the vast majority of cases (you can pass NULL).

It’s important to note that the timeout is armed by TimerTimeout(), and triggered on
entry into one of the kernel states specified by flags. It is cleared upon return from any
kernel call. This means that you must re-arm the timeout before each and every kernel
call that you want to be timeout-aware. You don’t have to clear the timeout after the
kernel call; this is done automagically.

Kernel timeouts with pthread_join()

The simplest case to consider is a kernel timeout used with the pthread_join() call.
Here’s how you’d set it up:

/*
* part of tt1.c

*/

#include <sys/neutrino.h>

// 1 billion nanoseconds in a second
#define SEC_NSEC 1000000000LL

int
main (void) // ignore arguments
{

uint64_t timeout;

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 163

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

struct sigevent event;
int rval;

...
// set up the event -- this can be done once

// This or event.sigev_notify = SIGEV_UNBLOCK:
SIGEV_UNBLOCK_INIT (&event);

// set up for 10 second timeout
timeout = 10LL * SEC_NSEC;

TimerTimeout (CLOCK_REALTIME, _NTO_TIMEOUT_JOIN,
&event, &timeout, NULL);

rval = pthread_join (thread_id, NULL);
if (rval == ETIMEDOUT) {

printf ("Thread %d still running after 10 seconds!\n",
thread_id);

}
...

(You’ll find the complete version of tt1.c in the Sample Programs appendix.)

We used the SIGEV_UNBLOCK_INIT() macro to initialize the event structure, but we
could have set the sigev_notify member to SIGEV_UNBLOCK ourselves. Even more
elegantly, we could pass NULL as the struct sigevent — TimerTimeout()
understands this to mean that it should use a SIGEV_UNBLOCK.

If the thread (specified in thread_id) is still running after 10 seconds, then the kernel
call will be timed out — pthread_join() will return with an errno of ETIMEDOUT.

You can use another shortcut — by specifying a NULL for the timeout value (ntime in
the formal declaration above), this tells the kernel not to block in the given state. This
can be used for polling. (While polling is generally discouraged, you could use it quite
effectively in the case of the pthread_join() — you’d periodically poll to see if the
thread you’re interested in was finished yet. If not, you could perform other work.)

Here’s a code sample showing a non-blocking pthread_join():

int
pthread_join_nb (int tid, void **rval)
{

TimerTimeout (CLOCK_REALTIME, _NTO_TIMEOUT_JOIN,
NULL, NULL, NULL);

return (pthread_join (tid, rval));
}

Kernel timeouts with message passing

Things get a little trickier when you’re using kernel timeouts with message passing.
Recall from the Message Passing chapter (in the “Message passing and client/server”
part) that the server may or may not be waiting for a message when the client sends it.
This means that the client could be blocked in either the SEND-blocked state (if the
server hasn’t received the message yet), or the REPLY-blocked state (if the server has
received the message, and hasn’t yet replied). The implication here is that you should

164 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

specify both blocking states for the flags argument to TimerTimeout(), because the
client might get blocked in either state.

To specify multiple states, you simply OR them together:

TimerTimeout (... _NTO_TIMEOUT_SEND | _NTO_TIMEOUT_REPLY, ...);

This causes the timeout to be active whenever the kernel enters either the
SEND-blocked state or the REPLY-blocked state. There’s nothing special about
entering the SEND-blocked state and timing out — the server hasn’t received the
message yet, so the server isn’t actively doing anything on behalf of the client. This
means that if the kernel times out a SEND-blocked client, the server doesn’t have to be
informed. The client’s MsgSend() function returns an ETIMEDOUT indication, and
processing has completed for the timeout.

However, as was mentioned in the Message Passing chapter (under
“_NTO_CHF_UNBLOCK”), if the server has already received the client’s message, and
the client wishes to unblock, there are two choices for the server. If the server has not
specified _NTO_CHF_UNBLOCK on the channel it received the message on, then the
client will be unblocked immediately, and the server won’t receive any indication that
an unblock has occurred. Most of the servers I’ve seen always have the
_NTO_CHF_UNBLOCK flag enabled. In that case, the kernel delivers a pulse to the
server, but the client remains blocked until the server replies! As mentioned in the
above-referenced section of the Message Passing chapter, this is done so that the server
has an indication that it should do something about the client’s unblock request.

Summary
We’ve looked at Neutrino’s time-based functions, including timers and how they can
be used, as well as kernel timeouts. Relative timers provide some form of event “in a
certain number of seconds,” while absolute timers provide this event “at a certain
time.” Timers (and, generally speaking, the struct sigevent) can cause the
delivery of a pulse, a signal, or a thread to start.

The kernel implements timers by storing the absolute time that represents the next
“event” on a sorted queue, and comparing the current time (as derived by the timer tick
interrupt service routine) against the head of the sorted queue. When the current time
is greater than or equal to the first member of the queue, the queue is processed (for all
matching entries) and the kernel dispatches events or threads (depending on the type
of queue entry) and (possibly) reschedules.

To provide support for power-saving features, you should disable periodic timers when
they’re not needed — otherwise, the power-saving feature won’t implement power
saving, because it believes that there’s something to “do” periodically.

You could also use the CLOCK_SOFTTIME clock source, unless of course you
actually wanted the timer to defeat the power saving feature.

Given the different types of clock sources, you have flexibility in determining the basis
of your clocks and timer; from “real, elapsed” time through to time sources that are
based on power management activities.

October 20, 2008 Chapter 3 • Clocks, Timers, and Getting a Kick Every So Often 165

Chapter 4

Interrupts

In this chapter. . .
Neutrino and interrupts 169
Writing interrupt handlers 175
Summary 188

October 20, 2008 Chapter 4 • Interrupts 167

© 2008, QNX Software Systems GmbH & Co. KG. Neutrino and interrupts

Neutrino and interrupts
In this section, we’ll take a look at interrupts, how we deal with them under Neutrino,
their impact on scheduling and realtime, and some interrupt-management strategies.

The first thing we need to ask is, “What’s an interrupt?”

An interrupt is exactly what it sounds like — an interruption of whatever was going on
and a diversion to another task.

For example, suppose you’re sitting at your desk working on job “A.” Suddenly, the
phone rings. A Very Important Customer (VIC) needs you to immediately answer
some skill-testing question. When you’ve answered the question, you may go back to
working on job “A,” or the VIC may have changed your priorities so that you push job
“A” off to the side and immediately start on job “B.”

Now let’s put that into perspective under Neutrino.

At any moment in time, the processor is busy processing the work for the
highest-priority READY thread (this will be a thread that’s in the RUNNING state). To
cause an interrupt, a piece of hardware on the computer’s bus asserts an interrupt line
(in our analogy, this was the phone ringing).

As soon as the interrupt line is asserted, the kernel jumps to a piece of code that sets
up the environment to run an interrupt service routine (ISR), a piece of software that
determines what should happen when that interrupt is detected.

The amount of time that elapses between the time that the interrupt line is asserted by
the hardware and the first instruction of the ISR being executed is called the interrupt
latency. Interrupt latency is measured in microseconds. Different processors have
different interrupt latency times; it’s a function of the processor speed, cache
architecture, memory speed, and, of course, the efficiency of the operating system.

In our analogy, if you’re listening to some music in your headphones and ignoring the
ringing phone, it will take you longer to notice this phone “interrupt.” Under Neutrino,
the same thing can happen; there’s a processor instruction that disables interrupts (cli
on the x86, for example). The processor won’t notice any interrupts until it reenables
interrupts (on the x86, this is the sti opcode).

To avoid CPU-specific assembly language calls, Neutrino provides the following calls:
InterruptEnable() and InterruptDisable(), and InterruptLock() and InterruptUnlock().
These take care of all the low-level details on all supported platforms.

The ISR usually performs the minimum amount of work possible, and then ends (in
our analogy, this was the conversation on the telephone with the VIC — we usually
don’t put the customer on hold and do several hours of work; we just tell the customer,
“Okay, I’ll get right on that!”). When the ISR ends, it can tell the kernel either that
nothing should happen (meaning the ISR has completely handled the event and
nothing else needs to be done about it) or that the kernel should perform some action
that might cause a thread to become READY.

October 20, 2008 Chapter 4 • Interrupts 169

Neutrino and interrupts © 2008, QNX Software Systems GmbH & Co. KG.

In our analogy, telling the kernel that the interrupt was handled would be like telling
the customer the answer — we can return back to whatever we were doing, knowing
that the customer has had their question answered.

Telling the kernel that some action needs to be performed is like telling the customer
that you’ll get back to them — the telephone has been hung up, but it could ring again.

Interrupt service routine
The ISR is a piece of code that’s responsible for clearing the source of the interrupt.

This is a key point, especially in conjunction with this fact: the interrupt runs at a
priority higher than any software priority. This means that the amount of time spent in
the ISR can have a serious impact on thread scheduling. You should spend as little
time as possible in the ISR. Let’s examine this in a little more depth.

Clearing the interrupt source

The hardware device that generated the interrupt will keep the interrupt line asserted
until it’s sure the software handled the interrupt. Since the hardware can’t read minds,
the software must tell it when it has responded to the cause of the interrupt. Generally,
this is done by reading a status register from a specific hardware port or a block of data
from a specific memory location.

In any event, there’s usually some form of positive acknowledgment between the
hardware and the software to “de-assert” the interrupt line. (Sometimes there isn’t an
acknowledgment; for example, a piece of hardware may generate an interrupt and
assume that the software will handle it.)

Because the interrupt runs at a higher priority than any software thread, we should
spend as little time as possible in the ISR itself to minimize the impact on scheduling.
If we clear the source of the interrupt simply by reading a register, and perhaps stuffing
that value into a global variable, then our job is simple.

This is the kind of processing done by the ISR for the serial port. The serial port
hardware generates an interrupt when a character has arrived. The ISR handler reads a
status register containing the character, and stuffs that character into a circular buffer.
Done. Total processing time: a few microseconds. And, it must be fast. Consider what
would happen if you were receiving characters at 115 Kbaud (a character about every
100 μs); if you spent anywhere near 100 μs handling the interrupt, you wouldn’t have
time to do anything else!

Don’t let me mislead you though — the serial port’s interrupt service routine could
take longer to complete. This is because there’s a tail-end poll that looks to see if more
characters are waiting in the device.

Clearly, minimizing the amount of time spent in the interrupt can be perceived as
“Good customer service” in our analogy — by keeping the amount of time that we’re
on the phone to a minimum, we avoid giving other customers a busy signal.

170 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Neutrino and interrupts

What if the handler needs to do a significant amount of work? Here are a couple of
possibilities:

• The amount of time required to clear the source of the interrupt is short, but the
amount of work required to talk to the hardware is long (the customer asked us a
short question that takes a long time to answer).

• The amount of time required to clear the source of the interrupt is long (the
customer’s description of the problem is long and involved).

In the first case, we’d like to clear the source of the interrupt as fast as possible and
then tell the kernel to have a thread do the actual work of talking to the slow hardware.
The advantage here is that the ISR spends just a tiny amount of time at the super-high
priority, and then the rest of the work is done based on regular thread priorities. This is
similar to your answering the phone (the super-high priority), and delegating the real
work to one of your assistants. We’ll look at how the ISR tells the kernel to schedule
someone else later in this chapter.

In the second case, things get ugly. If an ISR doesn’t clear the source of the interrupt
when it exits, the kernel will immediately be re-interrupted by the Programmable
Interrupt Controller (PIC — on the x86, this is the 8259 or equivalent) chip.

For PIC fans: we’ll talk about edge-sensitive and level-sensitive interrupts shortly.

We’ll continuously be running the ISR, without ever getting a chance to run the
thread-level code we need to properly handle the interrupt.

What kind of brain-damaged hardware requires a long time to clear the source of the
interrupt? Your basic PC floppy disk controller keeps the interrupt asserted until
you’ve read a number of status register values. Unfortunately, the data in the registers
isn’t available immediately, and you have to poll for this status data. This could take
milliseconds (a long time in computer terms)!

The solution to this is to temporarily mask interrupts — literally tell the PIC to ignore
interrupts from this particular source until you tell it otherwise. In this case, even
though the interrupt line is asserted from the hardware, the PIC ignores it and doesn’t
tell the processor about it. This lets your ISR schedule a thread to handle this hardware
outside the ISR. When your thread is finished transferring data from the hardware, it
can tell the PIC to unmask that interrupt. This lets interrupts from that piece of
hardware be recognized again. In our analogy, this is like transferring the VIC’s call to
your assistant.

Telling a thread to do something

How does an ISR tell the kernel that it should now schedule a thread to do some work?
(And conversely, how does it tell the kernel that it shouldn’t do that?)

Here’s some pseudo-code for a typical ISR:

FUNCTION ISR BEGIN
determine source of interrupt

October 20, 2008 Chapter 4 • Interrupts 171

Neutrino and interrupts © 2008, QNX Software Systems GmbH & Co. KG.

clear source of interrupt
IF thread required to do some work THEN

RETURN (event);
ELSE

RETURN (NULL);
ENDIF

END

The trick is to return an event (of type struct sigevent, which we talked about in
the Clocks, Timers, and Getting a Kick Every So Often chapter) instead of NULL.
Note that the event that you return must be persistent after the stack frame of the ISR
has been destroyed. This means that the event must be declared outside of the ISR, or
be passed in from a persistent data area using the area parameter to the ISR, or
declared as a static within the ISR itself. Your choice. If you return an event, the
kernel delivers it to a thread when your ISR returns. Because the event “alerts” a
thread (via a pulse, as we talked about in the Message Passing chapter, or via a signal),
this can cause the kernel to reschedule the thread that gets the CPU next. If you return
NULL from the ISR, then the kernel knows that nothing special needs to be done at
thread time, so it won’t reschedule any threads — the thread that was running at the
time that the ISR preempted it resumes running.

Level-sensitivity versus edge-sensitivity
There’s one more piece of the puzzle we’ve been missing. Most PICs can be
programmed to operate in level-sensitive or edge-sensitive mode.

In level-sensitive mode, the interrupt line is deemed to be asserted by the PIC while
it’s in the “on” state. (This corresponds to label “1” in the diagram below.)

Hardware interrupt
request line

Time

ISRx

332321 2

Level-sensitive interrupt assertion.

We can see that this would cause the problem described above with the floppy
controller example. Whenever the ISR finishes, the kernel tells the PIC, “Okay, I’ve
handled this interrupt. Tell me the next time that it gets activated” (step 2 in the
diagram). In technical terms, the kernel sends an End Of Interrupt (EOI) to the PIC.
The PIC looks at the interrupt line and if it’s still active would immediately
re-interrupt the kernel (step 3).

We could get around this by programming the PIC into edge-sensitive mode. In this
mode, the interrupt is noticed by the PIC only on an active-going edge.

172 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Neutrino and interrupts

Hardware interrupt
request line

Time

ISRx

3

14

3

2

1

2

Process

Edge-sensitive interrupt assertion.

Even if the ISR fails to clear the source of the interrupt, when the kernel sends the EOI
to the PIC (step 2 in the diagram), the PIC wouldn’t re-interrupt the kernel, because
there isn’t another active-going edge transition after the EOI. In order to recognize
another interrupt on that line, the line must first go inactive (step 4), and then active
(step 1).

Well, it seems all our problems have been solved! Simply use edge-sensitive for all
interrupts.

Unfortunately, edge-sensitive mode has a problem of its own.

Suppose your ISR fails to clear the cause of the interrupt. The hardware would still
have the interrupt line asserted when the kernel issues the EOI to the PIC. However,
because the PIC is operating in edge-sensitive mode, it never sees another interrupt
from that device.

Now what kind of bozo would write an ISR that forgot to clear the source of the
interrupt? Unfortunately it isn’t that cut-and-dried. Consider a case where two devices
(let’s say a SCSI bus adapter and an Ethernet card) are sharing the same interrupt line,
on a hardware bus architecture that allows that. (Now you’re asking, “Who’d set up a
machine like that?!?” Well, it happens, especially if the number of interrupt sources on
the PIC is in short supply!) In this case, the two ISR routines would be attached to the
same interrupt vector (this is legal, by the way), and the kernel would call them in turn
whenever it got an interrupt from the PIC for that hardware interrupt level.

October 20, 2008 Chapter 4 • Interrupts 173

Neutrino and interrupts © 2008, QNX Software Systems GmbH & Co. KG.

Hardware interrupt
request line (composite)
Hardware interrupt
request line (composite)

TimeTime

22

11

Hardware interrupt
line for Ethernet
Hardware interrupt
line for Ethernet

Hardware interrupt
line for SCSI
Hardware interrupt
line for SCSI

ISRSCSIISRSCSI ISREthernetISREthernet

33

Sharing interrupts — one at a time.

In this case, because only one of the hardware devices was active when its associated
ISR ran (the SCSI device), it correctly cleared the source of the interrupt (step 2). Note
that the kernel runs the ISR for the Ethernet device (in step 3) regardless — it doesn’t
know whether the Ethernet hardware requires servicing or not as well, so it always
runs the whole chain.

But consider this case:

Hardware interrupt
request line (composite)

Time

21

Hardware interrupt
line for Ethernet

Hardware interrupt
line for SCSI

ISRSCSI ISREthernet

3 5

4

Sharing interrupts — several at once.

Here’s where the problem lies.

The Ethernet device interrupted first. This caused the interrupt line to be asserted
(active-going edge was noted by the PIC), and the kernel called the first interrupt
handler in the chain (the SCSI disk driver; step 1 in the diagram). The SCSI disk
driver’s ISR looked at its hardware and said, “Nope, wasn’t me. Oh well, ignore it”
(step 2). Then the kernel called the next ISR in the chain, the Ethernet ISR (step 3).
The Ethernet ISR looked at the hardware and said, “Hey! That’s my hardware that
triggered the interrupt. I’m going to clear it.” Unfortunately, while it was clearing it,
the SCSI device generated an interrupt (step 4).

174 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

When the Ethernet ISR finished clearing the source of the interrupt (step 5), the
interrupt line is still asserted, thanks to the SCSI hardware device. However, the PIC,
being programmed in edge-sensitive mode, is looking for an inactive-to-active
transition (on the composite line) before recognizing another interrupt. That isn’t
going to happen because the kernel has already called both interrupt service routines
and is now waiting for another interrupt from the PIC.

In this case, a level-sensitive solution would be appropriate because when the Ethernet
ISR finishes and the kernel issues the EOI to the PIC, the PIC would pick up the fact
that an interrupt is still active on the bus and re-interrupt the kernel. The kernel would
then run through the chain of ISRs, and this time the SCSI driver would get a chance
to run and clear the source of the interrupt.

The selection of edge-sensitive versus level-sensitive is something that will depend on
the hardware and the startup code. Some hardware will support only one or the other;
hardware that supports either mode will be programmed by the startup code to one or
the other. You’ll have to consult the BSP (Board Support Package) documentation that
came with your system to get a definitive answer.

Writing interrupt handlers
Let’s see how to set up interrupt handlers — the calls, the characteristics, and some
strategies.

Attaching an interrupt handler
To attach to an interrupt source, you’d use either InterruptAttach() or
InterruptAttachEvent().

#include <sys/neutrino.h>

int
InterruptAttachEvent (int intr,

const struct sigevent *event,
unsigned flags);

int
InterruptAttach (int intr,

const struct sigevent *
(*handler) (void *area, int id),

const void *area,
int size,
unsigned flags);

The intr argument specifies which interrupt you wish to attach the specified handler to.
The values passed are defined by the startup code that initialized the PIC (amongst
other things) just before Neutrino was started. (There’s more information on the
startup code in your Neutrino documentation; look in the Utilities Reference, under
startup-*; e.g., startup-p5064.)

At this point, the two functions InterruptAttach() and InterruptAttachEvent() differ.
Let’s look at InterruptAttachEvent() as it’s simpler, first. Then we’ll come back to
InterruptAttach().

October 20, 2008 Chapter 4 • Interrupts 175

Writing interrupt handlers © 2008, QNX Software Systems GmbH & Co. KG.

Attaching with InterruptAttachEvent()

The InterruptAttachEvent() function takes two additional arguments: the argument
event, which is a pointer to the struct sigevent that should be delivered, and a
flags parameter. InterruptAttachEvent() tells the kernel that the event should be
returned whenever the interrupt is detected, and that the interrupt level should be
masked off. Note that it’s the kernel that interprets the event and figures out which
thread should be made READY.

Attaching with InterruptAttach()

With InterruptAttach(), we’re specifying a different set of parameters. The handler
parameter is the address of a function to call. As you can see from the prototype,
handler() returns a struct sigevent, which indicates what kind of an event to
return, and takes two parameters. The first passed parameter is the area, which is
simply the area parameter that’s passed to InterruptAttach() to begin with. The second
parameter, id, is the identification of the interrupt, which is also the return value from
InterruptAttach(). This is used to identify the interrupt and to mask, unmask, lock, or
unlock the interrupt. The fourth parameter to InterruptAttach() is the size, which
indicates how big (in bytes) the data area that you passed in area is. Finally, the flags
parameter is the same as that passed for the InterruptAttachEvent(); we’ll discuss that
shortly.

Now that you’ve attached an interrupt
At this point, you’ve called either InterruptAttachEvent() or InterruptAttach().

Since attaching an interrupt isn’t something you want everyone to be able to do,
Neutrino allows only threads that have “I/O privileges” enabled to do it (see the
ThreadCtl() function in the Neutrino Library Reference). Only threads running from
the root account or that are setuid() to root can obtain “I/O privileges”; hence we’re
effectively limiting this ability to root.

Here’s a code snippet that attaches an ISR to the hardware interrupt vector, which
we’ve identified in our code sample by the constant HW_SERIAL_IRQ:

#include <sys/neutrino.h>

int interruptID;

const struct sigevent *
intHandler (void *arg, int id)
{

...
}

int
main (int argc, char **argv)
{

...
interruptID = InterruptAttach (HW_SERIAL_IRQ,

intHandler,
&event,

176 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

sizeof (event),
0);

if (interruptID == -1) {
fprintf (stderr, "%s: can’t attach to IRQ %d\n",

progname, HW_SERIAL_IRQ);
perror (NULL);
exit (EXIT_FAILURE);

}
...
return (EXIT_SUCCESS);

}

This creates the association between the ISR (the routine called intHandler(); see
below for details) and the hardware interrupt vector HW_SERIAL_IRQ.

At this point, if an interrupt occurs on that interrupt vector, our ISR will be dispatched.
When we call InterruptAttach(), the kernel unmasks the interrupt source at the PIC
level (unless it’s already unmasked, which would be the case if multiple ISRs were
sharing the same interrupt).

Detaching an interrupt handler
When done with the ISR, we may wish to break the association between the ISR and
the interrupt vector:

int
InterruptDetach (int id);

I said “may” because threads that handle interrupts are generally found in servers, and
servers generally hang around forever. It’s therefore conceivable that a
well-constructed server wouldn’t ever issue the InterruptDetach() function call. Also,
the OS will remove any interrupt handlers that a thread or process may have associated
with it when the thread or process dies. So, simply falling off the end of main(),
calling exit(), or exiting due to a SIGSEGV, will dissociate your ISR from the interrupt
vector, automagically. (Of course, you’ll probably want to handle this a little better,
and stop your device from generating interrupts. If another device is sharing the
interrupt, then there are no two ways about it — you must clean up, otherwise you
won’t get any more interrupts if running edge-sensitive mode, or you’ll get a constant
flood of ISR dispatches if running in level-sensitive mode.)

Continuing the above example, if we want to detach, we’d use the following code:

void
terminateInterrupts (void)
{

InterruptDetach (interruptID);
}

If this was the last ISR associated with that interrupt vector, the kernel would
automatically mask the interrupt source at the PIC level so that it doesn’t generate
interrupts.

October 20, 2008 Chapter 4 • Interrupts 177

Writing interrupt handlers © 2008, QNX Software Systems GmbH & Co. KG.

The flags parameter
The last parameter, flags, controls all kinds of things:

_NTO_INTR_FLAGS_END

Indicates that this handler should go after other handlers that may be attached to
the same interrupt source.

_NTO_INTR_FLAGS_PROCESS

Indicates that this handler is associated with the process rather than the thread.
What this boils down to is that if you specify this flag, the interrupt handler will
be automatically dissociated from the interrupt source when the process exits. If
you don’t specify this flag, the interrupt handler will be dissociated from the
interrupt source when the thread that created the association in the first place
exits.

_NTO_INTR_FLAGS_TRK_MSK

Indicates that the kernel should track the number of times the interrupt has been
masked. This causes a little more work for the kernel, but is required to ensure
an orderly unmasking of the interrupt source should the process or thread exit.

The interrupt service routine
Let’s look at the ISR itself. In the first example, we’ll look at using the
InterruptAttach() function. Then, we’ll see the exact same thing, except with
InterruptAttachEvent().

Using InterruptAttach()

Continuing our example, here’s the ISR intHandler(). It looks at the 8250 serial port
chip that we assume is attached to HW_SERIAL_IRQ:

/*
* int1.c

*/

#include <stdio.h>
#include <sys/neutrino.h>

#define REG_RX 0
#define REG_II 2
#define REG_LS 5
#define REG_MS 6
#define IIR_MASK 0x07
#define IIR_MSR 0x00
#define IIR_THE 0x02
#define IIR_RX 0x04
#define IIR_LSR 0x06
#define IIR_MASK 0x07

volatile int serial_msr; // saved contents of Modem Status Reg
volatile int serial_rx; // saved contents of RX register
volatile int serial_lsr; // saved contents of Line Status Reg
static int base_reg = 0x2f8;

178 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

const struct sigevent *
intHandler (void *arg, int id)
{

int iir;
struct sigevent *event = (struct sigevent *)arg;

/*
* determine the source of the interrupt
* by reading the Interrupt Identification Register

*/

iir = in8 (base_reg + REG_II) & IIR_MASK;

/* no interrupt? */
if (iir & 1) {

/* then no event */
return (NULL);

}

/*
* figure out which interrupt source caused the interrupt,
* and determine if a thread needs to do something about it.
* (The constants are based on the 8250 serial port’s interrupt
* identification register.)

*/

switch (iir) {
case IIR_MSR:

serial_msr = in8 (base_reg + REG_MS);

/* wake up thread */
return (event);
break;

case IIR_THE:
/* do nothing */
break;

case IIR_RX:
/* note the character */
serial_rx = in8 (base_reg + REG_RX);
break;

case IIR_LSR:
/* note the line status reg. */
serial_lsr = in8 (base_reg + REG_LS);
break;

default:
break;

}

/* don’t bother anyone */
return (NULL);

}

The first thing we notice is that any variable that the ISR touches must be declared
volatile. On a single-processor box, this isn’t for the ISR’s benefit, but rather for
the benefit of the thread-level code, which can be interrupted at any point by the ISR.
Of course, on an SMP box, we could have the ISR running concurrently with the
thread-level code, in which case we have to be very careful about these sorts of things.

October 20, 2008 Chapter 4 • Interrupts 179

Writing interrupt handlers © 2008, QNX Software Systems GmbH & Co. KG.

With the volatile keyword, we’re telling the compiler not to cache the value of any
of these variables, because they can change at any point during execution.

The next thing we notice is the prototype for the interrupt service routine itself. It’s
marked as const struct sigevent *. This says that the routine intHandler()
returns a struct sigevent pointer. This is standard for all interrupt service
routines.

Finally, notice that the ISR decides if the thread will or won’t be sent an event. Only in
the case of a Modem Status Register (MSR) interrupt do we want the event to be
delivered (the event is identified by the variable event, which was conveniently passed
to the ISR when we attached it). In all other cases, we ignore the interrupt (and update
some global variables). In all cases, however, we clear the source of the interrupt. This
is done by reading the I/O port via in8().

Using InterruptAttachEvent()

If we were to recode the example above to use InterruptAttachEvent(), it would look
like this:

/*
* part of int2.c

*/

#include <stdio.h>
#include <sys/neutrino.h>

#define HW_SERIAL_IRQ 3
#define REG_RX 0
#define REG_II 2
#define REG_LS 5
#define REG_MS 6
#define IIR_MASK 0x07
#define IIR_MSR 0x00
#define IIR_THE 0x02
#define IIR_RX 0x04
#define IIR_LSR 0x06
#define IIR_MASK 0x07

static int base_reg = 0x2f8;

int
main (int argc, char **argv)
{

int intId; // interrupt id
int iir; // interrupt identification register
int serial_msr; // saved contents of Modem Status Reg
int serial_rx; // saved contents of RX register
int serial_lsr; // saved contents of Line Status Reg
struct sigevent event;

// usual main() setup stuff...

// set up the event
intId = InterruptAttachEvent (HW_SERIAL_IRQ, &event, 0);

for (;;) {

// wait for an interrupt event (could use MsgReceive instead)

180 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

InterruptWait (0, NULL);

/*
* determine the source of the interrupt (and clear it)
* by reading the Interrupt Identification Register

*/

iir = in8 (base_reg + REG_II) & IIR_MASK;

// unmask the interrupt, so we can get the next event
InterruptUnmask (HW_SERIAL_IRQ, intId);

/* no interrupt? */
if (iir & 1) {

/* then wait again for next */
continue;

}

/*
* figure out which interrupt source caused the interrupt,
* and determine if we need to do something about it

*/

switch (iir) {
case IIR_MSR:

serial_msr = in8 (base_reg + REG_MS);

/*
* perform whatever processing you would’ve done in
* the other example...

*/
break;

case IIR_THE:
/* do nothing */
break;

case IIR_RX:
/* note the character */
serial_rx = in8 (base_reg + REG_RX);
break;

case IIR_LSR:
/* note the line status reg. */
serial_lsr = in8 (base_reg + REG_LS);
break;

}
}

/* You won’t get here. */
return (0);

}

Notice that the InterruptAttachEvent() function returns an interrupt identifier (a small
integer). We’ve saved this into the variable intId so that we can use it later when we go
to unmask the interrupt.

After we’ve attached the interrupt, we then need to wait for the interrupt to hit. Since
we’re using InterruptAttachEvent(), we’ll get the event that we created earlier dropped
on us for every interrupt. Contrast this with what happened when we used
InterruptAttach() — in that case, our ISR determined whether or not to drop an event

October 20, 2008 Chapter 4 • Interrupts 181

Writing interrupt handlers © 2008, QNX Software Systems GmbH & Co. KG.

on us. With InterruptAttachEvent(), the kernel has no idea whether or not the
hardware event that caused the interrupt was “significant” for us, so it drops the event
on us every time it occurs, masks the interrupt, and lets us decide if the interrupt was
significant or not.

We handled the decision in the code example for InterruptAttach() (above) by
returning either a struct sigevent to indicate that something should happen, or by
returning the constant NULL. Notice the changes that we did to our code when we
modified it for InterruptAttachEvent():

• The “ISR” work is now done at thread time in main().

• We must always unmask the interrupt source after receiving our event (because the
kernel masks it for us).

• If the interrupt is not significant to us, we don’t do anything and simply loop
around again in the for statement, waiting for another interrupt.

• If the interrupt is significant to us, we handle it directly (in the case IIR_MSR

part).

Where you decide to clear the source of the interrupt depends on your hardware and
the notification scheme you’ve chosen. With the combination of SIGEV_INTR and
InterruptWait(), the kernel doesn’t “queue” more than one notification; with
SIGEV_PULSE and MsgReceive(), the kernel will queue all the notifications. If you’re
using signals (and SIGEV_SIGNAL, for example), you define whether the signals are
queued or not. With some hardware schemes, you may need to clear the source of the
interrupt before you can read more data out of the device; with other pieces of
hardware, you don’t have to and can read data while the interrupt is asserted.

An ISR returning SIGEV_THREAD is one scenario that fills me with absolute fear! I’d
recommend avoiding this “feature” if at all possible.

In the serial port example above, we’ve decided to use InterruptWait(), which will
queue one entry. The serial port hardware may assert another interrupt immediately
after we’ve read the interrupt identification register, but that’s fine, because at most one
SIGEV_INTR will get queued. We’ll pick up this notification on our next iteration of
the for loop.

InterruptAttach() versus InterruptAttachEvent()

This naturally brings us to the question, “Why would I use one over the other?”

The most obvious advantage of InterruptAttachEvent() is that it’s simpler to use than
InterruptAttach() — there’s no ISR routine (hence no need to debug it). Another
advantage is that since there’s nothing running in kernel space (as an ISR routine
would be) there’s no danger of crashing the entire system. If you do encounter a
programming error, then the process will crash, rather than the whole system.
However, it may be more or less efficient than InterruptAttach() depending on what
you’re trying to achieve. This issue is complex enough that reducing it to a few words

182 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

(like “faster” or “better”) probably won’t suffice. We’ll need to look at a few pictures
and scenarios.

Here’s what happens when we use InterruptAttach():

thread 1

Interrupt

kernelT
IM

E

ISR

kernel
(resched)

thread 2

Control flow with InterruptAttach().

The thread that’s currently running (“thread1”) gets interrupted, and we go into the
kernel. The kernel saves the context of “thread1.” The kernel then does a lookup to see
who’s responsible for handling the interrupt and decides that “ISR1” is responsible. At
this point, the kernel sets up the context for “ISR1” and transfers control. “ISR1”
looks at the hardware and decides to return a struct sigevent. The kernel notices
the return value, figures out who needs to handle it, and makes them READY. This
may cause the kernel to schedule a different thread to run, “thread2.”

Now, let’s contrast that with what happens when we use InterruptAttachEvent():

InterruptT
IM

E kernel
(resched)

thread 2

thread 1

Control flow with InterruptAttachEvent().

In this case, the servicing path is much shorter. We made one context switch from the
currently running thread (“thread1”) into the kernel. Instead of doing another context
switch into the ISR, the kernel simply “pretended” that the ISR returned a struct
sigevent and acted on it, rescheduling “thread2” to run.

Now you’re thinking, “Great! I’m going to forget all about InterruptAttach() and just
use the easier InterruptAttachEvent().”

October 20, 2008 Chapter 4 • Interrupts 183

Writing interrupt handlers © 2008, QNX Software Systems GmbH & Co. KG.

That’s not such a great idea, because you may not need to wake up for every interrupt
that the hardware generates! Go back and look at the source example above — it
returned an event only when the modem status register on the serial port changed state,
not when a character arrived, not when a line status register changed, and not when the
transmit holding buffer was empty.

In that case, especially if the serial port was receiving characters (that you wanted to
ignore), you’d be wasting a lot of time rescheduling your thread to run, only to have it
look at the serial port and decide that it didn’t want to do anything about it anyway. In
that case, things would look like this:

thread 1

Interrupt

T
IM

E

kernel
(resched)

thread 2

kernel
(resched)

thread 1

Control flow with InterruptAttachEvent() and unnecessary rescheduling.

All that happens is that you incur a thread-to-thread context switch to get into
“thread2” which looks at the hardware and decides that it doesn’t need to do anything
about it, costing you another thread-to-thread context switch to get back to “thread1.”

Here’s how things would look if you used InterruptAttach() but didn’t want to
schedule a different thread (i.e., you returned):

thread 1

Interrupt

T
IM

E

kernel

kernel
(no resched)

thread 1

ISR

Control flow with InterruptAttach() with no thread rescheduling.

184 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

The kernel knows that “thread1” was running, and the ISR didn’t tell it to do anything,
so it can just go right ahead and let “thread1” continue after the interrupt.

Just for reference, here’s what the InterruptAttachEvent() function call does (note that
this isn’t the real source, because InterruptAttachEvent() actually binds a data
structure to the kernel — it isn’t implemented as a discrete function that gets called!):

// the "internal" handler
static const struct sigevent *
internalHandler (void *arg, int id)
{

struct sigevent *event = arg;

InterruptMask (intr, id);
return (arg);

}

int
InterruptAttachEvent (int intr,

const struct sigevent *event, unsigned flags)
{

static struct sigevent static_event;

memcpy (&static_event, event, sizeof (static_event));

return (InterruptAttach (intr, internalHandler,
&static_event, sizeof (*event), flags));

}

The trade-offs

So, which function should you use? For low-frequency interrupts, you can almost
always get away with InterruptAttachEvent(). Since the interrupts occur infrequently,
there won’t be a significant impact on overall system performance, even if you do
schedule threads unnecessarily. The only time that this can come back to haunt you is
if another device is chained off the same interrupt — in this case, because
InterruptAttachEvent() masks the source of the interrupt, it’ll effectively disable
interrupts from the other device until the interrupt source is unmasked. This is a
concern only if the first device takes a long time to be serviced. In the bigger picture,
this is a hardware system design issue — you shouldn’t chain slow-to-respond devices
on the same line as high-speed devices.

For higher-frequency interrupts, it’s a toss up, and there are many factors:

• Unnecessary interrupts — if there will be a significant number of these, you’re
better off using InterruptAttach() and filtering them out in the ISR. For example,
consider the case of a serial device. A thread may issue a command saying “Get me
64 bytes.” If the ISR is programmed with the knowledge that nothing useful will
happen until 64 bytes are received from the hardware, the ISR has effectively
filtered the interrupts. The ISR will then return an event only after 64 bytes have
been accumulated.

• Latency — if your hardware is sensitive to the amount of time that passes between
asserting the interrupt request and the execution of the ISR, you should use

October 20, 2008 Chapter 4 • Interrupts 185

Writing interrupt handlers © 2008, QNX Software Systems GmbH & Co. KG.

InterruptAttach() to minimize this interrupt latency. This is because the kernel is
very fast at dispatching the ISR.

• Buffering — if your hardware has buffering in it, you may be able to get away with
InterruptAttachEvent() and a single-entry queueing mechanism like SIGEV_INTR
and InterruptWait(). This method lets the hardware interrupt as often as it wants,
while letting your thread pick the values out of the hardware’s buffer when it can.
Since the hardware is buffering the data, there’s no problem with interrupt
latencies.

ISR functions
The next issue we should tackle is the list of functions an ISR is allowed to call.

Let me digress just a little at this point. Historically, the reason that ISRs were so
difficult to write (and still are in most other operating systems) is that the ISR runs in a
special environment.

One particular thing that complicates writing ISRs is that the ISR isn’t actually a
“proper” thread as far as the kernel is concerned. It’s this weird “hardware” thread, if
you want to call it that. This means that the ISR isn’t allowed to do any “thread-level”
things, like messaging, synchronization, kernel calls, disk I/O, etc.

But doesn’t that make it much harder to write ISR routines? Yes it does. The solution,
therefore, is to do as little work as possible in the ISR, and do the rest of the work at
thread-level, where you have access to all the services.

Your goals in the ISR should be:

• Fetch information that is transitory.

• Clear the source of the ISR.

• Optionally dispatch a thread to get the “real” work done.

This “architecture” hinges on the fact that Neutrino has very fast context-switch times.
You know that you can get into your ISR quickly to do the time-critical work. You
also know that when the ISR returns an event to trigger thread-level work, that thread
will start quickly as well. It’s this “don’t do anything in the ISR” philosophy that
makes Neutrino ISRs so simple!

So, what calls can you use in the ISR? Here’s a summary (for the official list, see the
Summary of Safety Information appendix in the Neutrino Library Reference):

• atomic_*() functions (such as atomic_set())

• mem*() functions (such as memcpy())

• most str*() functions (such as strcmp()). Beware, though, that not all these are safe,
such as strdup() — it calls malloc(), which uses a mutex, and that’s not allowed.
For the string functions, you should really consult the individual entries in the
Neutrino Library Reference before using.

186 Chapter 4 • Interrupts October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing interrupt handlers

• InterruptMask()

• InterruptUnmask()

• InterruptLock()

• InterruptUnlock()

• InterruptDisable()

• InterruptEnable()

• in*() and out*()

Basically, the rule of thumb is, “Don’t use anything that’s going to take a huge amount
of stack space or time, and don’t use anything that issues kernel calls.” The stack
space requirement stems from the fact that ISRs have very limited stacks.

The list of interrupt-safe functions makes sense — you might want to move some
memory around, in which case the mem*() and str*() functions are a good choice.
You’ll most likely want to read data registers from the hardware (in order to save
transitory data variables and/or clear the source of the interrupt), so you’ll want to use
the in*() and out*() functions.

What about the bewildering choice of Interrupt*() functions? Let’s examine them in
pairs:

InterruptMask() and InterruptUnmask()

These functions are responsible for masking the interrupt source at the PIC
level; this keeps them from being passed on to the CPU. Generally, you’d use
this if you want to perform further work in the thread and can’t clear the source
of the interrupt in the ISR itself. In this case, the ISR would issue
InterruptMask(), and the thread would issue InterruptUnmask() when it had
completed whatever operation it was invoked to do.

Keep in mind that InterruptMask() and InterruptUnmask() are counting — you
must “unmask” the same number of times that you’ve “masked” in order for the
interrupt source to be able to interrupt you again.

By the way, note that the InterruptAttachEvent() performs the InterruptMask()
for you (in the kernel) — therefore you must call InterruptUnmask() from your
interrupt-handling thread.

InterruptLock() and InterruptUnlock()

These functions are used to disable (InterruptLock()) and enable
(InterruptUnlock()) interrupts on a single or multiprocessor system. You’d want
to disable interrupts if you needed to protect the thread from the ISR (or
additionally, on an SMP system, the ISR from a thread). Once you’ve done your
critical data manipulation, you’d then enable interrupts. Note that these
functions are recommended over the “old” InterruptDisable() and
InterruptEnable() functions as they will operate properly on an SMP system.

October 20, 2008 Chapter 4 • Interrupts 187

Summary © 2008, QNX Software Systems GmbH & Co. KG.

There’s an additional cost over the “old” functions to perform the check on an
SMP system, but in a single processor system it’s negligible, which is why I’m
recommending that you always use InterruptLock() and InterruptUnlock().

InterruptDisable() and InterruptEnable()

These functions shouldn’t be used in new designs. Historically, they were used
to invoke the x86 processor instructions cli and sti when Neutrino was
x86-only. They’ve since been upgraded to handle all supported processors, but
you should use InterruptLock() and InterruptUnlock() (to keep SMP systems
happy).

The one thing that bears repeating is that on an SMP system, it is possible to have both
the interrupt service routine and another thread running at the same time.

Summary
Keep the following things in mind when dealing with interrupts:

• Don’t take too long in an ISR — perform the minimum amount of work you can
get away with. This helps minimize interrupt latency and debugging.

• Use InterruptAttach() when you need to access the hardware as soon as the
interrupt occurs; otherwise, avoid it.

• Use InterruptAttachEvent() at all other times. The kernel will schedule a thread
(based on the event that you passed) to handle the interrupt.

• Protect variables used by both the interrupt service routine (if using
InterruptAttach()) and threads by calling InterruptLock() and InterruptUnlock().

• Declare variables that are going to be used between the thread and the ISR as
volatile so that the compiler isn’t caching “stale” values that have been changed
by the ISR.

188 Chapter 4 • Interrupts October 20, 2008

Chapter 5

Resource Managers

In this chapter. . .
What is a resource manager? 191
The client’s view 192
The resource manager’s view 199
The resource manager library 200
Writing a resource manager 204
Handler routines 226
Alphabetical listing of connect and I/O functions 230
Examples 252
Advanced topics 269
Summary 283

October 20, 2008 Chapter 5 • Resource Managers 189

© 2008, QNX Software Systems GmbH & Co. KG. What is a resource manager?

What is a resource manager?
In this chapter, we’ll take a look at what you need to understand in order to write a
resource manager.

A resource manager is simply a program with some well-defined characteristics. This
program is called different things on different operating systems — some call them
“device drivers,” “I/O managers,” “filesystems,” “drivers,” “devices,” and so on. In all
cases, however, the goal of this program (which we’ll just call a resource manager) is
to present an abstract view of some service.

Also, since Neutrino is a POSIX-conforming operating system, it turns out that the
abstraction is based on the POSIX specification.

Examples of resource managers
Before we get carried away, let’s take a look at a couple of examples and see how they
“abstract” some “service.” We’ll look at an actual piece of hardware (a serial port) and
something much more abstract (a filesystem).

Serial port

On a typical system, there usually exists some way for a program to transmit output
and receive input from a serial, RS-232-style hardware interface. This hardware
interface consists of a bunch of hardware devices, including a UART (Universal
Asynchronous Receiver Transmitter) chip which knows how to convert the CPU’s
parallel data stream into a serial data stream and vice versa.

In this case, the “service” being provided by the serial resource manager is the
capability for a program to send and receive characters on a serial port.

We say that an “abstraction” occurs, because the client program (the one ultimately
using the service) doesn’t know (nor does it care about) the details of the UART chip
and its implementation. All the client program knows is that to send some characters it
should call the fprintf() function, and to receive some characters it should call the
fgets() function. Notice that we used standard, POSIX function calls to interact with
the serial port.

Filesystem

As another example of a resource manager, let’s examine the filesystem. This consists
of a number of cooperating modules: the filesystem itself, the block I/O driver, and the
disk driver.

The “service” being offered here is the capability for a program to read and write
characters on some medium. The “abstraction” that occurs is the same as with the
serial port example above — the client program can still use the exact same function
calls (e.g., the fprintf() and fgets() functions) to interact with a storage medium instead
of a serial port. In fact, the client really doesn’t know or need to know which resource
manager it’s interacting with.

October 20, 2008 Chapter 5 • Resource Managers 191

The client’s view © 2008, QNX Software Systems GmbH & Co. KG.

Characteristics of resource managers
As we saw in our examples (above), the key to the flexibility of the resource managers
is that all the functionality of the resource manager is accessed using standard POSIX
function calls — we didn’t use “special” functions when talking to the serial port. But
what if you need to do something “special,” something very device-specific? For
example, setting the baud rate on a serial port is an operation that’s very specific to the
serial port resource manager — it’s totally meaningless to the filesystem resource
manager. Likewise, setting the file position via lseek() is useful in a filesystem, but
meaningless in a serial port. The solution POSIX chose for this is simple. Some
functions, like lseek(), simply return an error code on a device that doesn’t support
them. Then there’s the “catch-all” device control function, called devctl(), that allows
device-specific functionality to be provided within a POSIX framework. Devices that
don’t understand the particular devctl() command simply return an error, just as
devices that don’t understand the lseek() command would.

Since we’ve mentioned lseek() and devctl() as two common commands, it’s
worthwhile to note that pretty much all file-descriptor (or FILE * stream) function
calls are supported by resource managers.

This naturally leads us to the conclusion that resource managers will be dealing almost
exclusively with file-descriptor based function calls. Since Neutrino is a
message-passing operating system, it follows that the POSIX functions get translated
into messages, which are then sent to resource managers. It is this “POSIX-function to
message-passing” translation trick that lets us decouple clients from resource
managers. All a resource manager has to do is handle certain well-defined messages.
All a client has to do is generate the same well-defined messages that the resource
manager is expecting to receive and handle.

Since the interaction between clients and resource managers is based on message
passing, it makes sense to make this “translation layer” as thin as possible. For
example, when a client does an open() and gets back a file descriptor, the file
descriptor is in fact the connection ID! This connection ID (file descriptor) gets used
in the client’s C library functions (such as read()) where a message is created and sent
to the resource manager.

The client’s view
We’ve already seen a hint of what the client expects. It expects a file-descriptor-based
interface, using standard POSIX functions.

In reality, though, there are a few more things going on “under the hood.”

For example, how does the client actually connect to the appropriate resource
manager? What happens in the case of union filesystems (where multiple filesystems
are responsible for the same “namespace”)? How are directories handled?

192 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The client’s view

Finding the server
The first thing that a client does is call open() to get a file descriptor. (Note that if the
client calls the higher-level function fopen() instead, the same discussion applies —
fopen() eventually calls open()).

Inside the C library implementation of open(), a message is constructed, and sent to
the process manager (procnto) component. The process manager is responsible for
maintaining information about the pathname space. This information consists of a tree
structure that contains pathnames and node descriptor, process ID, channel ID, and
handle associations:

Resource managers Resource managers
Pathname space

(stored by the Process Manager)

procnto / fsys-qnx4(0,1,1,1) (0,4965,1,1)

boot ser1 devc-ser8250 (0,44,1,1)procnto(0,1,1,1)

1 ser2 (0,44,1,2)procnto devc-ser8250(0,1,1,1)

4965 con (0,725,1,1)devc-conprocnto(0,1,1,1)

proc devprocnto procnto(0,1,1,1) (0,1,1,1)

......

Neutrino’s namespace.

Note that in the diagram above and in the descriptions that follow, I’ve used the
designation fs-qnx4 as the name of the resource manager that implements the QNX 4
filesystem — in reality, it’s a bit more complicated, because the filesystem drivers are
based on a series of DLLs that get bundled together. So, there’s actually no executable
called fs-qnx4; we’re just using it as a placeholder for the filesystem component.

Let’s say that the client calls open():

fd = open ("/dev/ser1", O_WRONLY);

In the client’s C library implementation of open(), a message is constructed and sent to
the process manager. This message states, “I want to open /dev/ser1; who should I
talk to?”

Client Process
Manager

(1) Query

(2) Response

First stage of name resolution.

October 20, 2008 Chapter 5 • Resource Managers 193

The client’s view © 2008, QNX Software Systems GmbH & Co. KG.

The process manager receives the request and looks through its tree structure to see if
there’s a match (let’s assume for now that we need an exact match). Sure enough, the
pathname “/dev/ser1” matches the request, and the process manager is able to reply
to the client: “I found /dev/ser1. It’s being handled by node descriptor 0, process
ID 44, channel ID 1, handle 1. Send them your request!”

Remember, we’re still in the client’s open() code!

So, the open() function creates another message, and a connection to the specified
node descriptor (0, meaning our node), process ID (44), channel ID (1), stuffing the
handle into the message itself. This message is really the “connect” message — it’s
the message that the client’s open() library uses to establish a connection to a resource
manager (step 3 in the picture below). When the resource manager gets the connect
message, it looks at it and performs validation. For example, you may have tried to
open-for-write a resource manager that implements a read-only filesystem, in which
case you’d get back an error (in this case, EROFS). In our example, however, the serial
port resource manager looks at the request (we specified O_WRONLY; perfectly legal
for a serial port) and replies back with an EOK (step 4 in the picture below).

Client Process
Manager

(3) Connect

(4) Reply

The _IO_CONNECT message.

Finally, the client’s open() returns to the client with a valid file descriptor.

Really, this file descriptor is the connection ID we just used to send a connect message
to the resource manager! Had the resource manager not given us an EOK, we would
have passed this error back to the client (via errno and a -1 return from open()).

(It’s worthwhile to note that the process manager can return the node ID, process ID
and channel ID of more than one resource manager in response to a name resolution
request. In that case, the client will try each of them in turn until one succeeds, returns
an error that’s not ENOSYS, ENOENT, or EROFS, or the client exhausts the list, in
which case the open() fails. We’ll discuss this further when we look at the “before”
and “after” flags, later on.)

Finding the process manager
Now that we understand the basic steps used to find a particular resource manager, we
need to solve the mystery of, “How did we find the process manager to begin with?”
Actually, this one’s easy. By definition, the process manager has a node descriptor of 0
(meaning this node), a process ID of 1, and a channel ID of 1. So, the ND/PID/CHID
triplet 0/1/1 always identifies the process manager.

194 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The client’s view

Handling directories
The example we used above was that of a serial port resource manager. We also stated
an assumption: “let’s assume for now that we need an exact match.” The assumption is
only half-true — all the pathname matching we’ll be talking about in this chapter has
to completely match a component of the pathname, but may not have to match the
entire pathname. We’ll clear this up shortly.

Suppose I had code that does this:

fp = fopen ("/etc/passwd", "r");

Recall that fopen() eventually calls open(), so we have open() asking about the
pathname /etc/passwd. But there isn’t one in the diagram:

Resource managers Resource managers
Pathname space

(stored by the Process Manager)

procnto / fsys-qnx4(0,1,1,1) (0,4965,1,1)

boot ser1 devc-ser8250 (0,44,1,1)procnto(0,1,1,1)

1 ser2 (0,44,1,2)procnto devc-ser8250(0,1,1,1)

4965 con (0,725,1,1)devc-conprocnto(0,1,1,1)

proc devprocnto procnto(0,1,1,1) (0,1,1,1)

......

Neutrino’s namespace.

We do notice, however, that fs-qnx4 has registered its association of ND/PID/CHID
at the pathname “/.” Although it’s not shown on the diagram, fs-qnx4 registered
itself as a directory resource manager — it told the process manager that it’ll be
responsible for “/” and below. This is something that the other, “device” resource
managers (e.g., the serial port resource manager) didn’t do. By setting the “directory”
flag, fs-qnx4 is able to handle the request for “/etc/passwd” because the first part
of the request is “/” — a matching component!

What if we tried to do the following?

fd = open ("/dev/ser1/9600.8.1.n", O_WRONLY);

Well, since the serial port resource manager doesn’t have the directory flag set, the
process manager will look at it and say “Nope, sorry, the pathname /dev/ser1 is not
a directory. I’m going to have to fail this request.” The request fails right then and
there — the process manager doesn’t even return a ND/PID/CHID/handle that the
open() function should try.

October 20, 2008 Chapter 5 • Resource Managers 195

The client’s view © 2008, QNX Software Systems GmbH & Co. KG.

Obviously, as hinted at in my choice of parameters for the open() call above, it may be
a clever idea to allow some “traditional” drivers to be opened with additional
parameters past the “usual” name. However, the rule of thumb here is, “If you can get
away with it in a design review meeting, knock yourself out.” Some of my students,
upon hearing me say that, pipe up with “But I am the design review committee!” To
which I usually reply, “You are given a gun. Shoot yourself in the foot. :-)”

Union’d filesystems
Take a closer look at the diagram we’ve been using:

Resource managers Resource managers
Pathname space

(stored by the Process Manager)

procnto / fsys-qnx4(0,1,1,1) (0,4965,1,1)

boot ser1 devc-ser8250 (0,44,1,1)procnto(0,1,1,1)

1 ser2 (0,44,1,2)procnto devc-ser8250(0,1,1,1)

4965 con (0,725,1,1)devc-conprocnto(0,1,1,1)

proc devprocnto procnto(0,1,1,1) (0,1,1,1)

......

Neutrino’s namespace.

Notice how both fs-qnx4 and the process manager have registered themselves as
being responsible for “/”? This is fine, and nothing to worry about. In fact, there are
times when it’s a very good idea. Let’s consider one such case.

Suppose you have a very slow network connection and you’ve mounted a networked
filesystem over it. You notice that you often use certain files and wish that they were
somehow magically “cached” on your system, but alas, the designers of the network
filesystem didn’t provide a way for you to do that. So, you write yourself a caching
filesystem (called fs-cache) that sits on top of the network filesystem. Here’s how it
looks from the client’s point of view:

Resource managers Resource managers
Pathname space

(stored by the Process Manager)

fs-cache

/

fs-nfs(0,326,1,1) (0,77625,1,1)nfs

Overlaid filesystems.

196 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The client’s view

Both fs-nfs (the network filesystem) and your caching filesystem (fs-cache) have
registered themselves for the same prefix, namely “/nfs.” As we mentioned above,
this is fine, normal, and legal under Neutrino.

Let’s say that the system just started up and your caching filesystem doesn’t have
anything in it yet. A client program tries to open a file, let’s say
/nfs/home/rk/abc.txt. Your caching filesystem is “in front of” the network
filesystem (I’ll show you how to do that later, when we discuss resource manager
implementation).

At this point, the client’s open() code does the usual steps:

1 Message to the process manager: “Who should I talk to about the filename
/nfs/home/rk/abc.txt?”

2 Response from the process manager: “Talk to fs-cache first, and then
fs-nfs.”

Notice here that the process manager returned two sets of ND/PID/CHID/handle; one
for fs-cache and one for fs-nfs. This is critical.

Now, the client’s open() continues:

1 Message to fs-cache: “I’d like to open the file /nfs/home/rk/abc.txt for
read, please.”

2 Response from fs-cache: “Sorry, I’ve never heard of this file.”

At this point, the client’s open() function is out of luck as far as the fs-cache
resource manager is concerned. The file doesn’t exist! However, the open() function
knows that it got a list of two ND/PID/CHID/handle tuples, so it tries the second one
next:

1 Message to fs-nfs: “I’d like to open the file /nfs/home/rk/abc.txt for
read, please.”

2 Response from fs-nfs: “Sure, no problem!”

Now that the open() function has an EOK (the “no problem”), it returns the file
descriptor. The client then performs all further interactions with the fs-nfs resource
manager.

The only time that we “resolve” to a resource manager is during the open() call. This
means that once we’ve successfully opened a particular resource manager, we will
continue to use that resource manager for all file descriptor calls.

So how does our fs-cache caching filesystem come into play? Well, eventually, let’s
say that the user is done reading the file (they’ve loaded it into a text editor). Now they
want to write it out. The same set of steps happen, with an interesting twist:

1 Message to the process manager: “Who should I talk to about the filename
/nfs/home/rk/abc.txt?”

October 20, 2008 Chapter 5 • Resource Managers 197

The client’s view © 2008, QNX Software Systems GmbH & Co. KG.

2 Response from the process manager: “Talk to fs-cache first, and then
fs-nfs.”

3 Message to fs-cache: “I’d like to open the file /nfs/home/rk/abc.txt for
write, please.”

4 Response from fs-cache: “Sure, no problem.”

Notice that this time, in step 3, we opened the file for write and not read as we did
previously. It’s not surprising, therefore, that fs-cache allowed the operation this
time (in step 4).

Even more interesting, observe what happens the next time we go to read the file:

1 Message to the process manager: “Who should I talk to about the filename
/nfs/home/rk/abc.txt?”

2 Response from the process manager: “Talk to fs-cache first, and then
fs-nfs.”

3 Message to fs-cache: “I’d like to open the file /nfs/home/rk/abc.txt for
read, please.”

4 Response from fs-cache: “Sure, no problem.”

Sure enough, the caching filesystem handled the request for the read this time (in step
4)!

Now, we’ve left out a few details, but these aren’t important to getting across the basic
ideas. Obviously, the caching filesystem will need some way of sending the data
across the network to the “real” storage medium. It should also have some way of
verifying that no one else modified the file just before it returns the file contents to the
client (so that the client doesn’t get stale data). The caching filesystem could handle
the first read request itself, by loading the data from the network filesystem on the first
read into its cache. And so on.

Client summary
We’re done with the client side of things. The following are key points to remember:

• The client usually triggers communication with the resource manager via open()
(or fopen()).

• Once the client’s request has “resolved” to a particular resource manager, we never
change resource managers.

• All further messages for the client’s session are based on the file descriptor (or
FILE * stream), (e.g., read(), lseek(), fgets()).

• The session is terminated (or “dissociated”) when the client closes the file
descriptor or stream (or terminates for any reason).

• All client file-descriptor-based function calls are translated into messages.

198 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The resource manager’s view

The resource manager’s view
Let’s look at things from the resource manager’s perspective. Basically, the resource
manager needs to tell the process manager that it’ll be responsible for a certain part of
the pathname space (it needs to register itself). Then, the resource manager needs to
receive messages from clients and handle them. Obviously, things aren’t quite that
simple.

Let’s take a quick overview look at the functions that the resource manager provides,
and then we’ll look at the details.

Registering a pathname
The resource manager needs to tell the process manager that one or more pathnames
are now under its domain of authority — effectively, that this particular resource
manager is prepared to handle client requests for those pathnames.

The serial port resource manager might handle (let’s say) four serial ports. In this case,
it would register four different pathnames with the process manager: /dev/ser1,
/dev/ser2, /dev/ser3, and /dev/ser4. The impact of this is that there are now
four distinct entries in the process manager’s pathname tree, one for each of the serial
ports. Four entries isn’t too bad. But what if the serial port resource manager handled
one of those fancy multiport cards, with 256 ports on it? Registering 256 individual
pathnames (i.e., /dev/ser1 through /dev/ser256) would result in 256 different
entries in the process manager’s pathname tree! The process manager isn’t optimized
for searching this tree; it assumes that there will be a few entries in the tree, not
hundreds.

As a rule, you shouldn’t discretely register more than a few dozen pathnames at each
level — this is because a linear search is performed. The 256 port registration is
certainly beyond that. In that case, what the multiport serial resource manager should
do is register a directory-style pathname, for example /dev/multiport. This
occupies only one entry in the process manager’s pathname tree. When a client opens
a serial port, let’s say port 57:

fp = fopen ("/dev/multiport/57", "w");

The process manager resolves this to the ND/PID/CHID/handle for the multiport serial
resource manager; it’s up to that resource manager to decide if the rest of the pathname
(in our case, the “57”) is valid. In this example, assuming that the variable path
contains the rest of the pathname past the mountpoint, this means that the resource
manager could do checking in a very simple manner:

devnum = atoi (path);
if ((devnum <= 0) || (devnum >= 256)) {

// bad device number specified
} else {

// good device number specified
}

This search would certainly be faster than anything the process manager could do,
because the process manager must, by design, be much more general-purpose than our
resource manager.

October 20, 2008 Chapter 5 • Resource Managers 199

The resource manager library © 2008, QNX Software Systems GmbH & Co. KG.

Handling messages
Once we’ve registered one or more pathnames, we should then be prepared to receive
messages from clients. This is done in the “usual” way, with the MsgReceive()
function call. There are fewer than 30 well-defined message types that the resource
manager handles. To simplify the discussion and implementation, however, they’re
broken into two groups:

Connect messages

Always contain a pathname; these are either one-shot messages or
they establish a context for further I/O messages.

I/O messages Always based on a connect message; these perform further work.

Connect messages

Connect messages always contain a pathname. The open() function that we’ve been
using throughout our discussion is a perfect example of a function that generates a
connect message. In this case, the handler for the connect message establishes a
context for further I/O messages. (After all, we expect to be performing things like
read() after we’ve done an open()).

An example of a “one-shot” connect message is the message generated as a result of
the rename() function call. No further “context” is established — the handler in the
resource manager is expected to change the name of the specified file to the new name,
and that’s it.

I/O messages

An I/O message is expected only after a connect message and refers to the context
created by that connect message. As mentioned above in the connect message
discussion, open() followed by read() is a perfect example of this.

Three groups, really

Apart from connect and I/O messages, there are also “other” messages that can be
received (and handled) by a resource manager. Since they aren’t “resource manager”
messages proper, we’ll defer discussion of them until later.

The resource manager library
Before we get too far into all the issues surrounding resource managers, we have to get
acquainted with QSS’s resource manager library. Note that this “library” actually
consists of several distinct pieces:

• thread pool functions (which we discussed in the Processes and Threads chapter
under “Pools of threads”)

• dispatch interface

• resource manager functions

200 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The resource manager library

• POSIX library helper functions

While you certainly could write resource managers “from scratch” (as was done in the
QNX 4 world), that’s far more hassle than it’s worth.

Just to show you the utility of the library approach, here’s the source for a
single-threaded version of “/dev/null”:

/*
* resmgr1.c
*
* /dev/null using the resource manager library

*/

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int
main (int argc, char **argv)
{

dispatch_t *dpp;
resmgr_attr_t resmgr_attr;
dispatch_context_t *ctp;
resmgr_connect_funcs_t connect_func;
resmgr_io_funcs_t io_func;
iofunc_attr_t attr;

// create the dispatch structure
if ((dpp = dispatch_create ()) == NULL) {

perror ("Unable to dispatch_create\n");
exit (EXIT_FAILURE);

}

// initialize the various data structures
memset (&resmgr_attr, 0, sizeof (resmgr_attr));
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

// bind default functions into the outcall tables
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_func,

_RESMGR_IO_NFUNCS, &io_func);
iofunc_attr_init (&attr, S_IFNAM | 0666, 0, 0);

// establish a name in the pathname space
if (resmgr_attach (dpp, &resmgr_attr, "/dev/mynull",

_FTYPE_ANY, 0, &connect_func, &io_func,
&attr) == -1) {

perror ("Unable to resmgr_attach\n");
exit (EXIT_FAILURE);

}

ctp = dispatch_context_alloc (dpp);

// wait here forever, handling messages
while (1) {

if ((ctp = dispatch_block (ctp)) == NULL) {
perror ("Unable to dispatch_block\n");
exit (EXIT_FAILURE);

}

October 20, 2008 Chapter 5 • Resource Managers 201

The resource manager library © 2008, QNX Software Systems GmbH & Co. KG.

dispatch_handler (ctp);
}

}

There you have it! A complete /dev/null resource manager implemented in a few
function calls!

If you were to write this from scratch, and have it support all the functionality that this
one does (e.g., stat() works, chown() and chmod() work, and so on), you’d be looking
at many hundreds if not thousands of lines of C code.

The library really does what we just talked about
By way of introduction to the library, let’s see (briefly) what the calls do in the
/dev/null resource manager.

dispatch_create() Creates a dispatch structure; this will be used for blocking on
the message reception.

iofunc_attr_init() Initializes the attributes structure used by the device. We’ll
discuss attributes structures in more depth later, but for now,
the short story is that there’s one of these per device name, and
they contain information about a particular device.

iofunc_func_init() Initializes the two data structures cfuncs and ifuncs, which
contain pointers to the connect and I/O functions, respectively.
You might argue that this call has the most “magic” in it, as this
is where the actual “worker” routines for handling all the
messages got bound into a data structure. We didn’t actually
see any code to handle the connect message, or the I/O
messages resulting from a client read() or stat() function etc.
That’s because the library is supplying default POSIX versions
of those functions for us, and it’s the iofunc_func_init()
function that binds those same default handler functions into
the two supplied tables.

resmgr_attach() Creates the channel that the resource manager will use for
receiving messages, and talks to the process manager to tell it
that we’re going to be responsible for “/dev/null.” While
there are a lot of parameters, we’ll see them all in painful detail
later. For now, it’s important to note that this is where the
dispatch handle (dpp), pathname (the string /dev/null), and
the connect (cfuncs) and I/O (ifuncs) message handlers all get
bound together.

dispatch_context_alloc()

Allocates a dispatch internal context block. It contains
information relevant to the message being processed.

dispatch_block() This is the dispatch layer’s blocking call; it’s where we wait for
a message to arrive from a client.

202 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. The resource manager library

dispatch_handler() Once the message arrives from the client, this function is called
to process it.

Behind the scenes at the library
You’ve seen that your code is responsible for providing the main message receiving
loop:

while (1) {
// wait here for a message
if ((ctp = dispatch_block (ctp)) == NULL) {

perror ("Unable to dispatch_block\n");
exit (EXIT_FAILURE);

}
// handle the message
dispatch_handler (ctp);

}

This is very convenient, for it lets you place breakpoints on the receiving function and
to intercept messages (perhaps with a debugger) during operation.

The library implements the “magic” inside of the dispatch_handler() function,
because that’s where the message is analyzed and disposed of through the connect and
I/O functions tables we mentioned earlier.

In reality, the library consists of two cooperating layers: a base layer that provides
“raw” resource manager functionality, and a POSIX layer that provides POSIX helper
and default functions. We’ll briefly define the two layers, and then in “Resource
manager structure,” below, we’ll pick up the details.

The base layer

The bottom-most layer consists of functions that begin with resmgr_*() in their
names. This class of function is concerned with the mechanics of making a resource
manager work.

I’ll just briefly mention the functions that are available and where we’d use them. I’ll
then refer you to QSS’s documentation for additional details on these functions.

The base layer functions consist of:

resmgr_msgreadv() and resmgr_msgread()

Reads data from the client’s address space using message
passing.

resmgr_msgwritev() and resmgr_msgwrite()

Writes data to the client’s address space using message passing.

resmgr_open_bind()

Associates the context from a connect function, so that it can be
used later by an I/O function.

October 20, 2008 Chapter 5 • Resource Managers 203

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

resmgr_attach() Creates a channel, associates a pathname, dispatch handle,
connect functions, I/O functions, and other parameters together.
Sends a message to the process manager to register the
pathname.

resmgr_detach() Opposite of resmgr_attach(); dissociates the binding of the
pathname and the resource manager.

pulse_attach() Associates a pulse code with a function. Since the library
implements the message receive loop, this is a convenient way
of “gaining control” for handling pulses.

pulse_detach() Dissociates a pulse code from the function.

In addition to the functions listed above, there are also numerous functions dealing
with the dispatch interface.

One function from the above list that deserves special mention is resmgr_open_bind().
It associates some form of context data when the connect message (typically as a
result of the client calling open() or fopen()) arrives, so that this data block is around
when the I/O messages are being handled. Why didn’t we see this in the /dev/null
handler? Because the POSIX layer default functions call this function for us. If we’re
handling all the messages ourselves, we’d certainly call this function.

The resmgr_open_bind() function not only sets up the context block for further I/O
messages, but also initializes other data structures used by the resource manager
library itself.

The rest of the functions from the above list are somewhat intuitive — we’ll defer their
discussion until we use them.

The POSIX layer

The second layer provided by QSS’s resource manager library is the POSIX layer. As
with the base layer, you could code a resource manager without using it, but it would
be a lot of work! Before we can talk about the POSIX layer functions in detail, we
need to look at some of the base layer data structures, the messages that arrive from
the clients, and the overall structure and responsibilities of a resource manager.

Writing a resource manager
Now that we’ve introduced the basics — how the client looks at the world, how the
resource manager looks at the world, and an overview of the two cooperating layers in
the library, it’s time to focus on the details.

In this section, we’ll take a look at the following topics:

• data structures

• resource manager structure

204 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

• POSIX layer data structure

• handler routines

• and of course, lots of examples

Keep in mind the following “big picture,” which contains almost everything related to
a resource manager:

IPC
messages

Channel

Thread
pool

Connect
functions

I/O
functions

attr

/dev/path1

/dev/path2

mount

OCB

Control

Event
loop

io_lseek

io_devctl

io_write

io_read

io_readlink

io_unlink

io_open

Architecture of a resource manager — the big picture.

Data structures
The first thing we need to understand is the data structures used to control the
operation of the library:

• resmgr_attr_t control structure

• resmgr_connect_funcs_t connect table

• resmgr_io_funcs_t I/O table

And one data structure that’s used internally by the library:

• resmgr_context_t internal context block

Later, we’ll see the OCB, attributes structure, and mount structure data types that are
used with the POSIX layer libraries.

resmgr_attr_t control structure

The control structure (type resmgr_attr_t) is passed to the resmgr_attach()
function, which puts the resource manager’s path into the general pathname space and
binds requests on this path to a dispatch handle.

The control structure (from <sys/dispatch.h>) has the following contents:

October 20, 2008 Chapter 5 • Resource Managers 205

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

typedef struct _resmgr_attr {
unsigned flags;
unsigned nparts_max;
unsigned msg_max_size;
int (*other_func) (resmgr_context_t *ctp, void *msg);

} resmgr_attr_t;

The other_func message handler

In general, you should avoid using this member. This member, if non-NULL,
represents a routine that will get called with the current message received by the
resource manager library when the library doesn’t recognize the message. While you
could use this to implement “private” or “custom” messages, this practice is
discouraged (use either the _IO_DEVCTL or _IO_MSG handlers, see below). If you
wish to handle pulses that come in, I recommend that you use the pulse_attach()
function instead.

You should leave this member with the value NULL.

The data structure sizing parameters

These two parameters are used to control various sizes of messaging areas.

The nparts_max parameter controls the size of the dynamically allocated iov member
in the resource manager library context block (of type resmgr_context_t, see
below). You’d typically adjust this member if you were returning more than a one-part
IOV from some of your handling functions. Note that it has no effect on the incoming
messages — this is only used on outgoing messages.

The msg_max_size parameter controls how much buffer space the resource manager
library should set aside as a receive buffer for the message. The resource manager
library will set this value to be at least as big as the header for the biggest message it
will be receiving. This ensures that when your handler function gets called, it will be
passed the entire header of the message. Note, however, that the data (if any) beyond
the current header is not guaranteed to be present in the buffer, even if the
msg_max_size parameter is “large enough.” An example of this is when messages are
transferred over a network using Qnet. (For more details about the buffer sizes, see
“The resmgr_context_t internal context block,” below.)

The flags parameter

This parameter gives additional information to the resource manager library. For our
purposes, we’ll just pass a 0. You can read up about the other values in the Neutrino
Library Reference under the resmgr_attach() function.

resmgr_connect_ funcs_t connect table

When the resource manager library receives a message, it looks at the type of message
and sees if it can do anything with it. In the base layer, there are two tables that affect
this behavior. The resmgr_connect_funcs_t table, which contains a list of
connect message handlers, and the resmgr_io_funcs_t table, which contains a
similar list of I/O message handlers. We’ll see the I/O version below.

206 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

When it comes time to fill in the connect and I/O tables, we recommend that you use
the iofunc_func_init() function to load up the tables with the POSIX layer default
handler routines. Then, if you need to override some of the functionality of particular
message handlers, you’d simply assign your own handler function instead of the
POSIX default routine. We’ll see this in the section “Putting in your own functions.”
Right now, let’s look at the connect functions table itself (this is from
<sys/resmgr.h>):

typedef struct _resmgr_connect_funcs {
unsigned nfuncs;

int (*open)
(ctp, io_open_t *msg, handle, void *extra);

int (*unlink)
(ctp, io_unlink_t *msg, handle, void *reserved);

int (*rename)
(ctp, io_rename_t *msg, handle, io_rename_extra_t *extra);

int (*mknod)
(ctp, io_mknod_t *msg, handle, void *reserved);

int (*readlink)
(ctp, io_readlink_t *msg, handle, void *reserved);

int (*link)
(ctp, io_link_t *msg, handle, io_link_extra_t *extra);

int (*unblock)
(ctp, io_pulse_t *msg, handle, void *reserved);

int (*mount)
(ctp, io_mount_t *msg, handle, io_mount_extra_t *extra);

} resmgr_connect_funcs_t;

Note that I’ve shortened the prototype down by omitting the resmgr_context_t *

type for the first member (the ctp), and the RESMGR_HANDLE_T * type for the third
member (the handle). For example, the full prototype for open is really:

int (*open) (resmgr_context_t *ctp,
io_open_t *msg,
RESMGR_HANDLE_T *handle,
void *extra);

The very first member of the structure (nfuncs) indicates how big the structure is (how
many members it contains). In the above structure, it should contain the value “8,” for
there are 8 members (open through to mount). This member is mainly in place to
allow QSS to upgrade this library without any ill effects on your code. For example,
suppose you had compiled in a value of 8, and then QSS upgraded the library to have
9. Because the member only had a value of 8, the library could say to itself, “Aha! The
user of this library was compiled when we had only 8 functions, and now we have 9.
I’ll provide a useful default for the ninth function.” There’s a manifest constant in
<sys/resmgr.h> called _RESMGR_CONNECT_NFUNCS that has the current
number. Use this constant if manually filling in the connect functions table (although
it’s best to use iofunc_func_init()).

Notice that the function prototypes all share a common format. The first parameter,
ctp, is a pointer to a resmgr_context_t structure. This is an internal context block
used by the resource manager library, and which you should treat as read-only (except
for one field, which we’ll come back to).

October 20, 2008 Chapter 5 • Resource Managers 207

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

The second parameter is always a pointer to the message. Because the functions in the
table are there to handle different types of messages, the prototypes match the kind of
message that each function will handle.

The third parameter is a RESMGR_HANDLE_T structure called a handle — it’s used to
identify the device that this message was targeted at. We’ll see this later as well, when
we look at the attributes structure.

Finally, the last parameter is either “reserved” or an “extra” parameter for functions
that need some extra data. We’ll show the extra parameter as appropriate during our
discussions of the handler functions.

resmgr_io_funcs_t I/O table

The I/O table is very similar in spirit to the connect functions table just shown above.
Here it is, from <sys/resmgr.h>:

typedef struct _resmgr_io_funcs {
unsigned nfuncs;
int (*read) (ctp, io_read_t *msg, ocb);
int (*write) (ctp, io_write_t *msg, ocb);
int (*close_ocb) (ctp, void *reserved, ocb);
int (*stat) (ctp, io_stat_t *msg, ocb);
int (*notify) (ctp, io_notify_t *msg, ocb);
int (*devctl) (ctp, io_devctl_t *msg, ocb);
int (*unblock) (ctp, io_pulse_t *msg, ocb);
int (*pathconf) (ctp, io_pathconf_t *msg, ocb);
int (*lseek) (ctp, io_lseek_t *msg, ocb);
int (*chmod) (ctp, io_chmod_t *msg, ocb);
int (*chown) (ctp, io_chown_t *msg, ocb);
int (*utime) (ctp, io_utime_t *msg, ocb);
int (*openfd) (ctp, io_openfd_t *msg, ocb);
int (*fdinfo) (ctp, io_fdinfo_t *msg, ocb);
int (*lock) (ctp, io_lock_t *msg, ocb);
int (*space) (ctp, io_space_t *msg, ocb);
int (*shutdown) (ctp, io_shutdown_t *msg, ocb);
int (*mmap) (ctp, io_mmap_t *msg, ocb);
int (*msg) (ctp, io_msg_t *msg, ocb);
int (*dup) (ctp, io_dup_t *msg, ocb);
int (*close_dup) (ctp, io_close_t *msg, ocb);
int (*lock_ocb) (ctp, void *reserved, ocb);
int (*unlock_ocb) (ctp, void *reserved, ocb);
int (*sync) (ctp, io_sync_t *msg, ocb);

} resmgr_io_funcs_t;

For this structure as well, I’ve shortened the prototype by removing the type of the ctp
member (resmgr_context_t *) and the last member (ocb, of type RESMGR_OCB_T
*). For example, the full prototype for read is really:

int (*read) (resmgr_context_t *ctp,
io_read_t *msg,
RESMGR_OCB_T *ocb);

The very first member of the structure (nfuncs) indicates how big the structure is (how
many members it contains). The proper manifest constant for initialization is
_RESMGR_IO_NFUNCS.

Note that the parameter list in the I/O table is also very regular. The first parameter is
the ctp, and the second parameter is the msg, just as they were in the connect table
handlers.

208 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

The third parameter is different, however. It’s an ocb, which stands for “Open Context
Block.” It holds the context that was bound by the connect message handler (e.g., as a
result of the client’s open() call), and is available to the I/O functions.

As discussed above, when it comes time to fill in the two tables, we recommend that
you use the iofunc_func_init() function to load up the tables with the POSIX layer
default handler routines. Then, if you need to override some of the functionality of
particular message handlers, you’d simply assign your own handler function instead of
the POSIX default routine. We’ll see this in the section “Putting in your own
functions.”

The resmgr_context_t internal context block

Finally, one data structure is used by the lowest layer of the library to keep track of
information that it needs to know about. You should view the contents of this data
structure as “read-only,” (except for the iov member).

Here’s the data structure (from <sys/resmgr.h>):

typedef struct _resmgr_context {
int rcvid;
struct _msg_info info;
resmgr_iomsgs_t *msg;
dispatch_t *dpp;
int id;
unsigned msg_max_size;
int status;
int offset;
int size;
iov_t iov [1];

} resmgr_context_t;

As with the other data structure examples, I’ve taken the liberty of deleting reserved
fields.

Let’s look at the contents:

rcvid The receive ID from the resource manager library’s
MsgReceivev() function call. Indicates who you should reply to (if
you’re going to do the reply yourself).

info Contains the information structure returned by MsgReceivev() in
the resource manager library’s receive loop. Useful for getting
information about the client, including things like the node
descriptor, process ID, thread ID, and so on. See the
documentation for MsgReceivev() for more details.

msg A pointer to a union of all possible message types. This isn’t very
useful to you, because each of your handler functions get passed
the appropriate union member as their second parameter.

dpp A pointer to the dispatch structure that you passed in to begin
with. Again, not very useful to you, but obviously useful to the
resource manager library.

October 20, 2008 Chapter 5 • Resource Managers 209

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

id The identifier for the mountpoint this message was meant for.
When you did the resmgr_attach(), it returned a small integer ID.
This ID is the value of the id member. Note that you’d most likely
never use this parameter yourself, but would instead rely on the
attributes structure passed to you in your io_open() handler.

msg_max_size This contains the msg_max_size that was passed in as the
msg_max_size member of resmgr_attr_t (given to the
resmgr_attach() function) so that the size, offset, and
msg_max_size are all contained in one handy structure/location.

status This is where your handler function places the result of the
operation. Note that you should always use the macro
_RESMGR_STATUS to write this field. For example, if you’re
handling the connect message from an open(), and you’re a
read-only resource manager but the client wanted to open you for
write, you’d return an EROFS errno via (typically)
_RESMGR_STATUS (ctp, EROFS).

offset The current number of bytes into the client’s message buffer. Only
relevant to the base layer library when used with
resmgr_msgreadv() with combine messages (see below).

size This tells you how many bytes are valid in the message area that
gets passed to your handler function. This number is important
because it indicates if more data needs to be read from the client
(for example, if not all of the client’s data was read by the
resource manager base library), or if storage needs to be allocated
for a reply to the client (for example, to reply to the client’s read()
request).

iov The I/O Vector table where you can write your return values, if
returning data. For example, when a client calls read() and your
read-handling code is invoked, you may need to return data. This
data can be set up in the iov array, and your read-handling code
can then return something like _RESMGR_NPARTS (2) to
indicate (in this example) that both iov [0] and iov [1]

contain data to return to the client. Note that the iov member is
defined as only having one element. However, you’ll also notice
that it’s conveniently at the end of the structure. The actual
number of elements in the iov array is defined by you when you
set the nparts_max member of the control structure above (in the
section “resmgr_attr_t control structure,” above).

Resource manager structure
Now that we’ve seen the data structures, we can discuss interactions between the parts
that you’d supply to actually make your resource manager do something.

210 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

We’ll look at:

• The resmgr_attach() function and its parameters

• Putting in your own functions

• The general flow of a resource manager

• Messages that should be connect messages but aren’t

• Combine messages

The resmgr_attach() function and its parameters

As you saw in the /dev/null example above, the first thing you’ll want to do is
register your chosen “mountpoint” with the process manager. This is done via
resmgr_attach(), which has the following prototype:

int
resmgr_attach (void *dpp,

resmgr_attr_t *resmgr_attr,
const char *path,
enum _file_type file_type,
unsigned flags,
const resmgr_connect_funcs_t *connect_funcs,
const resmgr_io_funcs_t *io_funcs,
RESMGR_HANDLE_T *handle);

Let’s examine these arguments, in order, and see what they’re used for.

dpp The dispatch handle. This lets the dispatch interface manage the
message receive for your resource manager.

resmgr_attr Controls the resource manager characteristics, as discussed above.

path The mountpoint that you’re registering. If you’re registering a
discrete mountpoint (such as would be the case, for example, with
/dev/null, or /dev/ser1), then this mountpoint must be matched
exactly by the client, with no further pathname components past the
mountpoint. If you’re registering a directory mountpoint (such as
would be the case, for example, with a network filesystem mounted
as /nfs), then the match must be exact as well, with the added
feature that pathnames past the mountpoint are allowed; they get
passed to the connect functions stripped of the mountpoint (for
example, the pathname /nfs/etc/passwdwould match the
network filesystem resource manager, and it would get etc/passwd
as the rest of the pathname).

file_type The class of resource manager. See below.

flags Additional flags to control the behavior of your resource manager.
These flags are defined below.

October 20, 2008 Chapter 5 • Resource Managers 211

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

connect_funcs and io_funcs

These are simply the list of connect functions and I/O functions that
you wish to bind to the mountpoint.

handle This is an “extendable” data structure (aka “attributes structure”) that
identifies the resource being mounted. For example, for a serial port,
you’d extend the standard POSIX-layer attributes structure by adding
information about the base address of the serial port, the baud rate,
etc. Note that it does not have to be an attributes structure — if
you’re providing your own “open” handler, then you can choose to
interpret this field any way you wish. It’s only if you’re using the
default iofunc_open_default() handler as your “open” handler that
this field must be an attributes structure.

The flags member can contain any of the following flags (or the constant 0 if none are
specified):

_RESMGR_FLAG_BEFORE or _RESMGR_FLAG_AFTER

These flags indicate that your resource manager wishes to be placed before or
after (respectively) other resource managers with the same mountpoint. These
two flags would be useful with union’d (overlaid) filesystems. We’ll discuss the
interactions of these flags shortly.

_RESMGR_FLAG_DIR

This flag indicates that your resource manager is taking over the specified
mountpoint and below — it’s effectively a filesystem style of resource manager,
as opposed to a discretely-manifested resource manager.

_RESMGR_FLAG_OPAQUE

If set, prevents resolving to any other manager below your mount point except
for the path manager. This effectively eliminates unioning on a path.

_RESMGR_FLAG_FTYPEONLY

This ensures that only requests that have the same FTYPE_* as the file_type
passed to resmgr_attach() are matched.

_RESMGR_FLAG_FTYPEALL

This flag is used when a resource manager wants to catch all client requests,
even those with a different FTYPE_* specification than the one passed to
resmgr_attach() in the file_type argument. This can only be used in conjunction
with a registration file type of FTYPE_ALL.

_RESMGR_FLAG_SELF

Allow this resource manager to talk to itself. This really is a “Don’t try this at
home, kids” kind of flag, because allowing a resource manager to talk to itself
can break the send-hierarchy and lead to deadlock (as was discussed in the
Message Passing chapter).

212 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

You can call resmgr_attach() as many times as you wish to mount different
mountpoints. You can also call resmgr_attach() from within the connect or I/O
functions — this is kind of a neat feature that allows you to “create” devices on the fly.
When you’ve decided on the mountpoint, and want to create it, you’ll need to tell the
process manager if this resource manager can handle requests from just anyone, or if
it’s limited to handling requests only from clients who identify their connect messages
with special tags. For example, consider the POSIX message queue (mqueue) driver.
It’s not going to allow (and certainly wouldn’t know what to do with) “regular” open()
messages from any old client. It will allow messages only from clients that use the
POSIX mq_open(), mq_receive(), and so on, function calls. To prevent the process
manager from even allowing regular requests to arrive at the mqueue resource
manager, mqueue specified _FTYPE_MQUEUE as the file_type parameter. This means
that when a client requests a name resolution from the process manager, the process
manager won’t even bother considering the resource manager during the search unless
the client has specified that it wants to talk to a resource manager that has identified
itself as _FTYPE_MQUEUE.

Unless you’re doing something very special, you’ll use a file_type of _FTYPE_ANY,
which means that your resource manager is prepared to handle requests from anyone.
For the full list of _FTYPE_* manifest constants, take a look in <sys/ftype.h>.

With respect to the “before” and “after” flags, things get a little bit more interesting.
You can specify only one of these flags or the constant 0.

Let’s see how this works. A number of resource managers have started, in the order
given in the table. We also see the flags they passed for the flags member. Observe the
positions they’re given:

Resmgr Flag Order

1 _RESMGR_FLAG_BEFORE 1

2 _RESMGR_FLAG_AFTER 1, 2

3 0 1, 3, 2

4 _RESMGR_FLAG_BEFORE 1, 4, 3, 2

5 _RESMGR_FLAG_AFTER 1, 4, 3, 5, 2

6 0 1, 4, 6, 3, 5, 2

As you can see, the first resource manager to actually specify a flag always ends up in
that position. (From the table, resource manager number 1 was the first to specify the
“before” flag; no matter who registers, resource manager 1 is always first in the list.
Likewise, resource manager 2 was the first to specify the “after” flag; again, no matter
who else registers, it’s always last.) If no flag is specified, it effectively acts as a
“middle” flag. When resource manager 3 started with a flag of zero, it got put into the
middle. As with the “before” and “after” flags, there’s a preferential ordering given to

October 20, 2008 Chapter 5 • Resource Managers 213

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

all the “middle” resource managers, whereby newer ones are placed in front of other,
existing “middle” ones.

However, in reality, there are very few cases where you’d actually mount more than
one, and even fewer cases where you’d mount more than two resource managers at the
same mountpoint. Here’s a design tip: expose the ability to set the flags at the
command line of the resource manager so that the end-user of your resource manager
is able to specify, for example, -b to use the “before” flag, and -a to use the “after”
flag, with no command-line option specified to indicate that a zero should be passed as
the flag.

Keep in mind that this discussion applies only to resource managers mounted with the
same mountpoint. Mounting “/nfs” with a “before” flag and “/disk2” with an
“after” flag will have no effect on each other; only if you were to then mount another
“/nfs” or “/disk2” would these flags (and rules) come into play.

Finally, the resmgr_attach() function returns a small integer handle on success (or -1
for failure). This handle can then be used subsequently to detach the pathname from
the process manager’s internal pathname tables.

Putting in your own functions

When designing your very first resource manager, you’ll most likely want to take an
incremental design approach. It can be very frustrating to write thousands of lines of
code only to run into a fundamental misunderstanding and then having to make the
ugly decision of whether to try to kludge (er, I mean “fix”) all that code, or scrap it and
start from scratch.

The recommended approach for getting things running is to use the iofunc_func_init()
POSIX-layer default initializer function to fill the connect and I/O tables with the
POSIX-layer default functions. This means that you can literally write your initial cut
of your resource manager as we did above, in a few function calls.

Which function you’ll want to implement first really depends on what kind of resource
manager you’re writing. If it’s a filesystem type of resource manager where you’re
taking over a mountpoint and everything below it, you’ll most likely be best off
starting with the io_open() function. On the other hand, if it’s a discretely manifested
resource manager that does “traditional” I/O operations (i.e., you primarily access it
with client calls like read() and write()), then the best place to start would be the
io_read() and/or io_write() functions. The third possibility is that it’s a discretely
manifested resource manager that doesn’t do traditional I/O operations, but instead
relies on devctl() or ioctl() client calls to perform the majority of its functionality. In
that case, you’d start at the io_devctl() function.

Regardless of where you start, you’ll want to make sure that your functions are getting
called in the expected manner. The really cool thing about the POSIX-layer default
functions is that they can be placed directly into the connect or I/O functions table.
This means that if you simply want to gain control, perform a printf() to say “I’m here
in the io_open!”, and then “do whatever should be done,” you’re going to have an easy

214 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

time of it. Here’s a portion of a resource manager that takes over the io_open()
function:

// forward reference
int io_open (resmgr_context_t *, io_open_t *,

RESMGR_HANDLE_T *, void *);

int
main ()
{

// everything as before, in the /dev/null example
// except after this line:
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &cfuncs,

_RESMGR_IO_NFUNCS, &ifuncs);

// add the following to gain control:
cfuncs.open = io_open;

Assuming that you’ve prototyped the io_open() function call correctly, as in the code
example, you can just use the default one from within your own!

int
io_open (resmgr_context_t *ctp, io_open_t *msg,

RESMGR_HANDLE_T *handle, void *extra)
{

printf ("I’m here in the io_open!\n");
return (iofunc_open_default (ctp, msg, handle, extra));

}

In this manner, you’re still using the default POSIX-layer iofunc_open_default()
handler, but you’ve also gained control to do a printf().

Obviously, you could do this for the io_read(), io_write(), and io_devctl() functions as
well as any others that have POSIX-layer default functions. In fact, this is a really
good idea, because it shows you that the client really is calling your resource manager
as expected.

The general flow of a resource manager

As we alluded to in the client and resource manager overview sections above, the
general flow of a resource manager begins on the client side with the open(). This gets
translated into a connect message and ends up being received by the resource
manager’s io_open() outcall connect function.

This is really key, because the io_open() outcall function is the “gate keeper” for your
resource manager. If the message causes the gate keeper to fail the request, you will
not get any I/O requests, because the client never got a valid file descriptor.
Conversely, if the message is accepted by the gate keeper, the client now has a valid
file descriptor and you should expect to get I/O messages.

But the io_open() outcall function plays a greater role. Not only is it responsible for
verifying whether the client can or can’t open the particular resource, it’s also
responsible for:

• initializing internal library parameters

• binding a context block to this request

October 20, 2008 Chapter 5 • Resource Managers 215

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

• binding an attribute structure to the context block.

The first two operations are performed via the base layer function
resmgr_open_bind(); the binding of the attribute structure is done via a simple
assignment.

Once the io_open() outcall function has been called, it’s out of the picture. The client
may or may not send I/O messages, but in any case will eventually terminating the
“session” with a message corresponding to the close() function. Note that if the client
suffers an unexpected death (e.g., gets hit with SIGSEGV, or the node that it’s running
on crashes), the operating system will synthesize a close() message so that the resource
manager can clean up. Therefore, you are guaranteed to get a close() message!

Messages that should be connect messages but aren’t

Here’s an interesting point you may have noticed. The client’s prototype for chown()
is:

int
chown (const char *path,

uid_t owner,
gid_t group);

Remember, a connect message always contains a pathname and is either a one-shot
message or establishes a context for further I/O messages.

So, why isn’t there a connect message for the client’s chown() function? In fact, why
is there an I/O message?!? There’s certainly no file descriptor implied in the client’s
prototype!

The answer is, “to make your life simpler!”

Imagine if functions like chown(), chmod(), stat(), and others required the resource
manager to look up the pathname and then perform some kind of work. (This is, by
the way, the way it was implemented in QNX 4.) The usual problems with this are:

• Each function has to call the lookup routine.

• Where file descriptor versions of these functions exist, the driver has to provide two
separate entry points; one for the pathname version, and one for the file descriptor
version.

In any event, what happens under Neutrino is that the client constructs a combine
message — really just a single message that comprises multiple resource manager
messages. Without combine messages, we could simulate chown() with something
like this:

int
chown (const char *path, uid_t owner, gid_t group)
{

int fd, sts;

if ((fd = open (path, O_RDWR)) == -1) {
return (-1);

}

216 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

sts = fchown (fd, owner, group);
close (fd);
return (sts);

}

where fchown() is the file-descriptor-based version of chown(). The problem here is
that we are now issuing three function calls (and three separate message passing
transactions), and incurring the overhead of open() and close() on the client side.

With combine messages, under Neutrino a single message that looks like this is
constructed directly by the client’s chown() library call:

_IO_CONNECT_COMBINE_CLOSE _IO_CHOWN

A combine message.

The message has two parts, a connect part (similar to what the client’s open() would
have generated) and an I/O part (the equivalent of the message generated by the
fchown()). There is no equivalent of the close() because we implied that in our
particular choice of connect messages. We used the
_IO_CONNECT_COMBINE_CLOSE message, which effectively states “Open this
pathname, use the file descriptor you got for handling the rest of the message, and
when you run off the end or encounter an error, close the file descriptor.”

The resource manager that you write doesn’t have a clue that the client called chown()
or that the client did a distinct open(), followed by an fchown(), followed by a close().
It’s all hidden by the base-layer library.

Combine messages

As it turns out, this concept of combine messages isn’t useful just for saving
bandwidth (as in the chown() case, above). It’s also critical for ensuring atomic
completion of operations.

Suppose the client process has two or more threads and one file descriptor. One of the
threads in the client does an lseek() followed by a read(). Everything is as we expect it.
If another thread in the client does the same set of operations, on the same file
descriptor, we’d run into problems. Since the lseek() and read() functions don’t know
about each other, it’s possible that the first thread would do the lseek(), and then get
preempted by the second thread. The second thread gets to do its lseek(), and then its
read(), before giving up CPU. The problem is that since the two threads are sharing
the same file descriptor, the first thread’s lseek() offset is now at the wrong place —
it’s at the position given by the second thread’s read() function! This is also a problem
with file descriptors that are dup()’d across processes, let alone the network.

An obvious solution to this is to put the lseek() and read() functions within a mutex —
when the first thread obtains the mutex, we now know that it has exclusive access to
the file descriptor. The second thread has to wait until it can acquire the mutex before
it can go and mess around with the position of the file descriptor.

October 20, 2008 Chapter 5 • Resource Managers 217

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

Unfortunately, if someone forgot to obtain a mutex for each and every file descriptor
operation, there’d be a possibility that such an “unprotected” access would cause a
thread to read or write data to the wrong location.

Let’s look at the C library call readblock() (from <unistd.h>):

int
readblock (int fd,

size_t blksize,
unsigned block,
int numblks,
void *buff);

(The writeblock() function is similar.)

You can imagine a fairly “simplistic” implementation for readblock():

int
readblock (int fd, size_t blksize, unsigned block,

int numblks, void *buff)
{

lseek (fd, blksize * block, SEEK_SET); // get to the block
read (fd, buff, blksize * numblks);

}

Obviously, this implementation isn’t useful in a multi-threaded environment. We’d
have to at least put a mutex around the calls:

int
readblock (int fd, size_t blksize, unsigned block,

int numblks, void *buff)
{

pthread_mutex_lock (&block_mutex);
lseek (fd, blksize * block, SEEK_SET); // get to the block
read (fd, buff, blksize * numblks);
pthread_mutex_unlock (&block_mutex);

}

(We’re assuming the mutex is already initialized.)

This code is still vulnerable to “unprotected” access; if some other thread in the
process does a simple non-mutexed lseek() on the file descriptor, we’ve got a bug.

The solution to this is to use a combine message, as we discussed above for the
chown() function. In this case, the C library implementation of readblock() puts both
the lseek() and the read() operations into a single message and sends that off to the
resource manager:

_IO_LSEEK _IO_READ

The readblock() function’s combine message.

The reason that this works is because message passing is atomic. From the client’s
point of view, either the entire message has gone to the resource manager, or none of it
has. Therefore, an intervening “unprotected” lseek() is irrelevant — when the
readblock() operation is received by the resource manager, it’s done in one shot.

218 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

(Obviously, the damage will be to the unprotected lseek(), because after the
readblock() the file descriptor’s offset is at a different place than where the original
lseek() put it.)

But what about the resource manager? How does it ensure that it processes the entire
readblock() operation in one shot? We’ll see this shortly, when we discuss the
operations performed for each message component.

POSIX layer data structures
There are three data structures that relate to the POSIX-layer support routines. Note
that as far as the base layer is concerned, you can use any data structures you want; it’s
the POSIX layer that requires you to conform to a certain content and layout. The
benefits delivered by the POSIX layer are well worth this tiny constraint. As we’ll see
later, you can add your own content to the structures as well.

The three data structures are illustrated in the following diagram, showing some
clients using a resource manager that happens to manifest two devices:

/dev/path1

/dev/path2

/dev/path*mountOCB

OCB

OCB

attr

attr

Resource manager

Client 1

Client 2

Client 3

Data structures — the big picture.

The data structures are:

iofunc_ocb_t — OCB structure

Contains information on a per-file-descriptor basis

iofunc_attr_t— attributes structure

Contains information on a per-device basis

iofunc_mount_t— mount structure

Contains information on a per-mountpoint basis

October 20, 2008 Chapter 5 • Resource Managers 219

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

When we talked about the I/O and connect tables, you saw the OCB and attributes
structures — in the I/O tables, the OCB structure was the last parameter passed. The
attributes structure was passed as the handle in the connect table functions (third
argument). The mount structure is usually a global structure and is bound to the
attributes structure “by hand” (in the initialization code that you supply for your
resource manager).

The iofunc_ocb_t OCB structure

The OCB structure contains information on a per-file-descriptor basis. What this
means is that when a client performs an open() call and gets back a file descriptor (as
opposed to an error indication), the resource manager will have created an OCB and
associated it with the client. This OCB will be around for as long as the client has the
file descriptor open. Effectively, the OCB and the file descriptor are a matched pair.
Whenever the client calls an I/O function, the resource manager library will
automatically associate the OCB, and pass it along with the message to the I/O
function specified by the I/O function table entry. This is why the I/O functions all had
the ocb parameter passed to them. Finally, the client will close the file descriptor (via
close()), which will cause the resource manager to dissociate the OCB from the file
descriptor and client. Note that the client’s dup() function simply increments a
reference count. In this case, the OCB gets dissociated from the file descriptor and
client only when the reference count reaches zero (i.e., when the same number of
close()s have been called as open() and dup()s.)

As you might suspect, the OCB contains things that are important on a per-open or
per-file-descriptor basis. Here are the contents (from <sys/iofunc.h>):

typedef struct _iofunc_ocb {
IOFUNC_ATTR_T *attr;
int32_t ioflag;
SEE_BELOW!!! offset;
uint16_t sflag;
uint16_t flags;

} iofunc_ocb_t;

Ignore the comment about the offset field for now; we’ll come back to it immediately
after this discussion.

The iofunc_ocb_t members are:

attr A pointer to the attributes structure related to this OCB. A common coding
idiom you’ll see in the I/O functions is “ocb->attr,” used to access a
member of the attributes structure.

ioflag The open mode; how this resource was opened (e.g. read only). The open
modes (as passed to open() on the client side) correspond to the ioflag
values as follows:

220 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

Open mode ioflag value

O_RDONLY _IO_FLAG_RD

O_RDWR _IO_FLAG_RD | _IO_FLAG_WR

O_WRONLY _IO_FLAG_WR

offset The current lseek() offset into this resource.

sflag The sharing flag (see <share.h>) used with the client’s sopen() function
call. These are the flags SH_COMPAT, SH_DENYRW, SH_DENYWR,
SH_DENYRD, and SH_DENYNO.

flags System flags. The two flags currently supported are
IOFUNC_OCB_PRIVILEGED, which indicates whether a privileged process
issued the connect message that resulted in this OCB, and
IOFUNC_OCB_MMAP, which indicates whether this OCB is in use by a
mmap() call on the client side. No other flags are defined at this time. You
can use the bits defined by IOFUNC_OCB_FLAGS_PRIVATE for your own
private flags.

If you wish to store additional data along with the “normal” OCB, rest assured that
you can “extend” the OCB. We’ll discuss this in the “Advanced topics” section.

The strange case of the offset member

The offset field is, to say the least, interesting. Have a look at <sys/iofunc.h> to
see how it’s implemented. Depending on what preprocessor flags you’ve set, you may
get one of six (!) possible layouts for the offset area. But don’t worry too much about
the implementation — there are really only two cases to consider, depending on
whether you want to support 64-bit offsets:

• yes — the offset member is 64 bits

• no (32-bit integers) — the offset member is the lower 32 bits; another member,
offset_hi, contains the upper 32 bits.

For our purposes here, unless we’re specifically going to talk about 32 versus 64 bits,
we’ll just assume that all offsets are 64 bits, of type off_t, and that the platform
knows how to deal with 64-bit quantities.

The iofunc_attr_t attributes structure

Whereas the OCB was a per-open or per-file-descriptor structure, the attributes
structure is a per-device data structure. You saw that the standard iofunc_ocb_t

OCB had a member called attr that’s a pointer to the attribute structure. This was done
so the OCB has access to information about the device. Let’s take a look at the
attributes structure (from <sys/iofunc.h>):

October 20, 2008 Chapter 5 • Resource Managers 221

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

typedef struct _iofunc_attr {
IOFUNC_MOUNT_T *mount;
uint32_t flags;
int32_t lock_tid;
uint16_t lock_count;
uint16_t count;
uint16_t rcount;
uint16_t wcount;
uint16_t rlocks;
uint16_t wlocks;
struct _iofunc_mmap_list *mmap_list;
struct _iofunc_lock_list *lock_list;
void *list;
uint32_t list_size;
SEE_BELOW!!! nbytes;
SEE_BELOW!!! inode;
uid_t uid;
gid_t gid;
time_t mtime;
time_t atime;
time_t ctime;
mode_t mode;
nlink_t nlink;
dev_t rdev;

} iofunc_attr_t;

The nbytes and inode members have the same set of #ifdef conditionals as the offset
member of the OCB (see “The strange case of the offset member” above).

Note that some of the fields of the attributes structure are useful only to the POSIX
helper routines.

Let’s look at the fields individually:

mount A pointer to the optional iofunc_mount_tmount structure. This is
used in the same way that the pointer from the OCB to the attribute
structure was used, except that this value can be NULL in which case
the mount structure defaults are used (see “The iofunc_mount_t
mount structure” below). As mentioned, the mount structure is
generally bound “by hand” into the attributes structure in code that
you supply for your resource manager initialization.

flags Contains flags that describe the state of other attributes structure
fields. We’ll discuss these shortly.

lock_tid In order to prevent synchronization problems, multiple threads using
the same attributes structure will be mutually exclusive. The lock_tid
contains the thread ID of the thread that currently has the attributes
structure locked.

lock_count Indicates how many threads are trying to use this attributes structure.
A value of zero indicates that the structure is unlocked. A value of one
or more indicates that one or more threads are using the structure.

count Indicates the number of OCBs that have this attributes structure open
for any reason. For example, if one client has an OCB open for read,

222 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

another client has another OCB open for read/write, and both OCBs
point to this attribute structure, then the value of count would be 2, to
indicate that two clients have this resource open.

rcount Count readers. In the example given for count, rcount would also have
the value 2, because two clients have the resource open for reading.

wcount Count writers. In the example given for count, wcount would have the
value 1, because only one of the clients has this resource open for
writing.

rlocks Indicates the number of OCBs that have read locks on the particular
resource. If zero, means there are no read locks, but there may be
write locks.

wlocks Same as rlocks but for write locks.

mmap_list Used internally by POSIX iofunc_mmap_default().

lock_list Used internally by POSIX iofunc_lock_default().

list Reserved for future use.

list_size Size of area reserved by list.

nbytes Size of the resource, in bytes. For example, if this resource described
a particular file, and that file was 7756 bytes in size, then the nbytes
member would contain the number 7756.

inode Contains a file or resource serial number, that must be unique per
mountpoint. The inode should never be zero, because zero
traditionally indicates a file that’s not in use.

uid User ID of the owner of this resource.

gid Group ID of the owner of this resource.

mtime File modification time, updated or at least invalidated whenever a
client write() is processed.

atime File access time, updated or at least invalidated whenever a client
read() that returns more than zero bytes is processed.

ctime File change time, updated or at least invalidated whenever a client
write(), chown(), or chmod() is processed.

mode File’s mode. These are the standard S_* values from <sys/stat.h>,
such as S_IFCHR, or in octal representation, such as 0664 to indicate
read/write permission for owner and group, and read-only permission
for other.

nlink Number of links to the file, returned by the client’s stat() function call.

October 20, 2008 Chapter 5 • Resource Managers 223

Writing a resource manager © 2008, QNX Software Systems GmbH & Co. KG.

rdev For a character special device, this field consists of a major and minor
device code (10 bits minor in the least-significant positions; next 6
bits are the major device number). For other types of devices,
contains the device number. (See below in “Of device numbers,
inodes, and our friend rdev,” for more discussion.)

As with the OCB, you can extend the “normal” attributes structure with your own
data. See the “Advanced topics” section.

The iofunc_mount_t mount structure

The mount structure contains information that’s common across multiple attributes
structures.

Here are the contents of the mount structure (from <sys/iofunc.h>):

typedef struct _iofunc_mount {
uint32_t flags;
uint32_t conf;
dev_t dev;
int32_t blocksize;
iofunc_funcs_t *funcs;

} iofunc_mount_t;

The flags member contains just one flag, IOFUNC_MOUNT_32BIT. This flag indicates
that offset in the OCB, and nbytes and inode in the attributes structure, are 32-bit. Note
that you can define your own flags in flags, using any of the bits from the constant
IOFUNC_MOUNT_FLAGS_PRIVATE.

The conf member contains the following flags:

IOFUNC_PC_CHOWN_RESTRICTED

Indicates if the filesystem is operating in a “chown-restricted” manner, meaning
if only root is allowed to chown a file.

IOFUNC_PC_NO_TRUNC

Indicates that the filesystem doesn’t truncate the name.

IOFUNC_PC_SYNC_IO

Indicates that the filesystem supports synchronous I/O operations.

IOFUNC_PC_LINK_DIR

Indicates that linking/unlinking of directories is allowed.

The dev member contains the device number and is described below in “Of device
numbers, inodes, and our friend rdev.”

The blocksize describes the native blocksize of the device in bytes. For example, on a
typical rotating-medium storage system, this would be the value 512.

Finally, the funcs pointer points to a structure (from <sys/iofunc.h>):

224 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Writing a resource manager

typedef struct _iofunc_funcs {

unsigned nfuncs;

IOFUNC_OCB_T *(*ocb_calloc)
(resmgr_context_t *ctp,
IOFUNC_ATTR_T *attr);

void (*ocb_free)
(IOFUNC_OCB_T *ocb);

} iofunc_funcs_t;

As with the connect and I/O functions tables, the nfuncs member should be stuffed
with the current size of the table. Use the constant _IOFUNC_NFUNCS for this.

The ocb_calloc and ocb_free function pointers can be filled with addresses of
functions to call whenever an OCB is to be allocated or deallocated. We’ll discuss why
you’d want to use these functions later when we talk about extending OCBs.

Of device numbers, inodes, and our friend rdev

The mount structure contains a member called dev. The attributes structure contains
two members: inode and rdev. Let’s look at their relationships by examining a
traditional disk-based filesystem. The filesystem is mounted on a block device (which
is the entire disk). This block device might be known as /dev/hd0 (the first hard disk
in the system). On this disk, there might be a number of partitions, such as
/dev/hd0t77 (the first QNX filesystem partition on that particular device). Finally,
within that partition, there might be an arbitrary number of files, one of which might
be /hd/spud.txt.

The dev (or “device number”) member, contains a number that’s unique to the node
that this resource manager is registered with. The rdev member is the dev number of
the root device. Finally, the inode is the file serial number.

(Note that you can obtain major and minor device numbers by calling
rsrcdbmgr_devno_attach(); see the Neutrino Library Reference for more details. You
are limited to 64 major devices and 1024 minor devices per major device.)

Let’s relate that to our disk example. The following table shows some example
numbers; after the table we’ll take a look at where these numbers came from and how
they’re related.

Device dev inode rdev

/dev/hd0 6 2 1

/dev/hd0t77 1 12 77

/hd/spud.txt 77 47343 N/A

For the raw block device, /dev/hd0, the process manager assigned both the dev and
inode values (the 6 and the 2 in the table above). The resource manager picked a
unique rdev value (of 1) for the device when it started.

October 20, 2008 Chapter 5 • Resource Managers 225

Handler routines © 2008, QNX Software Systems GmbH & Co. KG.

For the partition, /dev/hd0t77, the dev value came from the raw block device’s rdev
number (the 1). The inode was selected by the resource manager as a unique number
(within the rdev). This is where the 12 came from. Finally, the rdev number was
selected by the resource manager as well — in this case, the writer of the resource
manager selected 77 because it corresponded to the partition type.

Finally, for the file, /hd/spud.txt, the dev value (77) came from the partition’s rdev
value. The inode was selected by the resource manager (in the case of a file, the
number is selected to correspond to some internal representation of the file — it
doesn’t matter what it is so long as it’s not zero, and it’s unique within the rdev). This
is where the 47343 came from. For a file, the rdev field is not meaningful.

Handler routines
Not all outcalls correspond to client messages — some are synthesized by the kernel,
and some by the library.

I’ve organized this section into the following:

• general notes

• connect functions notes

followed by an alphabetical listing of connect and I/O messages.

General notes
Each handler function gets passed an internal context block (the ctp argument) which
should be treated as “read-only,” except for the iov member. This context block
contains a few items of interest, as described above in “resmgr_context_t internal
context block.” Also, each function gets passed a pointer to the message (in the msg
argument). You’ll be using this message pointer extensively, as that contains the
parameters that the client’s C library call has placed there for your use.

The function that you supply must return a value (all functions are prototyped as
returning in int). The values are selected from the following list:

_RESMGR_NOREPLY

Indicates to the resource manager library that it should not
perform the MsgReplyv() — the assumption is that you’ve either
performed it yourself in your handler function, or that you’re
going to do it some time later.

_RESMGR_NPARTS (n)

The resource manager library should return an n-part IOV when it
does the MsgReplyv() (the IOV is located in ctp -> iov). Your
function is responsible for filling in the iov member of the ctp
structure, and then returning _RESMGR_NPARTS with the correct
number of parts.

226 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Handler routines

The iov member of ctp is allocated dynamically, so it must be big enough to hold the
number of array elements that you’re writing into the iov member! See the section
“resmgr_attr_t control structure” above, for information on setting the
nparts_max member.

_RESMGR_DEFAULT

This instructs the resource manager library to perform the
low-level default function (This is not the same as the
iofunc_*_default() functions!) You’d rarely ever use this return
value. In general, it causes the resource manager library to return
an errno of ENOSYS to the client, which indicates that the function
is not supported.

An errno value Indicates to the resource manager library that it should call
MsgError() with this value as the error parameter. This generally
causes the client function (e.g. open()) to return -1 and set errno
on the client side to the returned value.

_RESMGR_ERRNO (errno)

(Deprecated) This return value had been used to “wrap” an errno
number as the return value of the message. For example, if a client
issued an open() request for a read-only device, it would be
appropriate to return the error value EROFS. Since this function is
deprecated, you can return the error number directly instead of
wrapping it with the _RESMGR_ERRNO macro (e.g., return
(EROFS); instead of the more cumbersome return
(_RESMGR_ERRNO (EROFS));.)

_RESMGR_PTR (ctp, addr, len)

This is a convenience macro that accepts the context pointer ctp,
and fills its first IOV element to point to the address specified by
addr for the length specified by len, and then returns the equivalent
of _RESMGR_NPARTS (1) to the library. You’d generally use this
if you return single-part IOVs from your function.

Locking, unlocking, and combine message handling

We saw the client side of a combine message when we looked at readblock() (in
“Combine messages”). The client was able to atomically construct a message that
contained multiple resource manager “submessages” — in the example, these were
messages corresponding to the individual functions lseek() and read(). From the
client’s perspective, the two (or more) functions were at least sent atomically (and, due
to the nature of message passing, will be received atomically by the resource
manager). What we haven’t yet talked about is how we ensure that the messages are
processed atomically.

October 20, 2008 Chapter 5 • Resource Managers 227

Handler routines © 2008, QNX Software Systems GmbH & Co. KG.

This discussion applies not only to combine messages, but to all I/O messages
received by the resource manager library (except the close message, which we’ll come
back to shortly).

The very first thing that the resource manager library does is to lock the attribute
structure corresponding to the resource being used by the received message. Then, it
processes one or more submessages from the incoming message. Finally, it unlocks
the attribute structure.

This ensures that the incoming messages are handled atomically, for no other thread in
the resource manager (in the case of a multithreaded resource manager, of course) can
“jump in” and modify the resource while a thread is busy using it. Without the locking
in place, two client threads could both issue what they believe to be an atomic
combine message (say lseek() and read()). Since the resource manager might have two
different threads running in it and processing messages, the two resource manager
threads could possibly preempt each other, and the lseek() components could interfere
with each other. With locking and unlocking, this is prevented, because each message
that accesses a resource will be completed in its entirety atomically.

Locking and unlocking the resource is handled by default helper functions
(iofunc_lock_ocb_default() and iofunc_unlock_ocb_default()), which are placed in
the I/O table at the lock_ocb and unlock_ocb positions. You can, of course, override
these functions if you want to perform further actions during this locking and
unlocking phase.

Note that the resource is unlocked before the io_close() function is called. This is
necessary because the io_close() function will free the OCB, which would effectively
invalidate the pointer used to access the attributes structure, which is where the lock is
stored! Also note that none of the connect functions do this locking, because the
handle that’s passed to them does not have to be an attribute structure (and the locks
are stored in the attribute structure).

Connect functions notes
Before we dive into the individual messages, however, it’s worth pointing out that the
connect functions all have an identical message structure (rearranged slightly, see
<sys/iomsg.h> for the original):

struct _io_connect {
// Internal use
uint16_t type;
uint16_t subtype;
uint32_t file_type;
uint16_t reply_max;
uint16_t entry_max;
uint32_t key;
uint32_t handle;
uint32_t ioflag;
uint32_t mode;
uint16_t sflag;
uint16_t access;
uint16_t zero;

228 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Handler routines

uint8_t eflag;

// End-user parameters
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

You’ll notice that I’ve divided the struct _io_connect structure into two areas, an
“Internal use” part and an “End-user parameters” part.

Internal use part

The first part consists of fields that the resource manager library uses to:

• determine the type of message sent from the client.

• validate (ensure that the message is not spoofed).

• track access mode (used by helper functions).

To keep things simple, I recommend that you always use the helper functions (the
iofunc_*_default() ones) in all connect functions. These will return a pass/fail
indication, and after that point, you can then use the “End-user parameters” members
within the connect function.

End-user parameter part

The second half of the members directly concern your implementation of the connect
functions:

path_len and path

The pathname (and its length) that’s the operand (i.e., the pathname you’re
operating on).

extra_type and extra_len

Additional parameters (pathnames, for example) relevant to the connect
function.

To get a sense of how the path member is used as “the pathname you’re operating on,”
let’s examine something like the rename() function. This function takes two
pathnames; the “original” pathname and the “new” pathname. The original pathname
is passed in path, because it’s the thing being worked on (it’s the filename that’s
undergoing the name change). The new pathname is the argument to the operation.
You’ll see that the extra parameter passed to the connect functions conveniently
contains a pointer to the argument of the operation — in this case, the new pathname.
(Implementation-wise, the new pathname is stored just past the original pathname in
the path pointer, with alignment taken into consideration, but you don’t have to do
anything about this — the extra parameter conveniently gives you the correct pointer.)

October 20, 2008 Chapter 5 • Resource Managers 229

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

Alphabetical listing of connect and I/O functions
This section gives an alphabetical listing of the connect and I/O function entry points
that you can fill in (the two tables passed to pathname_attach()). Remember that if
you simply call iofunc_func_init(), all these entries will be filled in with the
appropriate defaults; you’d want to modify a particular entry only if you wish to
handle that particular message. In the “Examples” section, below, you’ll see some
examples of the common functions.

It may seem confusing at first, but note that there are in fact two unblock outcalls —
one is a connect function and one is an I/O function. This is correct; it’s a reflection of
when the unblock occurs. The connect version of the unblock function is used when
the kernel unblocks the client immediately after the client has sent the connect
message; the I/O version of the unblock function is used when the kernel unblocks the
client immediately after the client has sent an I/O message.

In order not to confuse the client’s C-library call (for example, open()) with the
resource manager connect outcall that goes into that particular slot, we’ve given all of
our functions an “io_” prefix. For example, the function description for the open
connect outcall slot will be under io_open().

io_chmod()
int io_chmod (resmgr_context_t *ctp, io_chmod_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O function

Default handler: iofunc_chmod_default()

Helper functions: iofunc_chmod()

Client function: chmod(), fchmod()

Messages: _IO_CHMOD

Data structure:

struct _io_chmod {
uint16_t type;
uint16_t combine_len;
mode_t mode;

};

typedef union {
struct _io_chmod i;

} io_chmod_t;

Description: Responsible for changing the mode for the resource identified by the
passed ocb to the value specified by the mode message member.

Returns: The status via the helper macro _RESMGR_STATUS.

230 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

io_chown()
int io_chown (resmgr_context_t *ctp, io_chown_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O function

Default handler: iofunc_chown_default()

Helper functions: iofunc_chown()

Client function: chown(), fchown()

Messages: _IO_CHOWN

Data structure:

struct _io_chown {
uint16_t type;
uint16_t combine_len;
int32_t gid;
int32_t uid;

};

typedef union {
struct _io_chown i;

} io_chown_t;

Description: Responsible for changing the user ID and group ID fields for the resource
identified by the passed ocb to uid and gid, respectively. Note that the mount structure
flag IOFUNC_PC_CHOWN_RESTRICTED and the OCB flag field should be examined
to determine whether the filesystem allows chown() to be performed by non-root
users.

Returns: The status via the helper macro _RESMGR_STATUS.

io_close_dup()
int io_close_dup (resmgr_context_t *ctp, io_close_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O function

Default handler: iofunc_close_dup_default()

Helper functions: iofunc_close_dup()

Client function: close(), fclose()

Messages: _IO_CLOSE_DUP

Data structure:

struct _io_close {
uint16_t type;
uint16_t combine_len;

};

typedef union {
struct _io_close i;

} io_close_t;

October 20, 2008 Chapter 5 • Resource Managers 231

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

Description: This is the real function handler for the client’s close() or fclose()
function calls. Note that you’d almost never take over this function; you’d leave it as
iofunc_close_dup_default() in the I/O table. This is because the base layer keeps track
of the number of open(), dup() and close() messages issued for a particular OCB, and
will then synthesize an io_close_ocb() outcall (see below) when the last close()
message has been received for a particular OCB. Note that the receive IDs present in
ctp->rcvid may not necessarily match up with those passed to io_open(). However,
it’s guaranteed that at least one receive ID will match the receive ID from the
io_open() function. The “extra” receive IDs are the result of (possibly internal)
dup()-type functionality.

Returns: The status via the helper macro _RESMGR_STATUS.

io_close_ocb()
int io_close_ocb (resmgr_context_t *ctp, void *reserved,
RESMGR_OCB_T *ocb)

Classification: I/O function (synthesized by library)

Default handler: iofunc_close_ocb_default()

Helper functions: none

Client function: none — synthesized by library

Messages: none — synthesized by library

Data structure:

// synthesized by library
struct _io_close {

uint16_t type;
uint16_t combine_len;

};

typedef union {
struct _io_close i;

} io_close_t;

Description: This is the function that gets synthesized by the base-layer library when
the last close() has been received for a particular OCB. This is where you’d perform
any final cleanup you needed to do before the OCB is destroyed. Note that the receive
ID present in ctp->rcvid is zero, because this function is synthesized by the library
and doesn’t necessarily correspond to any particular message.

Returns: The status via the helper macro _RESMGR_STATUS.

io_devctl()
int io_devctl (resmgr_context_t *ctp, io_devctl_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_devctl_default()

232 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

Helper functions: iofunc_devctl()
Client function: devctl(), ioctl()

Messages: _IO_DEVCTL

Data structure:

struct _io_devctl {
uint16_t type;
uint16_t combine_len;
int32_t dcmd;
int32_t nbytes;
int32_t zero;

};

struct _io_devctl_reply {
uint32_t zero;
int32_t ret_val;
int32_t nbytes;
int32_t zero2;

};

typedef union {
struct _io_devctl i;
struct _io_devctl_reply o;

} io_devctl_t;

Description: Performs the device I/O operation as passed from the client’s devctl() in
dcmd. The client encodes a direction into the top two bits of dcmd, indicating how the
devctl() is to transfer data (the “to” field refers to the _POSIX_DEVDIR_TO bit; the
“from” field refers to the _POSIX_DEVDIR_FROM bit):

to field from field Meaning

0 0 No data transfer

0 1 Transfer from driver to client

1 0 Transfer from client to driver

1 1 Transfer bidirectionally

In the case of no data transfer, the driver is expected to simply perform the command
given in dcmd. In the case of a data transfer, the driver is expected to transfer the data
from and/or to the client, using the helper functions resmgr_msgreadv() and
resmgr_msgwritev(). The client indicates the size of the transfer in the nbytes
member; the driver is to set the outgoing structure’s nbytes member to the number of
bytes transferred.

Note that the input and output data structures are zero-padded so that they align with
each other. This means that the implicit data area begins at the same address in the
input and output structures.

If using the helper routine iofunc_devctl(), beware that it’ll return the constant
_RESMGR_DEFAULT in the case where it can’t do anything with the devctl() message.

October 20, 2008 Chapter 5 • Resource Managers 233

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

This return value is there to decouple legitimate errno return values from an
“unrecognized command” return value. Upon receiving a _RESMGR_DEFAULT, the
base-layer library will respond with an errno of ENOSYS, which the client’s devctl()
library function will translate into ENOTTY (which is the “correct” POSIX value).

It’s up to your function to check the open mode against the operation; no checking is
done anywhere in either the client’s devctl() library or in the resource manager library.
For example, it’s possible to open a resource manager “read-only” and then issue a
devctl() to it telling it to “format the hard disk” (which is very much a “write”
operation). It would be prudent to verify the open mode first before proceeding with
the operation.

Note that the range of dcmd values you can use is limited (0x0000 through 0x0FFF
inclusive is reserved for QSS). Other values may be in use; take a look through the
include files that have the name <sys/dcmd_*.h>.

Returns: The status via the helper macro _RESMGR_STATUS and the reply buffer
(with reply data, if required).

For an example, take a look at “A simple io_devctl() example,” below.

io_dup()
int io_dup (resmgr_context_t *ctp, io_dup_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: NULL — handled by base layer

Helper functions: none

Client function: dup(), dup2(), fcntl(), fork(), spawn*(), vfork()

Messages: _IO_DUP

Data structure:

struct _io_dup {
uint16_t type;
uint16_t combine_len;
struct _msg_info info;
uint32_t reserved;
uint32_t key;

};

typedef union {
struct _io_dup i;

} io_dup_t;

Description: This is the dup() message handler. As with the io_close_dup(), you won’t
likely handle this message yourself. Instead, the base-layer library will handle it.

Returns: The status via the helper macro _RESMGR_STATUS.

234 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

io_fdinfo()
int io_fdinfo (resmgr_context_t *ctp, io_fdinfo_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_fdinfo_default()

Helper functions: iofunc_fdinfo()

Client function: iofdinfo()

Messages: _IO_FDINFO

Data structure:

struct _io_fdinfo {
uint16_t type;
uint16_t combine_len;
uint32_t flags;
int32_t path_len;
uint32_t reserved;

};

struct _io_fdinfo_reply {
uint32_t zero [2];
struct _fdinfo info;

};

typedef union {
struct _io_fdinfo i;
struct _io_fdinfo_reply o;

} io_fdinfo_t;

Description: This function is used to allow clients to retrieve information directly
about the attributes and pathname which is associated with a file descriptor. The
client-side function iofdinfo() is used. The path string implicitly follows the struct
_io_fdinfo_reply data structure. Use of the default function is sufficient for
discretely-manifested pathname resource managers.

Returns: The length of the path string being returned is set via the helper macro
_IO_SET_FDINFO_LEN.

io_link()
int io_link (resmgr_context_t *ctp, io_link_t *msg,
RESMGR_HANDLE_T *handle, io_link_extra_t *extra)

Classification: Connect

Default handler: none

Helper functions: iofunc_link()

Client function: link()

Messages: _IO_CONNECT with subtype _IO_CONNECT_LINK

Data structure:

October 20, 2008 Chapter 5 • Resource Managers 235

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_link_t;

typedef union _io_link_extra {
struct _msg_info info;
void *ocb;
char path [1];
struct _io_resmgr_link_extra resmgr;

} io_link_extra_t;

Description: Creates a new link with the name given in the path member of msg to the
already-existing pathname specified by the path member of extra (passed to your
function). For convenience, the ocb member of extra contains a pointer to the OCB for
the existing pathname.

Returns: The status via the helper macro _RESMGR_STATUS.

io_lock()
int io_lock (resmgr_context_t *ctp, io_lock_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: iofunc_lock_default()

Helper functions: iofunc_lock()

Client functions: fcntl(), lockf(), flock()

Messages: _IO_LOCK

Data structure:

struct _io_lock {
uint16_t type;
uint16_t combine_len;
uint32_t subtype;
int32_t nbytes;

};

struct _io_lock_reply {

236 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

uint32_t zero [3];
};

typedef union {
struct _io_lock i;
struct _io_lock_reply o;

} io_lock_t;

Description: This provides advisory range-based file locking for a device. The default
function is most likely sufficient for most resource managers.

Returns: The status via the helper macro _RESMGR_STATUS.

io_lock_ocb()
int io_lock_ocb (resmgr_context_t *ctp, void *reserved,
RESMGR_OCB_T *ocb)

Classification: I/O (synthesized by library)

Default handler: iofunc_lock_ocb_default()

Helper functions: none

Client function: all

Messages: none — synthesized by library

Data structure: none

Description: This function is responsible for locking the attributes structure pointed to
by the OCB. This is done to ensure that only one thread at a time is operating on both
the OCB and the corresponding attributes structure. The lock (and corresponding
unlock) functions are synthesized by the resource manager library before and after
completion of message handling. See the section on “Combine messages” above for
more details. You’ll almost never use this outcall yourself; instead, use the
POSIX-layer default function.

Returns: The status via the helper macro _RESMGR_STATUS.

io_lseek()
int io_lseek (resmgr_context_t *ctp, io_lseek_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_lseek_default()

Helper functions: iofunc_lseek()

Client functions: lseek(), fseek(), rewinddir()

Messages: _IO_LSEEK

Data structure:

struct _io_lseek {
uint16_t type;

October 20, 2008 Chapter 5 • Resource Managers 237

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

uint16_t combine_len;
short whence;
uint16_t zero;
uint64_t offset;

};

typedef union {
struct _io_lseek i;
uint64_t o;

} io_lseek_t;

Description: Handles the client’s lseek() function. Note that a resource manager that
handles directories will also need to interpret the _IO_LSEEK message for directory
operations. The whence and offset parameters are passed from the client’s lseek()
function. The routine should adjust the OCB’s offset parameter after interpreting the
whence and offset parameters from the message and should return the new offset or an
error.

Returns: The status via the helper macro _RESMGR_STATUS, and optionally (if no
error and if not part of a combine message) the current offset.

io_mknod()
int io_mknod (resmgr_context_t *ctp, io_mknod_t *msg,
RESMGR_HANDLE_T *handle, void *reserved)

Classification: Connect

Default handler: none

Helper functions: iofunc_mknod()

Client function: mknod(), mkdir(), mkfifo()

Messages: _IO_CONNECT, subtype _IO_CONNECT_MKNOD

Data structure:

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_mknod_t;

238 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

Description: Creates a new filesystem entry point. The message is issued to create a
file, named by the path member, using the filetype encoded in the mode member (from
the “internal fields” part of the struct _io_connect structure, not shown).

This is really used only for the mkfifo(), mkdir(), and mknod() client functions.

Returns: The status via the helper macro _RESMGR_STATUS.

io_mmap()
int io_mmap (resmgr_context_t *ctp, io_mmap_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: iofunc_mmap_default()

Helper functions: iofunc_mmap()

Client functions: mmap(), munmap(), mmap_device_io(), mmap_device_memory()

Messages: _IO_MMAP

Data structure:

struct _io_mmap {
uint16_t type;
uint16_t combine_len;
uint32_t prot;
uint64_t offset;
struct _msg_info info;
uint32_t zero [6];

};

struct _io_mmap_reply {
uint32_t zero;
uint32_t flags;
uint64_t offset;
int32_t coid;
int32_t fd;

};

typedef union {
struct _io_mmap i;
struct _io_mmap_reply o;

} io_mmap_t;

Description: Allows the process manager to mmap() files from your resource manager.
Generally, you should not code this function yourself (use the defaults provided by
iofunc_func_init() — the default handler), unless you specifically wish to disable the
functionality (for example, a serial port driver could choose to return ENOSYS,
because it doesn’t make sense to support this operation).

Only the process manager will call this resource manager function.

Note that a side effect of the process manager’s calling this function is that an OCB
will be created (i.e., iofunc_ocb_calloc() will be called), but this should have no
consequences to a properly implemented resource manager.

Returns: The status via the helper macro _RESMGR_STATUS.

October 20, 2008 Chapter 5 • Resource Managers 239

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

io_mount()
int io_mount (resmgr_context_t *ctp, io_mount_t *msg,
RESMGR_HANDLE_T *handle, io_mount_extra_t *extra)

Classification: Connect

Default handler: none

Client functions: mount(), umount()

Helper functions: none

Messages: _IO_CONNECT with the _IO_CONNECT_MOUNT subtype.

Data structure:

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_mount_t;

Description: This function is called whenever a mount() or umount() client function
sends your resource manager a message. Thomas Fletcher has written an excellent
article, Handling Mount Requests in Your Resource Manager, including some very
interesting code examples, that you can find on the QNX website,
http://www.qnx.com/.

Returns: The status via the helper macro _IO_SET_CONNECT_RET.

io_msg()
int io_msg (resmgr_context_t *ctp, io_msg_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: none.

Helper functions: none.

Client function: none — manually assembled and sent via MsgSend()

Messages: _IO_MSG

240 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

Data structure:

struct _io_msg {
uint16_t type;
uint16_t combine_len;
uint16_t mgrid;
uint16_t subtype;

};

typedef union {
struct _io_msg i;

} io_msg_t;

Description: The _IO_MSG interface is a more general, but less portable, variation on
the ioctl()/devctl() theme. The mgrid is used to identify a particular manager — you
should not perform actions for requests that don’t conform to your manager ID. The
subtype is effectively the command that the client wishes to perform. Any data that’s
transferred implicitly follows the input structure. Data that’s returned to the client is
sent on its own, with the status returned via _RESMGR_STATUS. You can get a
“manager ID” from QSS.

Returns: The status via the helper macro _RESMGR_STATUS.

io_notify()
int io_notify (resmgr_context_t *ctp, io_notify_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: none

Helper functions: iofunc_notify(), iofunc_notify_remove(), iofunc_notify_trigger()

Client function: select(), ionotify()

Messages: _IO_NOTIFY

Data structure:

struct _io_notify {
uint16_t type;
uint16_t combine_len;
int32_t action;
int32_t flags;
struct sigevent event;

};

struct _io_notify_reply {
uint32_t zero;
uint32_t flags;

};

typedef union {
struct _io_notify i;
struct _io_notify_reply o;

} io_notify_t;

October 20, 2008 Chapter 5 • Resource Managers 241

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

Description: The handler is responsible for installing, polling, or removing a
notification handler. The action and flags determine the kind of notification operation
and conditions; the event is a struct sigevent structure that defines the
notification event (if any) that the client wishes to be signaled with. You’d use the
MsgDeliverEvent() or iofunc_notify_trigger() functions to deliver the event to the
client.

Returns: The status via the helper macro _RESMGR_STATUS; the flags are returned
via message reply.

io_open()
int io_open (resmgr_context_t *ctp, io_open_t *msg,
RESMGR_HANDLE_T *handle, void *extra)

Classification: Connect

Default handler: iofunc_open_default()

Helper functions: iofunc_open(), iofunc_ocb_attach()

Client functions: open(), fopen(), sopen() (and others)

Messages: _IO_CONNECT with one of _IO_CONNECT_COMBINE,
_IO_CONNECT_COMBINE_CLOSE or _IO_CONNECT_OPEN subtypes.

Data structure:

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_open_t;

Description: This is the main entry point into the resource manager. It checks that the
client indeed has the appropriate permissions to open the file, binds the OCB to the
internal library structures (via resmgr_bind_ocb(), or iofunc_ocb_attach()), and
returns an errno. Note that not all input and output structure members are relevant for
this function.

Returns: The status via the helper macro _IO_SET_CONNECT_RET.

242 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

io_openfd()
int io_openfd (resmgr_context_t *ctp, io_openfd_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_openfd_default()

Helper functions: iofunc_openfd()

Client function: openfd()

Messages: _IO_OPENFD

Data structure:

struct _io_openfd {
uint16_t type;
uint16_t combine_len;
uint32_t ioflag;
uint16_t sflag;
uint16_t reserved1;
struct _msg_info info;
uint32_t reserved2;
uint32_t key;

};

typedef union {
struct _io_openfd i;

} io_openfd_t;

Description: This function is similar to the handler provided for io_open(), except that
instead of a pathname, an already-open file descriptor is passed (by virtue of passing
you the ocb in the function call).

Returns: The status via the helper macro _RESMGR_STATUS.

io_pathconf()
int io_pathconf (resmgr_context_t *ctp, io_pathconf_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_pathconf_default()

Helper functions: iofunc_pathconf()

Client functions: fpathconf(), pathconf()

Messages: _IO_PATHCONF

Data structure:

struct _io_pathconf {
uint16_t type;
uint16_t combine_len;
short name;
uint16_t zero;

};

October 20, 2008 Chapter 5 • Resource Managers 243

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

typedef union {
struct _io_pathconf i;

} io_pathconf_t;

Description: The handler for this message is responsible for returning the value of the
configurable parameter name for the resource associated with this OCB. Use the
default function and add additional cases for the name member as appropriate for your
device.

Returns: The status via the helper macro _IO_SET_PATHCONF_VALUE and the data
via message reply.

io_read()
int io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: iofunc_read_default()

Helper functions: iofunc_read_verify()

Client functions: read(), readdir()

Messages: _IO_READ

Data structure:

struct _io_read {
uint16_t type;
uint16_t combine_len;
int32_t nbytes;
uint32_t xtype;

};

typedef union {
struct _io_read i;

} io_read_t;

Description: Responsible for reading data from the resource. The client specifies the
number of bytes it’s prepared to read in the nbytes input member. You return the data,
advance the offset in the OCB, and update the appropriate time fields.

Note that the xtype member may specify a per-read-message override flag. This should
be examined. If you don’t support any extended override flags, you should return an
EINVAL. We’ll see the handling of one particularly important (and tricky!) override
flag called _IO_XTYPE_OFFSET in the io_read() and io_write() examples below.

Note also that the _IO_READ message arrives not only for regular files, but also for
reading the contents of directories. You must ensure that you return an integral number
of struct dirent members in the directory case. For more information about
returning directory entries, see the example in the “Advanced topics” section under
“Returning directory entries.”

The helper function iofunc_read_verify() should be called to ascertain that the file was
opened in a mode compatible with reading. Also, the iofunc_sync_verify() function

244 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

should be called to verify if the data needs to be synchronized to the medium. (For a
read(), that means that the data returned is guaranteed to be on-media.)

Returns: The number of bytes read, or the status, via the helper macro
_IO_SET_READ_NBYTES, and the data itself via message reply.

For an example of returning just data, take a look at “A simple io_read() example”
below. For a more complicated example of returning both data and directory entries,
look in the “Advanced topics” section under “Returning directory entries.”

io_readlink()
int io_readlink (resmgr_context_t *ctp, io_readlink_t *msg,
RESMGR_HANDLE_T *handle, void *reserved)

Classification: Connect

Default handler: none

Helper functions: iofunc_readlink()

Client function: readlink()

Messages: _IO_CONNECT with subtype _IO_CONNECT_READLINK

Data structure:

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_open_t;

Description: Responsible for reading the contents of a symbolic link as specified by
the path member of the input structure. The bytes returned are the contents of the
symbolic link; the status returned is the number of bytes in the reply. A valid return
should be done only for a symbolic link; all other accesses should return an error code.

Returns: The status via the helper macro _RESMGR_STATUS and the data via message
reply.

October 20, 2008 Chapter 5 • Resource Managers 245

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

io_rename()
int io_rename (resmgr_context_t *ctp, io_rename_t *msg,
RESMGR_HANDLE_T *handle, io_rename_extra_t *extra)

Classification: Connect

Default handler: none

Helper functions: iofunc_rename()

Client function: rename()

Messages: _IO_CONNECT with subtype _IO_CONNECT_RENAME

Data structure:

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union _io_rename_extra {
char path [1];

} io_rename_extra_t;

typedef union {
struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_rename_t;

Description: Performs the rename operation, given the new name in path and the
original name in the path member of the passed extra parameter. Implementation note:
the pathname of the original name is given (rather than an OCB) specifically for the
case of handling a rename of a file that’s hard-linked to another file. If the OCB were
given, there would be no way to tell apart the two (or more) versions of the
hard-linked file.

This function will be called only with two filenames that are on the same filesystem
(same device). Therefore, there’s no need to check for a case where you’d return
EXDEV. This doesn’t prevent you from returning EXDEV if you don’t wish to perform
the rename() yourself (for example, it may be very complicated to do the rename
operation from one directory to another). In the case of returning EXDEV, the shell
utility mv will perform a cp followed by an rm (the C library function rename() will do
no such thing — it will return only an errno of EXDEV).

246 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

Also, all symlinks will be resolved, where applicable, before this function is called,
and the pathnames passed will be absolute and rooted in the filesystem for which this
resource manager is responsible.

Returns: The status via the helper macro _RESMGR_STATUS.

io_shutdown()
int io_shutdown (resmgr_context_t *ctp, io_shutdown_t *msg,
RESMGR_OCB_T *ocb)

This function is reserved by QSS for future use. You should initialize the I/O table
using iofunc_func_init() and not modify this entry.

io_space()
int io_space (resmgr_context_t *ctp, io_space_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: none

Helper functions: iofunc_space_verify()

Client functions: chsize(), fcntl(), ftruncate(), ltrunc()

Messages: _IO_SPACE

Data structure:

struct _io_space {
uint16_t type;
uint16_t combine_len;
uint16_t subtype;
short whence;
uint64_t start;
uint64_t len;

};

typedef union {
struct _io_space i;
uint64_t o;

} io_space_t;

Description: This is used to allocate or free space occupied by the resource. The
subtype parameter indicates whether to allocate (if set to F_ALLOCSP) or deallocate
(if set to F_FREESP) storage space. The combination of whence and start give the
location where the beginning of the allocation or deallocation should occur; the
member len indicates the size of the operation.

Returns: The number of bytes (size of the resource) via the helper macro
_RESMGR_STATUS.

October 20, 2008 Chapter 5 • Resource Managers 247

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

io_stat()
int io_stat (resmgr_context_t *ctp, io_stat_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: iofunc_stat_default()

Helper functions: iofunc_stat()

Client functions: stat(), lstat(), fstat()

Messages: _IO_STAT

Data structure:

struct _io_stat {
uint16_t type;
uint16_t combine_len;
uint32_t zero;

};

typedef union {
struct _io_stat i;
struct stat o;

} io_stat_t;

Description: Handles the message that requests information about the resource
associated with the passed OCB. Note that the attributes structure contains all the
information required to fulfill the stat() request; the helper function iofunc_stat() fills a
struct stat structure based on the attributes structure. Also, the helper function
modifies the stored dev/rdev members to be unique from a single node’s point of view
(useful for performing stat() calls to files over a network). There’s almost no reason to
write your own handler for this function.

Returns: The status via the helper macro _RESMGR_STATUS and the struct stat

via message reply.

io_sync()
int io_sync (resmgr_context_t *ctp, io_sync_t *msg, RESMGR_OCB_T

*ocb)

Classification: I/O

Default handler: iofunc_sync_default()

Helper functions: iofunc_sync_verify(), iofunc_sync()

Client function: fsync(), fdatasync()

Messages: _IO_SYNC

Data structure:

struct _io_sync {
uint16_t type;
uint16_t combine_len;

248 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

uint32_t flag;
};

typedef union {
struct _io_sync i;

} io_sync_t;

Description: This is the entry point for a flush command. The helper function
iofunc_sync() is passed the flag member from the input message, and returns one of
the following values, which indicate what actions your resource manager must take:

• 0 — do nothing.

• O_SYNC — everything associated with the file (including the file contents,
directory structures, inodes, etc.) must be present and recoverable from media.

• O_DSYNC — only the data portion of the file must be present and recoverable from
media.

Note that this outcall will occur only if you’ve agreed to provide sync services by
setting the mount structure flag.

Returns: Returns the status via the helper macro _RESMGR_STATUS.

io_unblock() [CONNECT]
int io_unblock (resmgr_context_t *ctp, io_pulse_t *msg,
RESMGR_HANDLE_T *handle, void *reserved)

Classification: Connect (synthesized by kernel, synthesized by library)

Default handler: none

Helper functions: iofunc_unblock()

Client function: none — kernel action due to signal or timeout

Messages: none — synthesized by library

Data structure: (See I/O version of io_unblock(), next)

Description: This is the connect message version of the unblock outcall, synthesized
by the library as a result of a kernel pulse due to the client’s attempt to unblock during
the connect message phase. See the I/O version of io_unblock() for more details.

Returns: The status via the helper macro _RESMGR_STATUS.

See the section in the Message Passing chapter, titled “Using the
_NTO_MI_UNBLOCK_REQ” for a detailed discussion of unblocking strategies.

io_unblock() [I/O]
int io_unblock (resmgr_context_t *ctp, io_pulse_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O (synthesized by kernel, synthesized by library)

Default handler: iofunc_unblock_default()

October 20, 2008 Chapter 5 • Resource Managers 249

Alphabetical listing of connect and I/O functions © 2008, QNX Software Systems GmbH & Co. KG.

Helper functions: iofunc_unblock()

Client function: none — kernel action due to signal or timeout

Messages: none — synthesized by library

Data structure: pointer to message structure being interrupted

Description: This is the I/O message version of the unblock outcall, synthesized by the
library as a result of a kernel pulse due to the client’s attempt to unblock during the I/O
message phase. The connect message phase io_unblock() handler is substantially the
same (see the preceding section).

Common to both unblock handlers (connect and I/O) is the characteristic that the
client wishes to unblock, but is at the mercy of the resource manager. The resource
manager must reply to the client’s message in order to unblock the client. (This is
discussed in the Message Passing chapter when we looked at the ChannelCreate()
flags, particularly the _NTO_CHF_UNBLOCK flag).

Returns: The status via the helper macro _RESMGR_STATUS.

See the section in the Message Passing chapter, titled “Using the
_NTO_MI_UNBLOCK_REQ” for a detailed discussion of unblocking strategies.

io_unlink()
int io_unlink (resmgr_context_t *ctp, io_unlink_t *msg,
RESMGR_HANDLE_T *handle, void *reserved)

Classification: Connect

Default handler: none

Helper functions: iofunc_unlink()

Client function: unlink()

Messages: _IO_CONNECT with subtype _IO_CONNECT_UNLINK

Data structure:

struct _io_connect {
// internal fields (as described above)
uint16_t path_len;
uint8_t extra_type;
uint16_t extra_len;
char path [1];

};

struct _io_connect_link_reply {
uint32_t reserved1 [2];
uint8_t eflag;
uint8_t reserved2 [3];
uint32_t umask;
uint16_t nentries;
uint16_t path_len;

};

typedef union {

250 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Alphabetical listing of connect and I/O functions

struct _io_connect connect;
struct _io_connect_link_reply link_reply;

} io_unlink_t;

Description: Responsible for unlinking the file whose pathname is passed in the input
message structure’s path member.

Returns: The status via the helper macro _RESMGR_STATUS.

io_unlock_ocb()
int io_unlock_ocb (resmgr_context_t *ctp, void *reserved,
RESMGR_OCB_T *ocb)

Classification: I/O (synthesized by library)

Default handler: iofunc_unlock_ocb_default()

Helper functions: none

Client function: all

Messages: none — synthesized by library

Data structure: none

Description: Inverse of io_lock_ocb(), above. That is, it’s responsible for unlocking
the attributes structure pointed to by the OCB. This operation releases the attributes
structure so that other threads in the resource manager may operate on it. See the
section on “Combine messages” above for more details.

Returns: The status via the helper macro _RESMGR_STATUS.

io_utime()
int io_utime (resmgr_context_t *ctp, io_utime_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_utime_default()

Helper functions: iofunc_utime()

Client function: utime()

Messages: _IO_UTIME

Data structure:

struct _io_utime {
uint16_t type;
uint16_t combine_len;
int32_t cur_flag;
struct utimbuf times;

};

typedef union {
struct _io_utime i;

} io_utime_t;

October 20, 2008 Chapter 5 • Resource Managers 251

Examples © 2008, QNX Software Systems GmbH & Co. KG.

Description: Changes the access and modification times to either “now” (if they are
zero) or the specified values. Note that this message handler may be required to
modify the IOFUNC_ATTR_* flags in the attribute structure as per POSIX rules. You’ll
almost never use this outcall yourself, but will instead use the POSIX-layer helper
function.

Returns: The status via the helper macro _RESMGR_STATUS.

io_write()
int io_write (resmgr_context_t *ctp, io_write_t *msg,
RESMGR_OCB_T *ocb)

Classification: I/O

Default handler: iofunc_write_default()

Helper functions: iofunc_write_verify()

Client function: write(), fwrite(), etc.

Messages: _IO_WRITE

Data structure:

struct _io_write {
uint16_t type;
uint16_t combine_len;
int32_t nbytes;
uint32_t xtype;

};

typedef union {
struct _io_write i;

} io_write_t;

Description: This message handler is responsible for getting data that the client wrote
to the resource manager. It gets passed the number of bytes the client is attempting to
write in the nbytes member; the data implicitly follows the input data structure (unless
the xtype override is _IO_XTYPE_OFFSET; see “A simple io_write() example”
below!) The implementation will need to re-read the data portion of the message from
the client, using resmgr_msgreadv() or the equivalent. The return status is the number
of bytes actually written or an errno.

Note that the helper function iofunc_write_verify() should be called to ascertain that
the file was opened in a mode compatible with writing. Also, the iofunc_sync_verify()
function should be called to verify if the data needs to be synchronized to the medium.

Returns: The status via the helper macro _IO_SET_WRITE_NBYTES.

For an example, take a look at “A simple io_write() example” below.

Examples
I’m now going to show you a number of “cookbook” examples you can cut and paste
into your code, to use as a basis for your projects. These aren’t complete resource

252 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

managers — you’ll need to add the thread pool and dispatch “skeleton” shown
immediately below, and ensure that your versions of the I/O functions are placed into
the I/O functions table after you’ve done the iofunc_func_init(), in order to override
the defaults!

I’ll start with a number of simple examples that show basic functionality for the
various resource manager message handlers:

• io_read()

• io_write()

• io_devctl() (without data transfer)

• io_devctl() (with data transfer)

And then in the advanced topics section, we’ll look at an io_read() that returns
directory entries.

The basic skeleton of a resource manager
The following can be used as a template for a resource manager with multiple threads.
(We’ve already seen a template that can be used for a single-threaded resource
manager above in “The resource manager library,” when we discussed a /dev/null
resource manager).

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

static resmgr_connect_funcs_t connect_func;
static resmgr_io_funcs_t io_func;
static iofunc_attr_t attr;

main (int argc, char **argv)
{

thread_pool_attr_t pool_attr;
thread_pool_t *tpp;
dispatch_t *dpp;
resmgr_attr_t resmgr_attr;
resmgr_context_t *ctp;
int id;

if ((dpp = dispatch_create ()) == NULL) {
fprintf (stderr,

"%s: Unable to allocate dispatch context.\n",
argv [0]);

return (EXIT_FAILURE);
}

memset (&pool_attr, 0, sizeof (pool_attr));
pool_attr.handle = dpp;
pool_attr.context_alloc = dispatch_context_alloc;
pool_attr.block_func = dispatch_block;
pool_attr.handler_func = dispatch_handler;
pool_attr.context_free = dispatch_context_free;

October 20, 2008 Chapter 5 • Resource Managers 253

Examples © 2008, QNX Software Systems GmbH & Co. KG.

// 1) set up the number of threads that you want
pool_attr.lo_water = 2;
pool_attr.hi_water = 4;
pool_attr.increment = 1;
pool_attr.maximum = 50;

if ((tpp = thread_pool_create (&pool_attr,
POOL_FLAG_EXIT_SELF)) == NULL) {

fprintf (stderr,
"%s: Unable to initialize thread pool.\n",
argv [0]);

return (EXIT_FAILURE);
}

iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_func,
_RESMGR_IO_NFUNCS, &io_func);

iofunc_attr_init (&attr, S_IFNAM | 0777, 0, 0);

// 2) override functions in "connect_func" and "io_func" as
// required here

memset (&resmgr_attr, 0, sizeof (resmgr_attr));
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

// 3) replace "/dev/whatever" with your device name
if ((id = resmgr_attach (dpp, &resmgr_attr, "/dev/whatever",

_FTYPE_ANY, 0, &connect_func, &io_func,
&attr)) == -1) {

fprintf (stderr,
"%s: Unable to attach name.\n", argv [0]);

return (EXIT_FAILURE);
}

// Never returns
thread_pool_start (tpp);

}

For more information about the dispatch interface (i.e., the dispatch_create()
function), see the documentation in the Neutrino Library Reference.

Step 1

Here you’d use the thread pool functions to create a pool of threads that will be able to
service messages in your resource manager. Generally, I recommend that you start off
with a single-threaded resource manager, as we did with the /dev/null example
mentioned above. Once you have the basic functionality running, you can then add
threads. You’d modify the lo_water, hi_water, increment, and maximum members of
the pool_attr structure as described in the “Threads & Processes” chapter where we
discuss the thread pool functions.

Step 2

Here you’d add whatever functions you want to supply. These are the outcalls we just
discussed (e.g. io_read(), io_devctl(), etc.) For example, to add your own handler for
the _IO_READ message that points to a function supplied by you called my_io_read(),
you’d add the following line of code:

254 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

io_func.io_read = my_io_read;

This will override the POSIX-layer default function that got put into the table by
iofunc_func_init() with a pointer to your function, my_io_read().

Step 3

You probably don’t want your resource manager called /dev/whatever, so you
should select an appropriate name. Note that the resmgr_attach() function is where
you bind the attributes structure (the attr parameter) to the name — if you wish to
have multiple devices handled by your resource manager, you’d call resmgr_attach()
multiple times, with different attributes structures (so that you could tell the different
registered names apart at runtime).

A simple io_read() example
To illustrate how your resource manager might return data to a client, consider a
simple resource manager that always returns the constant string "Hello,

world!\n". There are a number of issues involved, even in this very simple case:

• matching of client’s data area size to data being returned

• handling of EOF case

• maintenance of context information (the lseek() index)

• updating of POSIX stat() information

Data area size considerations

In our case, the resource manager is returning a fixed string of 14 bytes — there is
exactly that much data available. This is identical to a read-only file on a disk that
contains the string in question; the only real difference is that this “file” is maintained
in our C program via the statement:

char *data_string = "Hello, world!\n";

The client, on the other hand, can issue a read() request of any size — the client could
ask for one byte, 14 bytes, or more. The impact of this on the io_read() functionality
you’re going to provide is that you must be able to match the client’s requested data
size with what’s available.

Handling of EOF case

A natural fallout of the way you handle the client’s data area size considerations is the
corner case of dealing with the End-Of-File (EOF) on the fixed string. Once the client
has read the final “\n” character, further attempts by the client to read more data
should return EOF.

October 20, 2008 Chapter 5 • Resource Managers 255

Examples © 2008, QNX Software Systems GmbH & Co. KG.

Maintenance of context information

Both the “Data area size considerations” and the “Handling of EOF case” scenarios
will require that context be maintained in the OCB passed to your io_read() function,
specifically the offset member.

Updating POSIX information

One final consideration: when data is read from a resource manager, the POSIX
access time (atime) variable needs to be updated. This is so that a client stat() function
will show that someone has indeed accessed the device.

The code

Here’s the code that addresses all the above points. We’ll go through it step-by-step in
the discussion that follows:

/*
* io_read1.c

*/

#include <stdio.h>
#include <errno.h>
#include <sys/neutrino.h>
#include <sys/iofunc.h>

// our data string
char *data_string = "Hello, world!\n";

int
io_read (resmgr_context_t *ctp, io_read_t *msg, iofunc_ocb_t *ocb)
{

int sts;
int nbytes;
int nleft;
int off;
int xtype;
struct _xtype_offset *xoffset;

// 1) verify that the device is opened for read
if ((sts = iofunc_read_verify (ctp, msg, ocb, NULL)) != EOK) {

return (sts);
}

// 2) check for and handle an XTYPE override
xtype = msg -> i.xtype & _IO_XTYPE_MASK;
if (xtype == _IO_XTYPE_OFFSET) {

xoffset = (struct _xtype_offset *) (&msg -> i + 1);
off = xoffset -> offset;

} else if (xtype == _IO_XTYPE_NONE) {
off = ocb -> offset;

} else { // unknown, fail it
return (ENOSYS);

}

// 3) how many bytes are left?
nleft = ocb -> attr -> nbytes - off;

// 4) how many bytes can we return to the client?
nbytes = min (nleft, msg -> i.nbytes);

256 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

// 5) if returning data, write it to client
if (nbytes) {

MsgReply (ctp -> rcvid, nbytes, data_string + off, nbytes);

// 6) set up POSIX stat() "atime" data
ocb -> attr -> flags |= IOFUNC_ATTR_ATIME |

IOFUNC_ATTR_DIRTY_TIME;

// 7) advance the lseek() index by the number of bytes
// read if not _IO_XTYPE_OFFSET
if (xtype == _IO_XTYPE_NONE) {

ocb -> offset += nbytes;
}

} else {
// 8) not returning data, just unblock client
MsgReply (ctp -> rcvid, EOK, NULL, 0);

}

// 9) indicate we already did the MsgReply to the library
return (_RESMGR_NOREPLY);

}

Step 1

Here we ensured that the client’s open() call had in fact specified that the device was to
be opened for reading. If the client opened the device for writing only, and then
attempted to perform a read from it, it would be considered an error. In that case, the
helper function iofunc_read_verify() would return EBADF, and not EOK, so we’d
return that value to the library, which would then pass it along to the client.

Step 2

Here we checked to see if the client had specified an xtype-override — a per-message
override (e.g., because while the device had been opened in non-blocking mode, this
specifies for this one request that we’d like blocking behavior). Note that the blocking
aspect of the “xtype” override can be noted by the iofunc_read_verify() function’s last
parameter — since we’re illustrating a very simple example, we just passed in a NULL
indicating that we don’t care about this aspect.

More important, however, is to see how particular “xtype” modifiers are handled. An
interesting one is the _IO_XTYPE_OFFSET modifier, which, if present, indicates that
the message passed from the client contains an offset and that the read operation
should not modify the “current file position” of the file descriptor (this is used by the
function pread(), for example). If the _IO_XTYPE_OFFSET modifier is not present,
then the read operation can go ahead and modify the “current file position.” We use the
variable xtype to store the “xtype” that we received in the message, and the variable off
to represent the current offset that we should be using during processing. You’ll see
some additional handling of the _IO_XTYPE_OFFSET modifier below, in step 7.

If there is a different “xtype override” than _IO_XTYPE_OFFSET (and not the no-op
one of _IO_XTYPE_NONE), we fail the request with ENOSYS. This simply means that
we don’t know how to handle it, and we therefore return the error up to the client.

October 20, 2008 Chapter 5 • Resource Managers 257

Examples © 2008, QNX Software Systems GmbH & Co. KG.

Steps 3 & 4

To calculate how many bytes we can actually return to the client, we perform steps 3
and 4, which figure out how many bytes are available on the device (by taking the total
device size from ocb -> attr -> nbytes and subtracting the current offset into
the device). Once we know how many bytes are left, we take the smaller of that
number and the number of bytes that the client specified that they wish to read. For
example, we may have seven bytes left, and the client wants to only read two. In that
case, we can return only two bytes to the client. Alternatively, if the client wanted
4096 bytes, but we had only seven left, we could return only seven bytes.

Step 5

Now that we’ve calculated how many bytes we’re going to return to the client, we
need to do different things based on whether or not we’re returning data. If we are
returning data, then after the check in step 5, we reply to the client with the data.
Notice that we use data_string + off to return data starting at the correct offset
(the off is calculated based on the xtype override). Also notice the second parameter to
MsgReply() — it’s documented as the status argument, but in this case we’re using it
to return the number of bytes. This is because the implementation of the client’s read()
function knows that the return value from its MsgSendv() (which is the status
argument to MsgReply(), by the way) is the number of bytes that were read. This is a
common convention.

Step 6

Since we’re returning data from the device, we know that the device has been
accessed. We set the IOFUNC_ATTR_ATIME and IOFUNC_ATTR_DIRTY_TIME bits
in the flags member of the attribute structure. This serves as a reminder to the io_stat()
function that the access time is not valid and should be fetched from the system clock
before replying. If we really wanted to, we could have stuffed the current time into the
atime member of the attributes structure, and cleared the
IOFUNC_ATTR_DIRTY_TIME flag. But this isn’t very efficient, since we’re expecting
to get a lot more read() requests from the client than stat() requests. However, your
usage patterns may dictate otherwise.

So which time does the client see when it finally does call stat()? The
iofunc_stat_default() function provided by the resource manager library will look at
the flags member of the attribute structure to see if the times are valid (the atime,
ctime, and mtime fields). If they are not (as will be the case after our io_read() has
been called that returned data), the iofunc_stat_default() function will update the
time(s) with the current time. The real value of the time is also updated on a close(), as
you’d expect.

258 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

Step 7

Now we advance the lseek() offset by the number of bytes that we returned to the
client, only if we are not processing the _IO_XTYPE_OFFSET override modifier. This
ensures that, in the non-_IO_XTYPE_OFFSET case, if the client calls lseek() to get the
current position, or (more importantly) when the client calls read() to get the next few
bytes, the offset into the resource is set to the correct value. In the case of the
_IO_XTYPE_OFFSET override, we leave the ocb version of the offset alone.

Step 8

Contrast step 6 with this step. Here we only unblock the client, we don’t perform any
other functions. Notice also that there is no data area specified to the MsgReply(),
because we’re not returning data.

Step 9

Finally, in step 9, we perform processing that’s common regardless of whether or not
we returned data to the client. Since we’ve already unblocked the client via the
MsgReply(), we certainly don’t want the resource manager library doing that for us, so
we tell it that we’ve already done that by returning _RESMGR_NOREPLY.

Effective use of other messaging functions

As you’ll recall from the Message Passing chapter, we discussed a few other
message-passing functions — namely MsgWrite(), MsgWritev(), and MsgReplyv().
The reason I’m mentioning them here again is because your io_read() function may
be in an excellent position to use these functions. In the simple example shown above,
we were returning a contiguous array of bytes from one memory location. In the real
world, you may need to return multiple pieces of data from various buffers that you’ve
allocated. A classical example of this is a ring buffer, as might be found in a serial
device driver. Part of the data may be near the end of the buffer, with the rest of it
“wrapped” to the top of the buffer. In this case, you’ll want to use a two-part IOV with
MsgReplyv() to return both parts. The first part of the IOV would contain the address
(and length) of the bottom part of the data, and the second part of the IOV would
contain the address (and length) of the top part of the data. Or, if the data is going to
arrive in pieces, you may instead choose to use MsgWrite() or MsgWritev() to place
the data into the client’s address space as it arrives and then specify a final MsgReply()
or MsgReplyv() to unblock the client. As we’ve seen above, there’s no requirement to
actually transfer data with the MsgReply() function — you can use it to simply
unblock the client.

A simple io_write() example
The io_read() example was fairly simple; let’s take a look at io_write(). The major
hurdle to overcome with the io_write() is to access the data. Since the resource
manager library reads in a small portion of the message from the client, the data
content that the client sent (immediately after the _IO_WRITE header) may have only
partially arrived at the io_write() function. To illustrate this, consider the client writing
one megabyte — only the header and a few bytes of the data will get read by the

October 20, 2008 Chapter 5 • Resource Managers 259

Examples © 2008, QNX Software Systems GmbH & Co. KG.

resource manager library. The rest of the megabyte of data is still available on the
client side — the resource manager can access it at will.

There are really two cases to consider:

• the entire contents of the client’s write() message were read by the resource
manager library, or

• they were not.

The real design decision, however, is, “how much trouble is it worth to try to save the
kernel copy of the data already present?” The answer is that it’s not worth it. There are
a number of reasons for this:

• Message passing (the kernel copy operation) is extremely fast.

• There is overhead required to see if the data all fits or not.

• There is additional overhead in trying to “save” the first dribble of data that arrived,
in light of the fact that more data is waiting.

I think the first two points are self-explanatory. The third point deserves clarification.
Let’s say the client sent us a large chunk of data, and we did decide that it would be a
good idea to try to save the part of the data that had already arrived. Unfortunately,
that part is very small. This means that instead of being able to deal with the large
chunk all as one contiguous array of bytes, we have to deal with it as one small part
plus the rest. Effectively, we have to “special case” the small part, which may have an
impact on the overall efficiency of the code that deals with the data. This can lead to
headaches, so don’t do this!

The real answer, then, is to simply re-read the data into buffers that you’ve prepared.
In our simple io_write() example, I’m just going to malloc() the buffer each time, read
the data into the buffer, and then release the buffer via free(). Granted, there are
certainly far more efficient ways of allocating and managing buffers!

One further wrinkle introduced in the io_write() example is the handling of the
_IO_XTYPE_OFFSET modifier (and associated data; it’s done slightly differently than
in the io_read() example).

Here’s the code:

/*
* io_write1.c

*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/neutrino.h>
#include <sys/iofunc.h>

void
process_data (int offet, void *buffer, int nbytes)
{

// do something with the data

260 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

}

int
io_write (resmgr_context_t *ctp, io_write_t *msg,

iofunc_ocb_t *ocb)
{

int sts;
int nbytes;
int off;
int start_data_offset;
int xtype;
char *buffer;
struct _xtype_offset *xoffset;

// verify that the device is opened for write
if ((sts = iofunc_write_verify (ctp, msg, ocb, NULL)) != EOK)
{

return (sts);
}

// 1) check for and handle an XTYPE override
xtype = msg -> i.xtype & _IO_XTYPE_MASK;
if (xtype == _IO_XTYPE_OFFSET) {

xoffset = (struct _xtype_offset *) (&msg -> i + 1);
start_data_offset = sizeof (msg -> i) + sizeof (*xoffset);
off = xoffset -> offset;

} else if (xtype == _IO_XTYPE_NONE) {
off = ocb -> offset;
start_data_offset = sizeof (msg -> i);

} else { // unknown, fail it
return (ENOSYS);

}

// 2) allocate a buffer big enough for the data
nbytes = msg -> i.nbytes;
if ((buffer = malloc (nbytes)) == NULL) {

return (ENOMEM);
}

// 3) (re-)read the data from the client
if (resmgr_msgread (ctp, buffer, nbytes,

start_data_offset) == -1)
{

free (buffer);
return (errno);

}

// 4) do something with the data
process_data (off, buffer, nbytes);

// 5) free the buffer
free (buffer);

// 6) set up the number of bytes for the client’s "write"
// function to return
_IO_SET_WRITE_NBYTES (ctp, nbytes);

// 7) if any data written, update POSIX structures and OCB offset
if (nbytes) {

ocb -> attr -> flags |= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_DIRTY_TIME;
if (xtype == _IO_XTYPE_NONE) {

ocb -> offset += nbytes;
}

October 20, 2008 Chapter 5 • Resource Managers 261

Examples © 2008, QNX Software Systems GmbH & Co. KG.

}

// 8) tell the resource manager library to do the reply, and that it
// was okay
return (EOK);

}

As you can see, a few of the initial operations performed were identical to those done
in the io_read() example — the iofunc_write_verify() is analogous to the
iofunc_read_verify() function, and the xtype override check is the same.

Step 1

Here we performed much the same processing for the “xtype override” as we did in
the io_read() example, except for the fact that the offset is not stored as part of the
incoming message structure. The reason it’s not stored there is because a common
practice is to use the size of the incoming message structure to determine the starting
point of the actual data being transferred from the client. We take special pains to
ensure the offset of the start of the data (doffset) is correct in the xtype handling code.

Step 2

Here we allocate a buffer that’s big enough for the data. The number of bytes that the
client is writing is presented to us in the nbytes member of the msg union. This is
stuffed automatically by the client’s C library in the write() routine. Note that if we
don’t have sufficient memory to handle the malloc() request, we return the error
number ENOMEM to the client — effectively, we’re passing on the return code to the
client to let it know why its request wasn’t completed.

Step 3

Here we use the helper function resmgr_msgread() to read the entire data content from
the client directly into the newly allocated buffer. In most cases we could have just
used MsgRead(), but in the case where this message is part of a “combine message,”
resmgr_msgread() performs the appropriate “magic” for us (see the “Combine
message” section for more information on why we need to do this.) The parameters to
resmgr_msgread() are fairly straightforward; we give it the internal context pointer
(ctp), the buffer into which we want the data placed (buffer), and the number of bytes
that we wish read (the nbytes member of the message msg union). The last parameter
is the offset into the current message, which we calculated above, in step 1. The offset
effectively skips the header information that the client’s C library implementation of
write() put there, and proceeds directly to the data. This actually brings about two
interesting points:

• We could use an arbitrary offset value to read chunks of the client’s data in any
order and size we want.

• We could use resmgr_msgreadv() (note the “v”) to read data from the client into an
IOV, perhaps describing various buffers, similar to what we did with the cache
buffers in the filesystem discussion in the Message Passing chapter.

262 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

Step 4

Here you’d do whatever you want with the data — I’ve just called a made-up function
called process_data() and passed it the buffer and size.

Step 5

This step is crucial! Forgetting to do it is easy, and will lead to “memory leaks.”
Notice how we also took care to free the memory in the case of a failure in step 3.

Step 6

We’re using the macro _IO_SET_WRITE_NBYTES() (see the entry for
iofunc_write_verify() in the Neutrino Library Reference) to store the number of bytes
we’ve written, which will then be passed back to the client as the return value from the
client’s write(). It’s important to note that you should return the actual number of
bytes! The client is depending on this.

Step 7

Now we do similar housekeeping for stat(), lseek(), and further write() functions as we
did for the io_read() routine (and again, we modify the offset in the ocb only in the
case of this not being a _IO_XTYPE_OFFSET type of message). Since we’re writing to
the device, however, we use the IOFUNC_ATTR_MTIME constant instead of the
IOFUNC_ATTR_ATIME constant. The MTIME flag means “modification” time, and a
write() to a resource certainly “modifies” it.

Step 8

The last step is simple: we return the constant EOK, which tells the resource manager
library that it should reply to the client. This ends our processing. The resource
manager will use the number of bytes that we stashed away with the
_IO_SET_WRITE_NBYTES() macro in the reply and the client will unblock; the
client’s C library write() function will return the number of bytes that were written by
our device.

A simple io_devctl() example
The client’s devctl() call is formally defined as:

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int
devctl (int fd,

int dcmd,
void *dev_data_ptr,
size_t nbytes,
int *dev_info_ptr);

We should first understand this function before we look at the resource manager side
of things. The devctl() function is used for “out of band” or “control” operations. For
example, you may be writing data to a sound card (the actual digital audio samples that

October 20, 2008 Chapter 5 • Resource Managers 263

Examples © 2008, QNX Software Systems GmbH & Co. KG.

the sound card should convert to analog audio), and you may decide that you need to
change the number of channels from 1 (mono) to 2 (stereo), or the sampling rate from
the CD-standard (44.1 kHz) to the DAT-standard (48 kHz). The devctl() function is the
appropriate way to do this. When you write a resource manager, you may find that you
don’t need any devctl() support at all and that you can perform all the functionality
needed simply through the standard read() and write() functions. You may, on the
other hand, find that you need to mix devctl() calls with the read() and write() calls, or
indeed that your device uses only devctl() functions and does not use read() or write().

The devctl() function takes these arguments:

fd The file descriptor of the resource manager that you’re sending the
devctl() to.

dcmd The command itself — a combination of two bits worth of
direction, and 30 bits worth of command (see discussion below).

dev_data_ptr A pointer to a data area that can be sent to, received from, or both.

nbytes The size of the dev_data_ptr data area.

dev_info_ptr An extra information variable that can be set by the resource
manager.

The top two bits in the dcmd encode the direction of data transfer, if any. For details,
see the description in the I/O reference section (under io_devctl()).

When the _IO_DEVCTL message is received by the resource manager, it’s handled by
your io_devctl() function. Here is a very simple example, which we’ll assume is used
to set the number of channels and the sampling rate for the audio device we discussed
above:

/*
* io_devctl1.c

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <sys/neutrino.h>
#include <sys/iofunc.h>

#define DCMD_AUDIO_SET_CHANNEL_MONO 1
#define DCMD_AUDIO_SET_CHANNEL_STEREO 2
#define DCMD_AUDIO_SET_SAMPLE_RATE_CD 3
#define DCMD_AUDIO_SET_SAMPLE_RATE_DAT 4

int
io_devctl (resmgr_context_t *ctp, io_devctl_t *msg,

iofunc_ocb_t *ocb)
{

int sts;

// 1) see if it’s a standard POSIX-supported devctl()

264 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

if ((sts = iofunc_devctl_default (ctp, msg, ocb)) !=
_RESMGR_DEFAULT)

{
return (sts);

}

// 2) see which command it was, and act on it
switch (msg -> i.dcmd) {
case DCMD_AUDIO_SET_CHANNEL_MONO:

audio_set_nchannels (1);
break;

case DCMD_AUDIO_SET_CHANNEL_STEREO:
audio_set_nchannels (2);
break;

case DCMD_AUDIO_SET_SAMPLE_RATE_CD:
audio_set_samplerate (44100);
break;

case DCMD_AUDIO_SET_SAMPLE_RATE_DAT:
audio_set_samplerate (48000);
break;

// 3) in case it’s a command that we don’t recognize, fail it
default:

return (ENOSYS);
}

// 4) tell the client it worked
memset (&msg -> o, 0, sizeof (msg -> o));
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o));
return (_RESMGR_NPARTS (1));

}

Step 1

In the first step, we see again the use of a helper function, this time
iofunc_devctl_default(), which is used to perform all default processing for the
devctl() function. If you didn’t supply your own io_devctl(), and just let
iofunc_func_init() initialize the I/O and connect functions tables for you, the
iofunc_devctl_default() function is what would get called. We include it in our
io_devctl() function because we want it to handle all the regular POSIX devctl() cases
for us. We examine the return value; if it’s not _RESMGR_DEFAULT, then this means
that the iofunc_devctl_default() function “handled” the request, so we just pass along
its return value as our return value.

If the constant _RESMGR_DEFAULT is the return value, then we know that the helper
function didn’t handle the request and that we should check to see if it’s one of ours.

Step 2

This checking is done in step 2 via the switch/case statement. We simply compare
the dcmd values that the client code would have stuffed into the second argument to
devctl() to see if there’s a match. Note that we call the fictitious functions
audio_set_nchannels() and audio_set_samplerate() to accomplish the actual “work”
for the client. An important note that should be mentioned here is that we’ve
specifically avoided touching the data area aspects of devctl() — you may be thinking,

October 20, 2008 Chapter 5 • Resource Managers 265

Examples © 2008, QNX Software Systems GmbH & Co. KG.

“What if I wanted to set the sample rate to some arbitrary number n, how would I do
that?” That will be answered in the next io_devctl() example below.

Step 3

This step is simply good defensive programming. We return an error code of ENOSYS
to tell the client that we didn’t understand their request.

Step 4

Finally, we clear out the return structure and set up a one-part IOV to point to it. Then
we return a value to the resource manager library encoded by the macro
_RESMGR_NPARTS() telling it that we’re returning a one part IOV. This is then
returned to the client. We could alternatively have used the _RESMGR_PTR() macro:

// instead of this
// 4) tell the client it worked
memset (&msg -> o, 0, sizeof (msg -> o));
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o));
return (_RESMGR_NPARTS (1));

// we could have done this
// 4) tell the client it worked
memset (&msg -> o, 0, sizeof (msg -> o));
return (_RESMGR_PTR (ctp, &msg -> o, sizeof (msg -> o)));

The reason we cleared out the return structure here (and not in the io_read() or
io_write() examples) is because in this case, the return structure has actual contents!
(In the io_read() case, the only data returned was the data itself and the number of
bytes read — there was no “return data structure,” and in the io_write() case, the only
data returned was the number of bytes written.)

An io_devctl() example that deals with data
In the previous io_devctl() example, above, we raised the question of how to set
arbitrary sampling rates. Obviously, it’s not a good solution to create a large number
of DCMD_AUDIO_SET_SAMPLE_RATE_* constants — we’d rapidly use up the
available bits in the dcmd member.

From the client side, we’ll use the dev_data_ptr pointer to point to the sample rate,
which we’ll simply pass as an integer. Therefore, the nbytes member will simply be
the number of bytes in an integer (4 on a 32-bit machine). We’ll assume that the
constant DCMD_AUDIO_SET_SAMPLE_RATE is defined for this purpose.

Also, we’d like to be able to read the current sampling rate. We’ll also use the
dev_data_ptr and nbytes as described above, but in the reverse direction — the
resource manager will return data into the memory location pointed to by
dev_data_ptr (for nbytes) instead of getting data from that memory location. Let’s
assume that the constant DCMD_AUDIO_GET_SAMPLE_RATE is defined for this
purpose.

Let’s see what happens in the resource manager’s io_devctl(), as shown here (we
won’t discuss things that have already been discussed in the previous example):

266 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Examples

/*
* io_devctl2.c

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <devctl.h>
#include <sys/neutrino.h>
#include <sys/iofunc.h>

#define DCMD_AUDIO_SET_SAMPLE_RATE 1
#define DCMD_AUDIO_GET_SAMPLE_RATE 2

int
io_devctl (resmgr_context_t *ctp, io_devctl_t *msg,

iofunc_ocb_t *ocb)
{

int sts;
void *data;
int nbytes;

if ((sts = iofunc_devctl_default (ctp, msg, ocb)) !=
_RESMGR_DEFAULT)

{
return (sts);

}

// 1) assign a pointer to the data area of the message
data = _DEVCTL_DATA (msg);

// 2) preset the number of bytes that we’ll return to zero
nbytes = 0;

// check for all commands; we’ll just show the ones we’re
// interested in here
switch (msg -> i.dcmd) {
// 3) process the SET command
case DCMD_AUDIO_SET_SAMPLE_RATE:

audio_set_samplerate (* (int *) data);
break;

// 4) process the GET command
case DCMD_AUDIO_GET_SAMPLE_RATE:

* (int *) data = audio_get_samplerate ();
nbytes = sizeof (int);
break;

}

// 5) return data (if any) to the client
memset (&msg -> o, 0, sizeof (msg -> o));
msg -> o.nbytes = nbytes;
SETIOV (ctp -> iov, &msg -> o, sizeof (msg -> o) + nbytes);
return (_RESMGR_NPARTS (1));

}

October 20, 2008 Chapter 5 • Resource Managers 267

Examples © 2008, QNX Software Systems GmbH & Co. KG.

Step 1

In the declaration, we’ve declared a void * called data that we’re going to use as a
general purpose pointer to the data area. If you refer to the io_devctl() description
above, you’ll see that the data structure consists of a union of an input and output
header structure, with the data area implicitly following that header. In step 1, the
_DEVCTL_DATA() macro (see the entry for iofunc_devctl() in the Neutrino Library
Reference) returns a pointer to that data area.

Step 2

Here we need to indicate how many bytes we’re going to return to the client. Simply
for convenience, I’ve set the nbytes variable to zero before doing any processing —
this way I don’t have to explicitly set it to zero in each of the switch/case
statements.

Step 3

Now for the “set” command. We call the fictitious function audio_set_samplerate(),
and we pass it the sample rate which we obtained by dereferencing the data pointer
(which we “tricked” into being a pointer to an integer. Well, okay, we didn’t trick it,
we used a standard C language typecast.) This is a key mechanism, because this is
how we “interpret” the data area (the client’s dev_data_ptr) according to the
command. In a more complicated case, you may be typecasting it to a large structure
instead of just a simple integer. Obviously, the client’s and resource manager’s
definitions of the structure must be identical — the best place to define the structure,
therefore, is in the .h file that contains your DCMD_* command code constants.

Step 4

For the “get” command in step 4, the processing is very similar (with the typecast),
except this time we’re writing into the data structure instead of reading from it. Note
that we also set the nbytes variable to correspond to the number of bytes that we want
to return to the client. For more complicated data accesses, you’d return the size of the
data area (i.e., if it’s a structure, you’d return the size of the structure).

Step 5

Finally, to return data to the client, we need to note that the client is expecting a header
structure, as well as the return data (if any) to immediately follow the header structure.
Therefore, in this step, we clear out the header structure to zeros and set the number of
bytes (the nbytes member) to the number of bytes that we’re returning (recall we had
pre-initialized this to zero). Then, we set up a one-part IOV with a pointer to the
header and extend the size of the header by the number of bytes we’re returning.
Lastly, we simply tell the resource manager library that we’re returning a one-part IOV
to the client.

268 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

Important note

Recall the discussion in the io_write() sample above, about the data area following the
header. To recap, we stated that the bytes following the header may or may not be
complete (i.e., the header may or may not have been read in its entirety from the
client), depending on how much data was read in by the resource manager library.
Then we went on to discuss how it was inefficient to try to “save” a message pass and
to “reuse” the data area. However, things are slightly different with devctl(), especially
if the amount of data being transferred is fairly small (as was the case in our
examples). In these cases, there’s a good chance that the data has in fact been read into
the data area, so it is indeed a waste to re-read the data. There is a simple way to tell
how much space you have: the size member of ctp contains the number of bytes that
are available for you starting at the msg parameter. The size of the data area beyond
the end of the message buffer that’s available is calculated by subtracting the size of
the message buffer from the size member of ctp:

data_area_size = ctp -> size - sizeof (*msg);

Note that this size is equally valid when you are returning data to the client (as in the
DCMD_AUDIO_GET_SAMPLE_RATE command).

For anything larger than the allocated region, you’ll want to perform the same
processing we did with the io_write() example (above) for getting data from the client,
and you’ll want to allocate a buffer to be used for returning data to the client.

Advanced topics
Now that we’ve covered the “basics” of resource managers, it’s time to look at some
more complicated aspects:

• extending the OCB

• extending the attributes structure

• blocking within the resource manager

• returning directory entries

Extending the OCB
In some cases, you may find the need to extend the OCB. This is relatively painless to
do. The common uses for extending the OCB are to add extra flags you wish to
maintain on a per-open basis. One such flag could be used with the io_unblock()
handler to cache the value of the kernel’s _NTO_MI_UNBLOCK_REQ flag. (See the
Message Passing chapter, under “Using the _NTO_MI_UNBLOCK_REQ” for more
details.)

To extend the OCB, you’ll need to provide two functions; one to allocate (and
initialize) the new OCB and one to free it. Then, you’ll need to bind these two
functions into the mount structure. (Yes, this does mean that you’ll need a mount

October 20, 2008 Chapter 5 • Resource Managers 269

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

structure, if only for this one purpose.) Finally, you’ll need to define your own OCB
typedef, so that the prototypes for the code are all correct.

Let’s look at the OCB typedef first, and then we’ll see how to override the functions:

#define IOFUNC_OCB_T struct my_ocb
#include <sys/iofunc.h>

This tells the included file, <sys/iofunc.h>, that the manifest constant
IOFUNC_OCB_T now points to your new and improved OCB structure.

It’s very important to keep in mind that the “normal” OCB must appear as the first
entry in your extended OCB! This is because the POSIX helper library passes around
a pointer to what it expects is a normal OCB — it doesn’t know about your extended
OCB, so therefore the first data element at the pointer location must be the normal
OCB.

Here’s our extended OCB:

typedef struct my_ocb
{

iofunc_ocb_t normal_ocb;
int my_extra_flags;
...

} my_ocb_t;

Finally, here’s the code that illustrates how to override the allocation and deallocation
functions in the mount structure:

// declare
iofunc_mount_t mount;
iofunc_funcs_t mount_funcs;

// set up the mount functions structure
// with our allocate/deallocate functions

// _IOFUNC_NFUNCS is from the .h file
mount_funcs.nfuncs = _IOFUNC_NFUNCS;

// your new OCB allocator
mount_funcs.ocb_calloc = my_ocb_calloc;

// your new OCB deallocator
mount_funcs.ocb_free = my_ocb_free;

// set up the mount structure
memset (&mount, 0, sizeof (mount));

Then all you have to do is bind the mount functions to the mount structure, and the
mount structure to the attributes structure:

...

mount.funcs = &mount_funcs;
attr.mount = &mount;

The my_ocb_calloc() and my_ocb_free() functions are responsible for allocating and
initializing an extended OCB and for freeing the OCB, respectively. They are
prototyped as:

270 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

IOFUNC_OCB_T *
my_ocb_calloc (resmgr_context_t *ctp, IOFUNC_ATTR_T *attr);

void
my_ocb_free (IOFUNC_OCB_T *ocb);

This means that the my_ocb_calloc() function gets passed both the internal resource
manager context and the attributes structure. The function is responsible for returning
an initialized OCB. The my_ocb_free() function gets passed the OCB and is
responsible for releasing the storage for it.

It’s important to realize that the OCB may be allocated by functions other than the
normal io_open() handler — for example, the memory manager may allocate an OCB.
The impact of this is that your OCB allocating function must be able to initialize the
OCB with the attr argument.

There are two interesting uses for these two functions (that have nothing to do with
extending the OCB):

• OCB allocation/deallocation monitor

• more efficient allocation/deallocation

OCB monitor

In this case, you can simply “tie in” to the allocator/deallocator and monitor the usage
of the OCBs (for example, you may wish to limit the total number of OCBs
outstanding at any given time). This may prove to be a good idea if you’re not taking
over the io_open() outcall, and yet still need to intercept the creation of (and possibly
deletion of) OCBs.

More efficient allocation

Another use for overriding the library’s built-in OCB allocator/deallocator is that you
may wish to keep the OCBs on a free list, instead of the library’s calloc() and free()
functions. If you’re allocating and deallocating OCBs at a high rate, this may prove to
be more efficient.

Extending the attributes structure
You may wish to extend the attributes structure in cases where you need to store
additional device information. Since the attributes structure is associated on a
“per-device” basis, this means that any extra information you store there will be
accessible to all OCBs that reference that device (since the OCB contains a pointer to
the attributes structure). Often things like serial baud rate, etc. are stored in extended
attributes structures.

Extending the attributes structure is much simpler than dealing with extended OCBs,
simply because attributes structures are allocated and deallocated by your code
anyway.

October 20, 2008 Chapter 5 • Resource Managers 271

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

You have to perform the same “trick” of overriding the header files with the “new”
attributes structure as we did with the extended OCB above:

#define IOFUNC_ATTR_T struct my_attr
#include <sys/iofunc.h>

Next you actually define the contents of your extended attribute structures. Note that
the extended attribute structure must have the “normal” attribute structure
encapsulated as the very first element, just as we did with the extended OCB (and for
the same reasons).

Blocking within the resource manager
So far we’ve avoided talking about blocking within the resource manager. We assume
that you will supply an outcall function (e.g., a handler for io_read()), and that the
data will be available immediately. What if you need to block, waiting for the data?
For example, performing a read() on the serial port might need to block until a
character arrives. Obviously, we can’t predict how long this will take.

Blocking within a resource manager is based on the same principles that we discussed
in the Message Passing chapter — after all, a resource manager is really a server that
handles certain, well-defined messages. When the message corresponding to the
client’s read() request arrives, it does so with a receive ID, and the client is blocked. If
the resource manager has the data available, it will simply return the data as we’ve
already seen in the various examples above. However, if the data isn’t available, the
resource manager will need to keep the client blocked (if the client has indeed
specified blocking behavior for the operation) to continue processing other messages.
What this really means is that the thread (in the resource manager) that received the
message from the client should not block, waiting for the data. If it did block, you can
imagine that this could eventually use up a great number of threads in the resource
manager, with each thread waiting for some data from some device.

The correct solution to this is to store the receive ID that arrived with the client’s
message onto a queue somewhere, and return the special constant
_RESMGR_NOREPLY from your handler. This tells the resource manager library that
processing for this message has completed, but that the client shouldn’t be unblocked
yet.

Some time later, when the data arrives, you would then retrieve the receive ID of the
client that was waiting for the message, and construct a reply message containing the
data. Finally, you would reply to the client.

You could also extend this concept to implementing timeouts within the server, much
as we did with the example in the Clocks, Timers, and Getting a Kick Every So Often
chapter (in the “Server-maintained timeouts” section). To summarize, after some
period of time, the client’s request was deemed to have “timed out” and the server
replied with some form of failure message to the receive ID it had stored away .

272 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

Returning directory entries
In the example for the io_read() function above, we saw how to return data. As
mentioned in the description of the io_read() function (in the “Alphabetical listing of
Connect and I/O functions”), the io_read() function may return directory entries as
well. Since this isn’t something that everyone will want to do, I discuss it here.

First of all, let’s look at why and when you’d want to return directory entries rather
than raw data from io_read().

If you discretely manifest entries in the pathname space, and those entries are not
marked with the _RESMGR_FLAG_DIR, then you won’t have to return directory
entries in io_read(). If you think about this from a “filesystem” perspective, you’re
effectively creating “file” types of objects. If, on the other hand, you do specify
_RESMGR_FLAG_DIR, then you’re creating a “directory” type of object. Nobody
other than you knows what the contents of that directory are, so you have to be the one
to supply this data. That’s exactly why you’d return directory entries from your
io_read() handler.

Generally speaking . . .

Generally speaking, returning directory entries is just like returning raw data, except:

• You must return an integral number of struct dirent entries.

• You must fill in the struct dirent entries.

The first point means that you cannot return, for example, seven and a half struct
dirent entries. If eight of these structures don’t fit into the allotted space, then you
must return only seven.

The second point is fairly obvious; it’s mentioned here only because filling in the
struct dirent can be a little tricky compared to the “raw data” approach for a
“normal” io_read().

The struct dirent structure and friends

Let’s take a look at the struct dirent structure, since that’s the data structure
returned by the io_read() function in case of a directory read. We’ll also take a quick
look at the client calls that deal with directory entries, since there are some interesting
relations to the struct dirent structure.

In order for a client to work with directories, the client uses the functions closedir(),
opendir(), readdir(), rewinddir(), seekdir(), and telldir().

Notice the similarity to the “normal” file-type functions (and the commonality of the
resource manager messages):

October 20, 2008 Chapter 5 • Resource Managers 273

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

Directory Function File Function Message (resmgr)

closedir() close() _IO_CLOSE_DUP

opendir() open() _IO_CONNECT

readdir() read() _IO_READ

rewinddir() lseek() _IO_LSEEK

seekdir() lseek() _IO_LSEEK

telldir() tell() _IO_LSEEK

If we assume for a moment that the opendir() and closedir() functions will be handled
automatically for us, we can focus on just the _IO_READ and _IO_LSEEK messages
and related functions.

Offsets

The _IO_LSEEK message and related function is used to “seek” (or “move”) within a
file. It does the exact same thing within a directory; you can move to the “first”
directory entry (by explicitly giving an offset to seekdir() or by calling rewinddir()), or
any arbitrary entry (by using seekdir()), or you can find out the current location in the
directory entry list (by using telldir()).

The “trick” with directories, however, is that the seek offsets are entirely up to you to
define and manage. This means that you may decide to call your directory entry
offsets “0,” “1,” “2” and so on, or you may instead call them “0,” “64,” “128” and so
on. The only important thing here is that the offsets must be consistent in both the
io_lseek() handler as well as the io_read() handler functions.

In the example below, we’ll assume that we’re using the simple “0,” “1,” “2” . . .
approach. (You might use the “0,” “64,” “128” . . . approach if those numbers
correspond to, for example, some kind of on-media offsets. Your choice.)

Contents

So now all that’s left is to “simply” fill in the struct dirent with the “contents” of
our directory. Here’s what the struct dirent looks like (from <dirent.h>):

struct dirent {
ino_t d_ino;
off_t d_offset;
uint16_t d_reclen;
uint16_t d_namelen;
char d_name [1];

};

Here’s a quick explanation of the various members:

d_ino The “inode” — a mountpoint-unique serial number that cannot be
zero (zero traditionally indicates that the entry corresponding to this
inode is free/empty).

274 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

d_offset The offset into the directory we just talked about above. In our
example, this will be a simple number like “0,” “1,” “2,” etc.

d_reclen The size of the entire struct dirent field and any extensions that
may be placed within it. The size includes any alignment filler
required.

d_namelen The number of characters in the d_name field, not including the NUL
terminator.

d_name The name of this directory entry, which must be NUL terminated.

When returning the struct dirent entries, the return code passed back to the client
is the number of bytes returned.

Example

In this example, we’re going to create a resource manager called /dev/atoz that will
be a directory resource manager. It’s going to manifest the “files” /dev/atoz/a
through to dev/atoz/z, with a cat of any of the files returning the uppercase letter
corresponding to the filename. Here’s a sample command-line session to give you an
idea of how this works:

cd /dev
ls
atoz null ptyp2 socket ttyp0 ttyp3
enet0 ptyp0 ptyp3 text ttyp1 zero
mem ptyp1 shmem tty ttyp2
ls -ld atoz
dr-xr-xr-x 1 root 0 26 Sep 05 07:59 atoz
cd atoz
ls
a e i m q u y
b f j n r v z
c g k o s w
d h l p t x
ls -l e
-r--r--r-- 1 root 0 1 Sep 05 07:59 e
cat m
M# cat q
Q#

The example above illustrates that the directory atoz shows up in the /dev directory,
and that you can do an ls of the directory itself and cd into it. The /dev/atoz
directory has a size of “26,” which is the number that we selected in the code. Once in
the atoz directory, doing another ls shows the contents — the files a through z.
Doing an ls of a particular file, say e, shows that the file is readable by all (the
-r--r--r-- part) and is one byte in size. Finally, doing a few random cat’s shows
that the files indeed have the stated contents. (Note that since the files contain only one
byte, there’s no linefeed after the character is printed, which is why the prompt shows
up on the same line as the output.)

Now that we’ve seen the characteristics, let’s take a look at the code, which is
organized into the following functions:

October 20, 2008 Chapter 5 • Resource Managers 275

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

main() and declarations

Main function; this is where we initialize everything and start the
resource manager running.

my_open() The handler routine for the _IO_CONNECT message.

my_read() The handler routine for the _IO_READ message.

my_read_dir() and my_read_file()

These two routines perform the actual work of the my_read() function.

dirent_size() and dirent_fill()

Utility functions to deal with struct dirent structure.

Note that while the code is broken up here into several short sections with text, you
can find the complete version of atoz.c in the Sample Programs appendix.

main() and declarations

The first section of code presented is the main() function and some of the declarations.
There’s a convenience macro, ALIGN(), that’s used for alignment by the dirent_fill()
and dirent_size() functions.

The atoz_attrs array contains the attributes structures used for the “files” in this
example. We declare NUM_ENTS array members, because we have NUM_ENTS (26)
files “a” through “z.” The attributes structure used for the directory itself (i.e., the
/dev/atoz directory) is declared within main() and is called simply attr. Notice the
differences in the way the two types of attributes structures are filled:

file attribute structure

Marked as a regular file (the S_IFREG constant) with an access mode of 0444
(meaning everyone has read access, no one has write access). The size is “1” —
the file contains only one byte, namely, the uppercase letter corresponding to the
filename. The inodes for these individual files are numbered “1” through “26”
inclusive (it would have been more convenient to number them “0” through
“25,” but “0” is reserved).

directory attribute structure

Marked as a directory file (the S_IFDIR constant) with an access mode of 0555
(meaning that everyone has read and seek access, no one has write access). The
size is “26” — this is simply a number picked based on the number of entries in
the directory. The inode is “27” — a number known not to be in use by any of
the other attributes structures.

Notice how we’ve overridden only the open member of the connect_func structure and
the read member of the io_func structure. We’ve left all the others to use the POSIX
defaults.

276 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

Finally, notice how we created the name /dev/atoz using resmgr_attach(). Most
importantly, we used the flag _RESMGR_FLAG_DIR, which tells the process manager
that it can resolve requests at and below this mountpoint.

/*
* atoz.c
*
* /dev/atoz using the resource manager library

*/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <errno.h>
#include <dirent.h>
#include <limits.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

#define ALIGN(x) (((x) + 3) & ˜3)
#define NUM_ENTS 26

static iofunc_attr_t atoz_attrs [NUM_ENTS];

int
main (int argc, char **argv)
{

dispatch_t *dpp;
resmgr_attr_t resmgr_attr;
dispatch_context_t *ctp;
resmgr_connect_funcs_t connect_func;
resmgr_io_funcs_t io_func;
iofunc_attr_t attr;
int i;

// create the dispatch structure
if ((dpp = dispatch_create ()) == NULL) {

perror ("Unable to dispatch_create\n");
exit (EXIT_FAILURE);

}

// initialize the various data structures
memset (&resmgr_attr, 0, sizeof (resmgr_attr));
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

// bind default functions into the outcall tables
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_func,

_RESMGR_IO_NFUNCS, &io_func);

// create and initialize the attributes structure
// for the directory. Inodes 1-26 are reserved for the
// files ’a’ through ’z’. The number of bytes is 26
// because that’s how many entries there are.
iofunc_attr_init (&attr, S_IFDIR | 0555, 0, 0);
attr.inode = NUM_ENTS + 1;
attr.nbytes = NUM_ENTS;

// and for the "a" through "z" names
for (i = 0; i < NUM_ENTS; i++) {

iofunc_attr_init (&atoz_attrs [i],
S_IFREG | 0444, 0, 0);

October 20, 2008 Chapter 5 • Resource Managers 277

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

atoz_attrs [i].inode = i + 1;
atoz_attrs [i].nbytes = 1;

}

// add our functions; we’re interested only in
// io_open and io_read
connect_func.open = my_open;
io_func.read = my_read;

// establish a name in the pathname space
if (resmgr_attach (dpp, &resmgr_attr, "/dev/atoz",

_FTYPE_ANY, _RESMGR_FLAG_DIR,
&connect_func, &io_func,
&attr) == -1) {

perror ("Unable to resmgr_attach\n");
exit (EXIT_FAILURE);

}

// allocate a context
ctp = dispatch_context_alloc (dpp);

// wait here forever, handling messages
while (1) {

if ((ctp = dispatch_block (ctp)) == NULL) {
perror ("Unable to dispatch_block\n");
exit (EXIT_FAILURE);

}
dispatch_handler (ctp);

}

// you’ll never get here
return (EXIT_SUCCESS);

}

my_open()

While my_open() is very short, it has a number of crucial points. Notice how we
decide if the resource being opened is a “file” or a “directory” based only on the
pathname length. We can do this “trick” because we know that there are no other
directories in this resource manager apart from the main one. If you want to have
multiple directories below the mountpoint, you have to do more complicated analysis
of the path member of the msg structure. For our simple example, if there’s nothing in
the pathname, we know it’s the directory. Also, notice the extremely simplified
pathname validation checking: we simply compare to make sure that there’s only one
character passed to us, and that the character lies within the range “a” through “z”
inclusive. Again, for more complex resource managers, you’d be responsible for
parsing the name past the registered mountpoint.

Now, the most important feature! Notice how we used the POSIX layer default
functions to do all the work for us! The iofunc_open_default() function is usually
installed in the connect functions table at the same spot that our new my_open()
function is now occupying. This means that it takes the identical set of arguments! All
we have to do is decide which attributes structure we want to have bound with the
OCB that the default function is going to create: either the directory one (in which
case we pass attr), or one of the 26 different ones for the 26 different files (in which

278 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

case we pass an appropriate element out of atoz_attrs). This is key, because the
handler that you put in the open slot in the connect functions table acts as the
gatekeeper to all further accesses to your resource manager.

static int
my_open (resmgr_context_t *ctp, io_open_t *msg,

iofunc_attr_t *attr, void *extra)
{

// an empty path means the directory, is that what we have?
if (msg -> connect.path [0] == 0) {

return (iofunc_open_default (ctp, msg, attr, extra));

// else check if it’s a single char ’a’ -> ’z’
} else if (msg -> connect.path [1] == 0 &&

(msg -> connect.path [0] >= ’a’ &&
msg -> connect.path [0] <= ’z’)) {

// yes, that means it’s the file (/dev/atoz/[a-z])
return (iofunc_open_default (ctp, msg,

atoz_attrs + msg -> connect.path [0] - ’a’,
extra));

} else {
return (ENOENT);

}
}

my_read()

In the my_read() function, to decide what kind of processing we needed to do, we
looked at the attribute structure’s mode member. If the S_ISDIR() macro says that it’s
a directory, we call my_read_dir(); if the S_ISREG() macro says that it’s a file, we call
my_read_file(). (For details about these macros, see the entry for stat() in the Neutrino
Library Reference.) Note that if we can’t tell what it is, we return EBADF; this
indicates to the client that something bad happened.

The code here doesn’t know anything about our special devices, nor does it care; it
simply makes a decision based on standard, well-known data.

static int
my_read (resmgr_context_t *ctp, io_read_t *msg,

iofunc_ocb_t *ocb)
{

int sts;

// use the helper function to decide if valid
if ((sts = iofunc_read_verify (ctp, msg, ocb,

NULL)) != EOK) {
return (sts);

}

// decide if we should perform the "file" or "dir" read
if (S_ISDIR (ocb -> attr -> mode)) {

return (my_read_dir (ctp, msg, ocb));
} else if (S_ISREG (ocb -> attr -> mode)) {

return (my_read_file (ctp, msg, ocb));
} else {

return (EBADF);
}

}

October 20, 2008 Chapter 5 • Resource Managers 279

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

my_read_dir()

In my_read_dir() is where the fun begins. From a high level perspective, we allocate a
buffer that’s going to hold the result of this operation (called reply_msg). We then use
dp to “walk” along the output buffer, stuffing struct dirent entries as we go along.
The helper routine dirent_size() is used to determine if we have sufficient room in the
output buffer to stuff the next entry; the helper routine dirent_fill() is used to perform
the stuffing. (Note that these routines are not part of the resource manager library;
they’re discussed and documented below.)

On first glance this code may look inefficient; we’re using sprintf() to create a
two-byte filename (the filename character and a NUL terminator) into a buffer that’s
_POSIX_PATH_MAX (256) bytes long. This was done to keep the code as generic as
possible.

Finally, notice that we use the OCB’s offset member to indicate to us which particular
filename we’re generating the struct dirent for at any given time. This means that
we also have to update the offset field whenever we return data.

The return of data to the client is accomplished in the “usual” way, via MsgReply().
Note that the status field of MsgReply() is used to indicate the number of bytes that
were sent to the client.

static int
my_read_dir (resmgr_context_t *ctp, io_read_t *msg,

iofunc_ocb_t *ocb)
{

int nbytes;
int nleft;
struct dirent *dp;
char *reply_msg;
char fname [_POSIX_PATH_MAX];

// allocate a buffer for the reply
reply_msg = calloc (1, msg -> i.nbytes);
if (reply_msg == NULL) {

return (ENOMEM);
}

// assign output buffer
dp = (struct dirent *) reply_msg;

// we have "nleft" bytes left
nleft = msg -> i.nbytes;
while (ocb -> offset < NUM_ENTS) {

// create the filename
sprintf (fname, "%c", ocb -> offset + ’a’);

// see how big the result is
nbytes = dirent_size (fname);

// do we have room for it?
if (nleft - nbytes >= 0) {

// fill the dirent, and advance the dirent pointer
dp = dirent_fill (dp, ocb -> offset + 1,

280 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Advanced topics

ocb -> offset, fname);

// move the OCB offset
ocb -> offset++;

// account for the bytes we just used up
nleft -= nbytes;

} else {

// don’t have any more room, stop
break;

}
}

// return info back to the client
MsgReply (ctp -> rcvid, (char *) dp - reply_msg,

reply_msg, (char *) dp - reply_msg);

// release our buffer
free (reply_msg);

// tell resource manager library we already did the reply
return (_RESMGR_NOREPLY);

}

my_read_file()

In my_read_file(), we see much the same code as we saw in the simple read example
above. The only strange thing we’re doing is we “know” there’s only one byte of data
being returned, so if nbytes is non-zero then it must be one (and nothing else). So, we
can construct the data to be returned to the client by stuffing the character variable
string directly. Notice how we used the inode member of the attribute structure as the
basis of which data to return. This is a common trick used in resource managers that
must deal with multiple resources. Another trick would be to extend the attributes
structure (as discussed above in “Extending the attributes structure”) and have either
the data stored there directly or a pointer to it.

static int
my_read_file (resmgr_context_t *ctp, io_read_t *msg,

iofunc_ocb_t *ocb)
{

int nbytes;
int nleft;
char string;

// we don’t do any xtypes here...
if ((msg -> i.xtype & _IO_XTYPE_MASK) !=

_IO_XTYPE_NONE) {
return (ENOSYS);

}

// figure out how many bytes are left
nleft = ocb -> attr -> nbytes - ocb -> offset;

// and how many we can return to the client
nbytes = min (nleft, msg -> i.nbytes);

if (nbytes) {

October 20, 2008 Chapter 5 • Resource Managers 281

Advanced topics © 2008, QNX Software Systems GmbH & Co. KG.

// create the output string
string = ocb -> attr -> inode - 1 + ’A’;

// return it to the client
MsgReply (ctp -> rcvid, nbytes,

&string + ocb -> offset,
nbytes);

// update flags and offset
ocb -> attr -> flags |= IOFUNC_ATTR_ATIME

| IOFUNC_ATTR_DIRTY_TIME;
ocb -> offset += nbytes;

} else {
// nothing to return, indicate End Of File
MsgReply (ctp -> rcvid, EOK, NULL, 0);

}

// already done the reply ourselves
return (_RESMGR_NOREPLY);

}

dirent_size()

The helper routine dirent_size() simply calculates the number of bytes required for the
struct dirent, given the alignment constraints. Again, this is slight overkill for our
simple resource manager, because we know how big each directory entry is going to
be — all filenames are exactly one byte in length. However, it’s a useful utility routine.

int
dirent_size (char *fname)
{

return (ALIGN (sizeof (struct dirent) - 4 + strlen (fname)));
}

dirent_fill()

Finally, the helper routine dirent_fill() is used to stuff the values passed to it (namely,
the inode, offset and fname fields) into the directory entry also passed. As an added
bonus, it returns a pointer to where the next directory entry should begin, taking into
account alignment.

struct dirent *
dirent_fill (struct dirent *dp, int inode, int offset,

char *fname)
{

dp -> d_ino = inode;
dp -> d_offset = offset;
strcpy (dp -> d_name, fname);
dp -> d_namelen = strlen (dp -> d_name);
dp -> d_reclen = ALIGN (sizeof (struct dirent) - 4

+ dp -> d_namelen);
return ((struct dirent *) ((char *) dp +

dp -> d_reclen));
}

282 Chapter 5 • Resource Managers October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Summary

Summary
Writing a resource manager is by far the most complicated task that we’ve discussed
in this book.

A resource manager is a server that receives certain, well-defined messages. These
messages fall into two broad categories:

Connect messages

Related to pathname-based operations, these may establish a
context for further work.

I/O messages Always arrive after a connect message and indicate the actual work
that the client wishes to have done (e.g., stat()).

The operations of the resource manager are controlled by the thread pool functions
(discussed in the Processes and Threads chapter) and the dispatch interface functions.

QSS provides a set of POSIX helper functions in the resource manager library that
perform much of the work of dealing with the client’s Connect and I/O messages that
arrive.

There are a number of data structures relating to the clients and devices manifested by
the resource manager to keep in mind:

OCB Allocated on a per-open basis, this contains the context for the
client (e.g., current lseek() position)

Attributes structure

Allocated on a per-device basis, this contains information about
the device (e.g., size of the device, permissions, etc.)

Mount structure Allocated on a per-resource-manager basis, and contains
information about the characteristics of the entire resource
manager.

The clients communicate with the resource manager via message passing by resolving
the pathname (via the open() and other calls) into a node descriptor, process ID,
channel ID, and handle.

Finally you supply the functionality you wish to actually do in your resource manager
by overriding some of the callouts in the Connect and I/O functions table.

October 20, 2008 Chapter 5 • Resource Managers 283

Appendix A

QNX 4 to Neutrino

In this appendix. . .
QNX 4 and Neutrino 287
Porting philosophy 291
Summary 302

October 20, 2008 Appendix: A • QNX 4 to Neutrino 285

© 2008, QNX Software Systems GmbH & Co. KG. QNX 4 and Neutrino

QNX 4 and Neutrino
In this appendix, we’ll take a look at QSS’s previous operating system, QNX 4, and
see how it compares to Neutrino. This appendix will mainly be of interest if you are a
current QNX 4 customer and want to see:

• What’s so great about Neutrino?

• How hard will it be when I port to Neutrino?

Or you may be developing for, or porting to, both operating systems.

Similarities
Let’s first start with how the two generations of operating systems are similar:

• message passing is at the heart of the architecture

• network-distributed message passing

• realtime

• microkernel architecture

• processes are memory-protected

• POSIX compatibility

• relatively simple “device driver” model

• embeddable

Note that while some of the basic features listed above are indeed similar, in general
Neutrino has extended the support. For example, Neutrino has more POSIX support
than QNX 4, simply because a large number of the POSIX specifications were still in
draft status when QNX 4 was released. While less of them are in draft status as of
Neutrino’s release, there are still more new drafts being released as this book is
written. It’s a never-ending game of catch-up.

Improvements
Now that you’ve seen what’s the same about the two generations of OS, let’s look at
where Neutrino has improved functionality over QNX 4:

• more POSIX standards supported

• more embeddable

• kernel is more readily customizable for a variety of hardware platforms

• thread support

• simpler device driver model

October 20, 2008 Appendix: A • QNX 4 to Neutrino 287

QNX 4 and Neutrino © 2008, QNX Software Systems GmbH & Co. KG.

• portable architecture; currently supports PPC, SH4 and ARM processors as well as
x86

• supports SMP

• more documentation

While some of these improvements are “free,” meaning that there are no compatibility
issues (for example, POSIX pthreads weren’t supported under QNX 4), some things
did require fundamental changes. I’ll briefly mention the classes of changes that were
required, and then we’ll look in detail at the compatibility issues caused as well as
suggestions on how to port to Neutrino (or keep your code portable between the two).

Embeddability

Neutrino totally redesigned the way that the operating system was embedded. Under
QNX 4, in the original release, it was marginally embeddable. Then Neutrino came
along, designed to be embeddable. As a bonus, QNX 4 underwent some changes as a
result of the experience gained in Neutrino, and now QNX 4 is vastly more
embeddable than it had been. In any event, embedding QNX 4 versus embedding
Neutrino is almost like night and day. QNX 4 has no real support for things like:

• kernel callouts (interrupt, timer)

• startup configurability

• image filesystem

whereas Neutrino does. The definitive book on that subject is QSS’s Building
Embedded Systems.

Thread support

QNX 4 had a function called tfork() that let you use “threads” by creating a process
with its code and data segments mapped to the same memory locations as the creating
process. This gave the illusion of a thread by creating a process, and then changing the
characteristics of the newly created process to make it look like a thread. While there
is a thread library available for QNX 4 on QSS’s update system, the kernel itself
doesn’t support threads directly.

Under Neutrino, the POSIX “pthread” model is used for all threading. This means that
you’ll see (and have seen in this book) familiar function calls like pthread_create(),
pthread_mutex_lock(), and others.

Message passing

While the impact of threads on message passing may seem minimal, it resulted in a
fundamental change to the way message passing was done (not to the fundamental
concepts of message passing, like SEND/RECEIVE/REPLY, but to the
implementation).

Under QNX 4, messages were targeted at process IDs. To send a message, you simply
found the process ID of the target and did your Send(). For servers to receive a

288 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. QNX 4 and Neutrino

message under QNX 4 they just did a Receive(). This would block until a message
arrived. The server would then reply with the Reply() function.

Under Neutrino, message passing is identical (different function names, though).
What’s changed is the mechanism. The client now has to create a connection to a
server before it can do the standard message-passing functions. And the server has to
create a channel before it can do the standard message-passing functions.

Note that the QNX 4 Creceive() function, which would do a non-blocking Receive(), is
missing from Neutrino. We generally discourage such “polling” functions, especially
when you can start a thread, but if you really insist on performing a non-blocking
MsgReceive(), you should take a look at the Clocks, Timers, and Getting a Kick Every
So Often chapter (under “Kernel timeouts”) for more information. For the short story
version, here’s the relevant code sample:

TimerTimeout (CLOCK_REALTIME, _NTO_TIMEOUT_RECEIVE,
NULL, NULL, NULL);

rcvid = MsgReceive (...

Pulses and events

QNX 4 provided something called a “proxy.” A proxy is best described as a “canned”
(or “fixed”) message, which could be sent by processes or kernel services (like a timer
or interrupt service routine) to the owner of the proxy. The proxy is non-blocking for
the sender and would arrive just like any other message. The way to identify a proxy
(as opposed to another process actually sending a message) was to either look at the
proxy message contents (not 100% reliable, as a process could send something that
looked like the contents of the proxy) or to examine the process ID associated with the
message. If the process ID of the message was the same as the proxy ID, then you
could be assured it was a proxy, because proxy IDs and process IDs were taken from
the same pool of numbers (there’d be no overlap).

Neutrino extends the concept of proxies with “pulses.” Pulses are still non-blocking
messages, they can still be sent from a thread to another thread, or from a kernel
service (like the timer and ISR mentioned above for proxies) to a thread. The
differences are that while proxies were of fixed-content, Neutrino pulses are
fixed-length, but the content can be set by the sender of the pulse at any time. For
example, an ISR could save away a key piece of data into the pulse and then send that
to a thread.

Under QNX 4, some services were able to deliver a signal or a proxy, while other
services were able to deliver only one or the other. To complicate matters, the delivery
of these services was usually done in several different ways. For example, to deliver a
signal, you’d have to use the kill() function. To deliver a proxy or signal as a result of a
timer, you’d have to use a negative signal number (to indicate it was a proxy) or a
positive signal number (to indicate it was a signal). Finally, an ISR could deliver only
a proxy.

October 20, 2008 Appendix: A • QNX 4 to Neutrino 289

QNX 4 and Neutrino © 2008, QNX Software Systems GmbH & Co. KG.

Under Neutrino this was abstracted into an extension of the POSIX struct

sigevent data structure. Anything that used or returned the struct sigevent

structure can use a signal or a pulse.

In fact, this has been extended further, in that the struct sigevent can even cause
a thread to be created! We talked about this in the Clocks, Timers, and Getting a Kick
Every So Often chapter (under “Getting notified with a thread”).

Device driver model

Under the previous-previous version of the operating system (the QNX 2 family),
writing device drivers was an arcane black art. Under QNX 4, it was initially a
mystery, but then eventually some samples appeared. Under Neutrino, there are books
and courses on the topic. As it turns out, the Neutrino model and the QNX 4 model
are, at the highest architectural level, reasonably similar. Whereas QNX 4 had
somewhat muddled concepts of what needed to be done as a “connect” function, and
what needed to be done as an “I/O” function, Neutrino has a very clear separation.
Also, under QNX 4, you (the device driver writer) were responsible for most of the
work — you’d supply the main message handling loop, you’d have to associate
context on each I/O message, and so on. Neutrino has simplified this greatly with the
resource manager library.

PPC, SH4, and ARM support

One of the driving changes behind the embeddability differences between QNX 4 and
Neutrino is the fact that Neutrino supports the PowerPC, SH4, and ARM processors.
Whereas QNX 4 was initially “at home” on an IBM PC with a BIOS and very standard
hardware, Neutrino is equally at home on multiple processor platforms with or without
a BIOS (or ROM monitor), and with customized hardware chosen by the manufacturer
(often, it would appear, without regard for the requirements of the OS). This means
that the Neutrino kernel had to have provision for callouts, so you could, for example,
decide what kind of interrupt controller hardware you had, and, without having to buy
a source license for the operating system, run on that hardware.

A bunch of other changes you’ll notice when you port QNX 4 applications to
Neutrino, especially on these different processor platforms, is that they’re fussy about
alignment issues. You can’t access an N-byte object on anything other than an N-byte
multiple of an address. Under the x86 (with the alignment flag turned off), you could
access memory willy-nilly. By modifying your code to have properly aligned
structures (for non-x86 processors), you’ll also find that your code runs faster on x86,
because the x86 processor can access aligned data faster.

Another thing that often comes to haunt people is the issue of big-endian versus
little-endian. The x86 processor is a mono-endian processor (meaning it has only one
“endian-ness”), and that’s little-endian. PPC, for example, are bi-endian processors
(meaning that the processor can operate in either big-endian or little-endian mode).
Furthermore, these non-x86 processors are “RISC” (Reduced Instruction Set CPU)
machines, meaning that certain operations, such as a simple C language |= (bitwise
set operation) may or may not be performed in an atomic manner. This can have

290 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Porting philosophy

startling consequences! Look at the file <atomic.h> for a list of helper functions that
ensure atomic operation.

SMP support

Released versions of QNX 4 are strictly single-processor, whereas Neutrino, at the
time of this second printing, has support for SMP on the x86 and PPC architectures at
least. SMP is a great feature, especially in an operating system that supports threads,
but it’s also a bigger gun that you can shoot yourself in the foot with. For example, on
a single-processor box, an ISR will preempt a thread, but never the other way around.
On a single-processor box, it’s a worthwhile abstraction to “pretend” that threads run
simultaneously, when they don’t really.

On an SMP box, a thread and ISR can be running simultaneously, and multiple threads
can also be running simultaneously. Not only is an SMP system a great workstation,
it’s also an excellent SQA (Software Quality Assurance) testing tool — if you’ve made
any “bad” assumptions about protection in a multithreaded environment, an SMP
system will find them eventually.

To illustrate just how true that statement is, one of the bugs in an early internal version
of SMP had a “window” of one machine cycle! On one processor, what was
supposedly coded to be an atomic read/modify/write operation could be interfered
with by the second processor’s compare and exchange instruction.

Porting philosophy
Let’s now turn our attention to the “big picture.” We’ll look at:

• Message passing and clients & servers

• Interrupt Service Routines

Message passing considerations
Under QNX 4, the way a client would find a server was either:

1 Use the global namespace.
Or:

2 Perform an open() on an I/O manager.

Client/server using the global namespace

If the client/server relationship that you’re porting depended on the global namespace,
then the client used:

qnx_name_locate()

and the server would “register” its name via:

October 20, 2008 Appendix: A • QNX 4 to Neutrino 291

Porting philosophy © 2008, QNX Software Systems GmbH & Co. KG.

qnx_name_attach()

In this case, you have two choices. You can try to retain the global namespace idiom,
or you can modify your client and server to act like a standard resource manager. If
you wish to retain the global namespace, then you should look at the name_attach()
and name_detach() functions for your server, and name_open() and name_close() for
your clients.

However, I’d recommend that you do the latter; it’s “the Neutrino way” to do
everything with resource managers, rather than try to bolt a resource manager
“kludge” onto the side of a global namespace server.

The modification is actually reasonably simple. Chances are that the client side calls a
function that returns either the process ID of the server or uses the “VC” (Virtual
Circuit) approach to create a VC from the client’s node to a remote server’s node. In
both cases, the process ID or the VC to the remote process ID was found based on
calling qnx_name_locate().

Here, the “magic cookie” that binds the client to the server is some form of process ID
(we’re considering the VC to be a process ID, because VCs are taken from the same
number space, and for all intents and purposes, they look just like process IDs).

If you were to return a connection ID instead of a process ID, you’d have conquered
the major difference. Since the QNX 4 client probably doesn’t examine the process ID
in any way (what meaning would it have, anyway? — it’s just a number), you can
probably trick the QNX 4 client into performing an open() on the “global name.”

In this case, however, the global name would be the pathname that the resource
manager attached as its “id.” For example, the following is typical QNX 4 client code,
stolen from my caller ID (CLID) server library:

/*
* CLID_Attach (serverName)
*
* This routine is responsible for establishing a connection to
* the CLID server.
*
* Returns the process ID or VC to the CLID server.

*/

// a place to store the name, for other library calls
static char CLID_serverName [MAX_CLID_SERVER_NAME + 1];

// a place to store the clid server id
static int clid_pid = -1;

int
CLID_Attach (char *serverName)
{

if (serverName == NULL) {
sprintf (CLID_serverName, "/PARSE/CLID");

} else {
strcpy (CLID_serverName, serverName);

}
clid_pid = qnx_name_locate (0, CLID_serverName,

sizeof (CLID_ServerIPC), NULL);

292 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Porting philosophy

if (clid_pid != -1) {
CLID_IPC (CLID_MsgAttach); // send it an ATTACH message
return (clid_pid);

}
return (-1);

}

You could change this to be:

/*
* CLID_Attach (serverName) Neutrino version

*/

int
CLID_Attach (char *serverName)
{

if (serverName == NULL) {
sprintf (CLID_serverName, "/PARSE/CLID");

} else {
strcpy (CLID_serverName, serverName);

}
return (clid_pid = open (CLID_serverName, O_RDWR));

}

and the client wouldn’t even notice the difference.

Two implementation notes: I’ve simply left the default name “/PARSE/CLID” as the
registered name of the resource manager. Most likely a better name would be
“/dev/clid” — it’s up to you how “POSIX-like” you want to make things. In any
event, it’s a one-line change and is only marginally related to the discussion here.

The second note is that I’ve still called the file descriptor clid_pid, even though now it
should really be called clid_fd. Again, this is a style issue and relates to just how
much change you want to perform between your QNX 4 version and the Neutrino one.

In any event, to be totally portable to both, you’ll want to abstract the client binding
portion of the code into a function call — as I did above with the CLID_Attach().

At some point, the client would actually perform the message pass operation. This is
where things get a little trickier. Since the client/server relationship is not based on an
I/O manager relationship, the client generally creates “customized” messages. Again
from the CLID library (CLID_AddSingleNPANXX() is the client’s exposed API call;
I’ve also included checkAttach() and CLID_IPC() to show the actual message passing
and checking logic):

/*
* CLID_AddSingleNPANXX (npa, nxx)

*/

int
CLID_AddSingleNPANXX (int npa, int nxx)
{

checkAttach ();
CLID_IPCData.npa = npa;
CLID_IPCData.nxx = nxx;
CLID_IPC (CLID_MsgAddSingleNPANXX);
return (CLID_IPCData.returnValue);

October 20, 2008 Appendix: A • QNX 4 to Neutrino 293

Porting philosophy © 2008, QNX Software Systems GmbH & Co. KG.

}

/*
* CLID_IPC (IPC message number)
*
* This routine will call the server with the global buffer
* CLID_IPCData, and will stuff in the message number passed
* as the argument.
*
* Should the server not exist, this routine will stuff the
* .returnValue field with CLID_NoServer. Otherwise, no
* fields are affected.

*/

void
CLID_IPC (IPCMessage)
int IPCMessage;
{

if (clid_pid == -1) {
CLID_IPCData.returnValue = CLID_NoServer;
return;

}
CLID_IPCData.serverFunction = IPCMessage;
CLID_IPCData.type = 0x8001;
CLID_IPCData.subtype = 0;
if (Send (clid_pid, &CLID_IPCData, &CLID_IPCData,

sizeof (CLID_IPCData),
sizeof (CLID_IPCData))) {

CLID_IPCData.returnValue = CLID_IPCError;
return;

}
}

void
checkAttach ()
{

if (clid_pid == -1) {
CLID_Attach (NULL);

}
}

As you can see, the checkAttach() function is used to ensure that a connection exists to
the CLID server. If you didn’t have a connection, it would be like calling read() with
an invalid file descriptor. In my case here, the checkAttach() automagically creates the
connection. It would be like having the read() function determine that there is no valid
file descriptor and just create one out of the blue. Another style issue.

The customized messaging occurs in the CLID_IPC() function. It takes the global
variable CLID_IPCData and tries to send it to the server using the QNX 4 Send()
function.

The customized messages can be handled in one of two ways:

1 Functionally translate them into standard, file-descriptor-based POSIX calls.
Or:

2 Encapsulate them into either a devctl() or a customized message wrapper using
the _IO_MSG message type.

294 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Porting philosophy

In both cases, you’ve effectively converted the client to communicating using standard
resource manager mechanisms for communications. What? You don’t have a file
descriptor? You have only a connection ID? Or vice versa? This isn’t a problem!
Under Neutrino, a file descriptor is a connection ID!

Translating messages to standard file-descriptor-based POSIX calls

In the case of the CLID server, this really isn’t an option. There is no standard POSIX
file-descriptor-based call to “add an NPA/NXX pair to a CLID resource manager.”
However, there is the general devctl() mechanism, so if your client/server relationship
requires this form, see below.

Now, before you write off this approach (translating to standard fd-based messages),
let’s stop and think about some of the places where this would be useful. In an audio
driver, you may have used customized QNX 4 messages to transfer the audio data to
and from the resource manager. When you really look at it, read() and write() are
probably much more suited to the task at hand — bulk data transfer. Setting the
sampling rate, on the other hand, would be much better accomplished via the devctl()
function.

Granted, not every client/server relationship will have a bulk data transfer requirement
(the CLID server is such an example).

Translating messages to devctl() or _IO_MSG

So the question becomes, how do you perform control operations? The easiest way is
to use the devctl() POSIX call. Our CLID library example (above) now becomes:

/*
* CLID_AddSingleNPANXX (npa, nxx)

*/

int
CLID_AddSingleNPANXX (int npa, int nxx)
{

struct clid_addnpanxx_t msg;

checkAttach (); // keep or delete, style issue

msg.npa = npa;
msg.nxx = nxx;
return (devctl (clid_pid, DCMD_CLID_ADD_NPANXX, &msg,

sizeof (msg), NULL));
}

As you can see, this was a relatively painless operation. (For those people who don’t
like devctl() because it forces data transfers to be the same size in both directions, see
the discussion below on the _IO_MSG message.) Again, if you’re maintaining source
that needs to run on both operating systems, you’d abstract the message-passing
function into one common point, and then supply different versions of a library,
depending on the operating system.

We actually killed two birds with one stone:

October 20, 2008 Appendix: A • QNX 4 to Neutrino 295

Porting philosophy © 2008, QNX Software Systems GmbH & Co. KG.

1 Removed a global variable, and assembled the messages based on a stack
variable — this now makes our code thread-safe.

2 Passed only the correct-sized data structure, instead of the maximum-sized data
structure as we did in the previous (QNX 4) example.

Note that we had to define DCMD_CLID_ADD_NPANXX — we could have also
kludged around this and used the CLID_MsgAddSingleNPANXX manifest constant
(with appropriate modification in the header file) for the same purpose. I just wanted
to highlight the fact that the two constants weren’t identical.

The second point that we made in the list above (about killing birds) was that we
passed only the “correct-sized data structure.” That’s actually a tiny lie. You’ll notice
that the devctl() has only one size parameter (the fourth parameter, which we set to
sizeof (msg)). How does the data transfer actually occur? The second parameter to
devctl() contains the device command (hence “DCMD”).

Encoded within the top two bits of the device command is the direction, which can be
one of four possibilities:

1 “00” — no data being transferred

2 “01” — transfer from driver to client

3 “10” — transfer from client to driver

4 “11” — transfer bidirectionally

If you’re not transferring data (meaning that the command itself suffices), or if you’re
transferring data unidirectionally, then devctl() is fine.

The interesting case is when you’re transferring data bidirectionally, because (since
there’s only one data size parameter to devctl()) both data transfers (to the driver and
back) will transfer the entire data buffer! This is okay in the sub-case where the
“input” and “output” data buffer sizes are identical, but consider the case where the
data buffer going to the driver is a few bytes, and the data coming back from the driver
is large.

Since we have only one size parameter, we’re effectively forced to transfer the entire
data buffer to the driver, even though only a few bytes were required!

This can be solved by “rolling your own” messages, using the general “escape”
mechanism provided by the _IO_MSG message.

The _IO_MSG message is provided to allow you to add your own message types,
while not conflicting with any of the “standard” resource manager message types —
it’s already a resource manager message type.

The first thing that you must do when using _IO_MSG is define your particular
“custom” messages. In this example, we’ll define two types, and model it after the
standard resource manager messages — one data type will be the input message, and
one will be the output message:

296 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Porting philosophy

typedef struct
{

int data_rate;
int more_stuff;

} my_input_xyz_t;

typedef struct
{

int old_data_rate;
int new_data_rate;
int more_stuff;

} my_output_xyz_t;

typedef union
{

my_input_xyz_t i;
my_output_xyz_t o;

} my_message_xyz_t;

Here, we’ve defined a union of an input and output message, and called it
my_message_xyz_t. The naming convention is that this is the message that relates to
the “xyz” service, whatever that may be. The input message is of type
my_input_xyz_t, and the output message is of type my_output_xyz_t. Note that
“input” and “output” are from the point of view of the resource manager — “input” is
data going into the resource manager, and “output” is data coming from the resource
manager (back to the client).

We need to make some form of API call for the client to use — we could just force the
client to manually fill in the data structures my_input_xyz_t and
my_output_xyz_t, but I don’t recommend doing that. The reason is that the API is
supposed to “decouple” the implementation of the message being transferred from the
functionality. Let’s assume this is the API for the client:

int
adjust_xyz (int *data_rate,

int *odata_rate,
int *more_stuff);

Now we have a well-documented function, adjust_xyz(), that performs something
useful from the client’s point of view. Note that we’ve used pointers to integers for the
data transfer — this was simply an example of implementation. Here’s the source code
for the adjust_xyz() function:

int
adjust_xyz (int *dr, int *odr, int *ms)
{

my_message_xyz_t msg;
int sts;

msg.i.data_rate = *dr;
msg.i.more_stuff = *ms;
sts = io_msg (global_fd, COMMAND_XYZ, &msg,

sizeof (msg.i),
sizeof (msg.o));

if (sts == EOK) {
*odr = msg.o.old_data_rate;
*ms = msg.o.more_stuff;

}

October 20, 2008 Appendix: A • QNX 4 to Neutrino 297

Porting philosophy © 2008, QNX Software Systems GmbH & Co. KG.

return (sts);
}

This is an example of using io_msg() (which we’ll define shortly — it’s not a standard
QSS supplied library call!). The io_msg() function does the magic of assembling the
_IO_MSG message. To get around the problems that we discussed about devctl()
having only one “size” parameter, we’ve given io_msg() two size parameters, one for
the input (to the resource manager, sizeof (msg.i)) and one for the output (from
the resource manager, sizeof (msg.o)). Notice how we update the values of *odr
and *ms only if the io_msg() function returns an EOK.

This is a common trick, and is useful in this case because the passed arguments don’t
get modified unless the actual command succeeded. (This prevents the client program
from having to maintain copies of its passed data, just in case the function fails.)

One last thing that I’ve done in the adjust_xyz() function, is that I depend on the
global_fd variable containing the file descriptor of the resource manager. Again, there
are a number of ways that you could handle it:

• Bury the file descriptor within the io_msg() function (this would be useful if you
wanted to avoid having to pass around the file descriptor on each and every call;
useful if you’re ever going to talk to only the one resource manager, and thus most
likely not suitable as a general purpose solution).
Or:

• Pass the file descriptor from the client itself to each function in the API library
(useful if the client’s going to be responsible for talking to the resource manager in
other ways, such as the standard POSIX file descriptor calls like read(), or if the
client may be talking to multiple resource managers).

Here’s the source for io_msg():

int
io_msg (int fd, int cmd, void *msg, int isize, int osize)
{

io_msg_t io_message;
iov_t rx_iov [2];
iov_t tx_iov [2];
int sts;

// set up the transmit IOV
SETIOV (tx_iov + 0, &io_msg.o, sizeof (io_msg.o));
SETIOV (tx_iov + 1, msg, osize);

// set up the receive IOV
SETIOV (rx_iov + 0, &io_msg.i, sizeof (io_msg.i));
SETIOV (rx_iov + 1, msg, isize);

// set up the _IO_MSG itself
memset (&io_message, 0, sizeof (io_message));
io_message.type = _IO_MSG;
io_message.mgrid = cmd;

return (MsgSendv (fd, tx_iov, 2, rx_iov, 2));
}

298 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Porting philosophy

Notice a few things.

The io_msg() function used a two-part IOV to “encapsulate” the custom message (as
passed by msg) into the io_message structure.

The io_message was zeroed out and initialized with the _IO_MSG message
identification type, as well as the cmd (which will be used by the resource manager to
decide what kind of message was being sent).

The MsgSendv() function’s return status was used directly as the return status of
io_msg().

The only “funny” thing that we did was in the mgrid field. QSS reserves a range of
values for this field, with a special range reserved for “unregistered” or “prototype”
drivers. These are values in the range _IOMGR_PRIVATE_BASE through to
_IOMGR_PRIVATE_MAX , respectively. If you’re building a deeply embedded system
where you know that no inappropriate messages will be sent to your resource manager,
then you can go ahead and use the special range. On the other hand, if you are building
more of a “desktop” or “generic” system, you may not have enough control over the
final configuration of the system to determine whether inappropriate messages will be
sent to your resource manager. In that case, you should contact QSS to obtain a mgrid
value that will be reserved for you — no one else should use that number. Consult the
file <sys/iomgr.h> for the ranges currently in use. In our example above, we could
assume that COMMAND_XYZ is something based on _IOMGR_PRIVATE_BASE:

#define COMMAND_XYZ (_IOMGR_PRIVATE_BASE + 0x0007)

Or that we’ve been assigned a specific number by QSS:

#define COMMAND_XYZ (_IOMGR_ACME_CORP + 0x0007)

Client/Server using an I/O manager

Now, what if the client that you’re porting used an I/O manager? How would we
convert that to Neutrino? Answer: we already did. Once we establish a
file-descriptor-based interface, we’re using a resource manager. Under Neutrino, you’d
almost never use a “raw” message interface. Why not?

1 You’d have to worry about the _IO_CONNECT message that came in with the
client’s open() call, or you’d have to figure out how to find the resource manager
if you weren’t going to use open().

2 You’d have to figure out a way to associate a client with a particular context
block inside of the resource manager. This isn’t rocket science, but it does
involve some amount of data management.

3 You’d have to provide encapsulation of all your messages, instead of using the
standard POSIX file-descriptor-based functions to do that for you.

4 Your resource manager won’t work with stdin/stdout-based applications. For the
audio driver example, you couldn’t just do mp3_decode spud.mp3

>/dev/audio; the open() would most likely fail (if not, then the write() would,
and so on).

October 20, 2008 Appendix: A • QNX 4 to Neutrino 299

Porting philosophy © 2008, QNX Software Systems GmbH & Co. KG.

Proxies

Under QNX 4, the only way to send a non-blocking message was to create a proxy via
qnx_proxy_attach(). This function returns a proxy ID (which is taken from the same
number space as process IDs), which you can then Trigger() or return from an
interrupt service routine (see below).

Under Neutrino, you’d set up a struct sigevent to contain a “pulse,” and either
use MsgDeliverEvent() to deliver the event or bind the event to a timer or ISR.

The usual trick under QNX 4 to detect proxy messages (via Receive() or Creceive())
was to compare the process ID returned by the receiving function against the proxy
IDs that you’re expecting. If you got a match, you knew it was a proxy. Alternatively,
you could ignore the process ID returned by the receiving function and handle the
message as if it were a “regular” message. Unfortunately, this has some porting
complications.

Proxies for their IDs

If you’re comparing the received process ID against the list of proxies that you’re
expecting, then you’ll usually ignore the actual contents of the proxy. After all, since
the proxy message couldn’t be changed once you’ve created it, what additional
information would you have gained by looking at the message once you knew it was
one of your proxies? You could argue that as a convenience you’d place a message
into the proxy that you could then look at with your standard message decoding. If
that’s the case, see below, “Proxies for their contents.”

Therefore, under QNX 4, you’d see code like:

pid = Receive (0, &msg, sizeof (msg));
if (pid == proxyPidTimer) {

// we got hit with the timer, do something
} else if (pid == proxyPidISR) {

// our ISR went off, do something
} else {

// not one of our proxies, must have been a regular
// message for a client. Do something.

}

Under Neutrino, you’d replace this code with the following:

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL);
if (rcvid == 0) { // 0 indicates it was a pulse

switch (msg.pulse.code) {
case MyCodeTimer:

// we got hit with the timer, do something
break;

case MyCodeISR:
// our ISR went off, do something
break;

default:
// unknown pulse code, log it, whatever.
break;

}
} else {

// rcvid is not zero, therefore not a pulse but a
// regular message from a client. Do something.

}

300 Appendix: A • QNX 4 to Neutrino October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Porting philosophy

Note that this example would be used if you’re handling all messages yourself. Since
we recommend using the resource manager library, your code would really look more
like this:

int
main (int argc, char **argv)
{

...
// do the usual initializations

pulse_attach (dpp, 0, MyCodeTimer, my_timer_pulse_handler,
NULL);

pulse_attach (dpp, 0, MyCodeISR, my_isr_pulse_handler,
NULL);

...
}

This time, we’re telling the resource manager library to put the two checks that we
showed in the previous example into its receive loop and call our two handling
functions (my_timer_pulse_handler() and my_isr_pulse_handler()) whenever those
codes show up. Much simpler.

Proxies for their contents

If you’re looking at proxies for their contents (you’re ignoring the fact that it’s a proxy
and just treating it like a message), then you already have to deal with the fact that you
can’t reply to a proxy under QNX 4. Under Neutrino, you can’t reply to a pulse. What
this means is, you’ve already got code in place that either looks at the proxy ID
returned by the receive function and determines that it shouldn’t reply, or the proxy has
encoded within it special indications that this is a message that shouldn’t be replied to.

Unfortunately under Neutrino, you can’t stuff arbitrary data into a pulse. A pulse has a
well-defined structure, and there’s just no getting around that fact. A clever solution
would be to “simulate” the message that you’d ordinarily receive from the proxy by
using a pulse with a table. The table would contain the equivalent messages that would
have been sent by the proxies. When a pulse arrives, you’d use the value field in the
pulse as an index into this table and “pretend” that the given proxy message had
arrived.

Interrupt service routines
QNX 4’s interrupt service routines had the ability to either return a proxy ID
(indicating that the proxy should be sent to its owner) or a zero, indicating nothing
further needed to be done. Under Neutrino, this mechanism is almost identical, except
that instead of returning a proxy, you’re returning a pointer to a struct sigevent.
The event that you return can be a pulse, which will give you the “closest” analog to a
proxy, or it can be a signal or the creation of a thread. Your choice.

Also, under QNX 4 you had to have an interrupt service routine, even if all that the
ISR did was return a proxy and nothing else. Under Neutrino, using
InterruptAttachEvent(), you can bind a struct sigevent to an interrupt vector, and
that event will be delivered every time the vector is activated.

October 20, 2008 Appendix: A • QNX 4 to Neutrino 301

Summary © 2008, QNX Software Systems GmbH & Co. KG.

Summary
Porting from QNX 4 to Neutrino, or maintaining a program that must function on
both, is possible, if you follow these rules:

• abstract, abstract, and abstract

• decouple, decouple, and decouple

The key is to not tie yourself to a particular “handle” that represents the “connection”
between the client and the server, and to not rely on a particular mechanism for finding
the server. If you abstract the connection and the detection services into a set of
function calls, you can then conditionally compile the code for whatever platform you
wish to port to.

The exact same discussion applies to the message transport — always abstract the
client’s API away from “knowing” how the messages are transported from client to
server to some generic API which can then rely upon a single-point transport API; this
single-point transport API can then be conditionally compiled for either platform.

Porting a server from QNX 4 to Neutrino is more difficult, owing to the fact that QNX
4 servers were generally “hand-made” and didn’t follow a rigorous structure like that
imposed by the resource manager library under Neutrino. Generally, though, if you’re
porting something hardware specific (for example, a sound card driver, or a
block-level disk driver), the main “code” that you’ll be porting has nothing to do with
the operating system, and everything to do with the hardware itself. The approach I’ve
adopted in these cases is to code a shell “driver” structure, and provide well-defined
hardware-specific functions. The entire shell driver will be different between operating
systems, but the hardware-specific functions can be amazingly portable.

Note also that QSS provides a QNX 4 to Neutrino migration kit — see the online docs.

302 Appendix: A • QNX 4 to Neutrino October 20, 2008

Appendix B

Calling 911

In this appendix. . .
Seeking professional help 305

October 20, 2008 Appendix: B • Calling 911 303

© 2008, QNX Software Systems GmbH & Co. KG. Seeking professional help

Seeking professional help
No matter how good a developer you are, there are times when you:

• get stuck with a problem you can’t solve

• encounter a bug and wish to report it and/or find a workaround

• need assistance with your design.

In this chapter, we’ll look at the resources available when you face these problems.

So you’ve got a problem. . .
We’ll talk about the first two problems together, because it’s often hard to tell which
problem you’re actually experiencing.

Something no longer works, or doesn’t work as expected. What should you do about
it?

RTFM

Read the fine manual! While this may seem like an obvious first step, it’s amazing the
number of people who don’t do this!

All the manuals for the Neutrino operating system are online:

• Building Embedded Systems

• Library Reference

• System Architecture

• Technotes

• User’s Guide

• Utilities Reference

• Audio Developer’s Guide

• Programmer’s Guide

• DDKs

• Photon Documentation (multiple volumes)

Building Embedded Systems

Building Embedded Systems contains all the information you’ll need to “embed”
Neutrino — that is, to get a Neutrino system up and running. It has chapters on the
development environment (how to compile, link, and debug a Neutrino program),
building images (how to get a system image created, how to embed this image into a
deeply embedded system, how to get it “running” on a supported platform), and some
design notes.

October 20, 2008 Appendix: B • Calling 911 305

Seeking professional help © 2008, QNX Software Systems GmbH & Co. KG.

Library Reference

The Neutrino Library Reference is the “A through Z” of the C library — use this to
find information about each and every function call that’s provided by Neutrino’s C
library. This is the ultimate “authority” on function calls. Often in this book, I’ve
referred you to this library (for example, to find out more about a particular function,
such as arguments that aren’t commonly used).

System Architecture

A “top-level” architecture document, the System Architecture guide describes the
Neutrino system from a high-level view, giving enough details about the
implementation that you can get a good idea of what the pieces are and how they all fit
together.

Technotes

The Technotes describes special features of Neutrino and may vary from release to
release. Take a look at the online version to see what’s in the release you currently
have.

User’s Guide

The QNX Neutrino User’s Guide is intended for all users of a QNX Neutrino system,
from system administrators to end users. This guide tells you how to:

• Use the QNX Neutrino runtime environment, regardless of the kind of computer
it’s running on (embedded system or desktop). Think of this guide as the
companion how-to doc for the Utilities Reference. Assuming there’s a Neutrino
system prompt or Photon login waiting for input, this guide is intended to help you
learn how to interact with that prompt.

• Perform such traditional system administration topics as setting up user accounts,
security, starting up a Neutrino machine, etc.

Utilities Reference

The Utilities Reference is the “A through Z” of the command-line utilities available. It
covers all command-line utilities such as grep, make, ls, etc.

Programmer’s Guide

The Neutrino Programmer’s Guide and this book both describe how to develop
applications and resource managers, but from somewhat different perspectives.

Contact technical support

Once you’ve determined to the best of your abilities that the problem isn’t some
misunderstanding of the function call or utility you’re using, or a mere typo, you may
enter the realm of QSS’s technical support department. This is nothing to be afraid of

306 Appendix: B • Calling 911 October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Seeking professional help

— most customers are extremely pleased with the level of technical support they get
from QSS.

There are two ways of contacting QNX’s technical support group: by phone or via the
web. QSS’s website (at http://www.qnx.com), has a Community area called
Foundry27, at http://community.qnx.com/sf/sfmain/do/homewhich is full
of useful information and files.

Before we talk about which method you should use, there are a few things you can do
to make the turnaround time on your bug report much shorter.

Describe the problem

Often customers try to fix the problems themselves by trying various things that come
to mind. This is great. Unfortunately, what tends to happen is that customers get
frustrated and post messages something like:

I just ran the TCP/IP package connected to a Windows box
and it doesn’t work.

What’s going on?!?

The very next message from tech support looks like the following (I think they should
have a standard template for it, myself):

Can you describe what you mean by "doesn’t work"? Do you mean
the TCP/IP on the QNX side? Do you mean the TCP/IP on the
Windows box? What part of TCP/IP doesn’t work? What are you
trying to do? What versions of the OS, and TCP/IP package do
you have? What version of Windows? What TCP/IP package
were you using there?

The moral of the story: if you’re having a problem, then you’re probably in a hurry for
the answer. If you’re in a hurry for the answer, supply as much information as possible
in your initial post so that someone at QSS can try right away to reproduce the
problem.

Here are the things that tech support almost always asks for:

• precise descriptions of failure

• versions

• configuration

• platform (x86, PPC, etc.)

Precise information

To supply this information, state what you had expected to happen, and what actually
happened. In our above example, a much better problem description would have been:

I just ran telnet from Neutrino 2.0, patch level "A", to my
Windows box, and, immediately after the login prompt, got a
"Connection closed by foreign host".

October 20, 2008 Appendix: B • Calling 911 307

Seeking professional help © 2008, QNX Software Systems GmbH & Co. KG.

Versions

The next thing that you should supply is the versions of the various commands that
you may have been using. This can be done by using the ls and cksum commands.
For our example above, you’ll want to tell tech support which version of the telnet
command you were using, and the version of the TCP/IP protocol stack etc.

ls -l /usr/bin/telnet /lib/dll/devn-ne2000.so

-rwxrwxr-x 1 root bin 64220 Jun 22 05:36 /usr/bin/telnet
-rwxrwxr-x 1 root bin 27428 Jun 22 03:29 /lib/dll/devn-ne2000.so

cksum /usr/bin/telnet /lib/dll/devn-ne2000.so
1217616014 64220 /usr/bin/telnet
50089252 27428 /lib/dll/devn-ne2000.so

This gives tech support at least some idea of the dates, sizes, and checksums of some
of the products that might be involved in the problem.

If you suspect your problem might be related to a platform-specific interaction, you
should of course specify the name, brand, and relevant chipsets used on that particular
platform.

Another thing that tech support usually requests, especially if they suspect some
problems with insufficient memory, licensing, configuration, etc., is the runtime
configuration of your system. You should try to give them an idea of how much
memory is installed, how many processes are running, what the approximate load on
the system might be, etc.

The more information you have, the faster they can help you.

If you’re using a beta. . .

If you’re using a beta version of the product (i.e., you’re on QSS’s list of beta sites), all
the above information is critical, because you’ll typically be using different versions of
the software than what is released. Note, however, that the technical support
department generally doesn’t handle telephone support of beta products. The only way
to get help on these is to post in the conference or, if the developer has requested direct
contact, talk to the developer. Posting is generally the best solution anyway, because
then other members of the beta conference can see what problems are out there and
can learn what the solution is (i.e., if it’s a bug, what the workaround for it is). In any
event, the above information is crucial in order to determine which products you have
from the beta release and which ones are “stock.”

Also, keep in mind that if you’re talking with a developer, they often have a million
things on their plates and might not be able to get back to you right away. Sending a
friendly “ping” reminder after a few days doesn’t hurt. Sending a demanding one after
15 minutes will not gain you any new friends!

An issue that frequently comes up with betas is that you may forget to install an
update. Due to the way that the beta process works, missing an update may cause
strange behavior on your system. Certain new drivers or resource managers may
behave differently towards their respective client programs than they did in previous
versions.

308 Appendix: B • Calling 911 October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Seeking professional help

In this case, you should ensure (because the support staff will ask!) that you have
indeed installed all the beta updates in the order listed.

Reproduce the problem

One of the first things that tech support usually wants to know is, “Does it happen just
once in a blue moon, or can you make it happen on demand?”

They don’t ask this question idly. If it’s a problem that happens infrequently, it’s just
as serious as a problem that happens regularly. The point is to try to determine how to
proceed.

Generally, for problems that happen infrequently, the support staff will recommend
that you configure the machine with the operating system and components set up in
such a way that when the problem happens again, some form of log will be left around
or perhaps the debugger will be invoked so that the problem can be diagnosed later.

For a problem that’s easily reproducible, they’ll want to reproduce it at QSS so that
they can show the developer on a live system. “Hey, look! It dies when I . . . ”

Narrow it down

Even if it’s reproducible, tech support most likely doesn’t want to see 6000 lines of C
code with a problem buried in the middle of it.

In most cases that I’ve witnessed, a bug can usually be narrowed down to about 20 to
30 lines of C at the most. The only cases where a really large file is actually useful is
when reporting bugs with something where you suspect it’s a size problem, rather than
a library or kernel problem. For example, some utilities may have a default array size
that may cause trouble when it needs to resize that array for something bigger. In this
case, tech support may ask you for a tar file with everything in it. Luckily, tar files
are easy to create. For example, if you’re developing your product in
/src/projects/xyzzy and they want to see everything in that directory, you can
perform the following steps:

cd /src/projects
tar cvf xyzzy.tar xyzzy

This will “suck” everything out of the xyzzy directory (and all subdirectories too!)
into the file called xyzzy.tar. If this resulting tar file is huge, you can save some
download time and disk space by compressing it with gzip:

gzip -9v xyzzy.tar
xyzzy.tar: 60.2% -- replaced with xyzzy.tar.gz

You’d then send the support people the xyzzy.tar.gz file (generally by ftp rather
than as an email attachment :-)).

Training
Finally, several companies offer training courses for QNX products, and QSS offers
onsite as well as periodic training at their facility.

October 20, 2008 Appendix: B • Calling 911 309

Appendix C

Sample Programs

In this appendix. . .
atoz.c 313
time1.c 317
tp1.c 321
tt1.c 323

October 20, 2008 Appendix: C • Sample Programs 311

© 2008, QNX Software Systems GmbH & Co. KG. atoz.c

This appendix contains the complete versions of some of the sample programs
discussed in this book:

• atoz.c

• time1.c

• tp1.c

• tt1.c

atoz.c
For more information about this program, see the example in the “Returning directory
entries” section of the Resource Managers chapter.

/*
* atoz.c
*
* /dev/atoz using the resource manager library

*/

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <errno.h>
#include <dirent.h>
#include <limits.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

#define ALIGN(x) (((x) + 3) & ˜3)
#define NUM_ENTS 26

static iofunc_attr_t atoz_attrs [NUM_ENTS];

static int
my_open (resmgr_context_t *ctp, io_open_t *msg, iofunc_attr_t *attr, void *extra)
{

if (msg -> connect.path [0] == 0)
{ // the directory (/dev/atoz)

return (iofunc_open_default (ctp, msg, attr, extra));
} else if (msg -> connect.path [1] == 0 &&

(msg -> connect.path [0] >= ’a’ &&
msg -> connect.path [0] <= ’z’))

{ // the file (/dev/atoz/[a-z])
return (iofunc_open_default (ctp, msg,

atoz_attrs + msg -> connect.path [0] - ’a’, extra));
} else {

return (ENOENT);
}

}

int
dirent_size (char *fname)
{

return (ALIGN (sizeof (struct dirent) - 4 + strlen (fname)));
}

struct dirent *

October 20, 2008 Appendix: C • Sample Programs 313

atoz.c © 2008, QNX Software Systems GmbH & Co. KG.

dirent_fill (struct dirent *dp, int inode, int offset, char *fname)
{

dp -> d_ino = inode;
dp -> d_offset = offset;
strcpy (dp -> d_name, fname);
dp -> d_namelen = strlen (dp -> d_name);
dp -> d_reclen = ALIGN (sizeof (struct dirent) - 4 + dp -> d_namelen);
return ((struct dirent *) ((char *) dp + dp -> d_reclen));

}

static int
my_read_dir (resmgr_context_t *ctp, io_read_t *msg, iofunc_ocb_t *ocb)
{

int nbytes;
int nleft;
struct dirent *dp;
char *reply_msg;
char fname [_POSIX_PATH_MAX];

// allocate a buffer for the reply
reply_msg = calloc (1, msg -> i.nbytes);
if (reply_msg == NULL) {

return (ENOMEM);
}

// assign output buffer
dp = (struct dirent *) reply_msg;

// we have "nleft" bytes left
nleft = msg -> i.nbytes;
while (ocb -> offset < NUM_ENTS) {

// create the filename
sprintf (fname, "%c", ocb -> offset + ’a’);

// see how big the result is
nbytes = dirent_size (fname);

// do we have room for it?
if (nleft - nbytes >= 0) {

// fill the dirent, and advance the dirent pointer
dp = dirent_fill (dp, ocb -> offset + 1, ocb -> offset, fname);

// move the OCB offset
ocb -> offset++;

// account for the bytes we just used up
nleft -= nbytes;

} else {

// don’t have any more room, stop
break;

}
}

// return info back to the client
MsgReply (ctp -> rcvid, (char *) dp - reply_msg, reply_msg,

(char *) dp - reply_msg);

// release our buffer
free (reply_msg);

314 Appendix: C • Sample Programs October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. atoz.c

// tell resource manager library we already did the reply
return (_RESMGR_NOREPLY);

}

static int
my_read_file (resmgr_context_t *ctp, io_read_t *msg, iofunc_ocb_t *ocb)
{

int nbytes;
int nleft;
char string;

// we don’t do any xtypes here...
if ((msg -> i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE) {

return (ENOSYS);
}

// figure out how many bytes are left
nleft = ocb -> attr -> nbytes - ocb -> offset;

// and how many we can return to the client
nbytes = min (nleft, msg -> i.nbytes);

if (nbytes) {
// create the output string
string = ocb -> attr -> inode - 1 + ’A’;

// return it to the client
MsgReply (ctp -> rcvid, nbytes, &string + ocb -> offset, nbytes);

// update flags and offset
ocb -> attr -> flags |= IOFUNC_ATTR_ATIME | IOFUNC_ATTR_DIRTY_TIME;
ocb -> offset += nbytes;

} else {
// nothing to return, indicate End Of File
MsgReply (ctp -> rcvid, EOK, NULL, 0);

}

// already done the reply ourselves
return (_RESMGR_NOREPLY);

}

static int
my_read (resmgr_context_t *ctp, io_read_t *msg, iofunc_ocb_t *ocb)
{

int sts;

// use the helper function to decide if valid
if ((sts = iofunc_read_verify (ctp, msg, ocb, NULL)) != EOK) {

return (sts);
}

// decide if we should perform the "file" or "dir" read
if (S_ISDIR (ocb -> attr -> mode)) {

return (my_read_dir (ctp, msg, ocb));
} else if (S_ISREG (ocb -> attr -> mode)) {

return (my_read_file (ctp, msg, ocb));
} else {

return (EBADF);
}

}

int
main (int argc, char **argv)

October 20, 2008 Appendix: C • Sample Programs 315

atoz.c © 2008, QNX Software Systems GmbH & Co. KG.

{
dispatch_t *dpp;
resmgr_attr_t resmgr_attr;
dispatch_context_t *ctp;
resmgr_connect_funcs_t connect_func;
resmgr_io_funcs_t io_func;
iofunc_attr_t attr;
int i;

// create the dispatch structure
if ((dpp = dispatch_create ()) == NULL) {

perror ("Unable to dispatch_create\n");
exit (EXIT_FAILURE);

}

// initialize the various data structures
memset (&resmgr_attr, 0, sizeof (resmgr_attr));
resmgr_attr.nparts_max = 1;
resmgr_attr.msg_max_size = 2048;

// bind default functions into the outcall tables
iofunc_func_init (_RESMGR_CONNECT_NFUNCS, &connect_func,

_RESMGR_IO_NFUNCS, &io_func);

// create and initialize the attributes structure for the directory
iofunc_attr_init (&attr, S_IFDIR | 0555, 0, 0);
attr.inode = NUM_ENTS + 1; // 1-26 are reserved for ’a’ through ’z’ files
attr.nbytes = NUM_ENTS; // 26 entries contained in this directory

// and for the "a" through "z" names
for (i = 0; i < NUM_ENTS; i++) {

iofunc_attr_init (&atoz_attrs [i], S_IFREG | 0444, 0, 0);
atoz_attrs [i].inode = i + 1;
atoz_attrs [i].nbytes = 1;

}

// add our functions; we’re only interested in io_open and io_read
connect_func.open = my_open;
io_func.read = my_read;

// establish a name in the pathname space
if (resmgr_attach (dpp, &resmgr_attr, "/dev/atoz", _FTYPE_ANY,

_RESMGR_FLAG_DIR, &connect_func, &io_func,
&attr) == -1) {

perror ("Unable to resmgr_attach\n");
exit (EXIT_FAILURE);

}

// allocate a context
ctp = dispatch_context_alloc (dpp);

// wait here forever, handling messages
while (1) {

if ((ctp = dispatch_block (ctp)) == NULL) {
perror ("Unable to dispatch_block\n");
exit (EXIT_FAILURE);

}
dispatch_handler (ctp);

}

// you’ll never get here
return (EXIT_SUCCESS);

}

316 Appendix: C • Sample Programs October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. time1.c

time1.c
For more information about this program, see “Server-maintained timeouts” in the
Clocks, Timers, and Getting a Kick Every So Often chapter.

/*
* time1.c
*
* Example of a server that receives periodic messages from
* a timer, and regular messages from a client.
*
* Illustrates using the timer functions with a pulse.

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>
#include <errno.h>
#include <unistd.h>
#include <sys/siginfo.h>
#include <sys/neutrino.h>

// message send definitions

// messages
#define MT_WAIT_DATA 2 // message from client
#define MT_SEND_DATA 3 // message from client

// pulses
#define CODE_TIMER 1 // pulse from timer

// message reply definitions
#define MT_OK 0 // message to client
#define MT_TIMEDOUT 1 // message to client

// message structure
typedef struct
{

int messageType; // contains both message to and from client
int messageData; // optional data, depending upon message

} ClientMessageT;

typedef union
{

ClientMessageT msg; // a message can be either from a client, or
struct _pulse pulse; // a pulse

} MessageT;

// client table
#define MAX_CLIENT 16 // maximum number of simultaneous clients

struct
{

int in_use; // is this client entry in use?
int rcvid; // receive ID of client
int timeout; // timeout left for client

} clients [MAX_CLIENT]; // client table

October 20, 2008 Appendix: C • Sample Programs 317

time1.c © 2008, QNX Software Systems GmbH & Co. KG.

int chid; // channel ID (global)
int debug = 1; // set debug value, 1 == enabled, 0 == off
char *progname = "time1.c";

// forward prototypes
static void setupPulseAndTimer (void);
static void gotAPulse (void);
static void gotAMessage (int rcvid, ClientMessageT *msg);

int
main (void) // ignore command-line arguments
{

int rcvid; // process ID of the sender
MessageT msg; // the message itself

if ((chid = ChannelCreate (0)) == -1) {
fprintf (stderr, "%s: couldn’t create channel!\n", progname);
perror (NULL);
exit (EXIT_FAILURE);

}

// set up the pulse and timer
setupPulseAndTimer ();

// receive messages
for (;;) {

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL);

// determine who the message came from
if (rcvid == 0) {

// production code should check "code" field...
gotAPulse ();

} else {
gotAMessage (rcvid, &msg.msg);

}
}

// you’ll never get here
return (EXIT_SUCCESS);

}

/*
* setupPulseAndTimer
*
* This routine is responsible for setting up a pulse so it
* sends a message with code MT_TIMER. It then sets up a periodic
* timer that fires once per second.

*/

void
setupPulseAndTimer (void)
{

timer_t timerid; // timer ID for timer
struct sigevent event; // event to deliver
struct itimerspec timer; // the timer data structure
int coid; // connection back to ourselves

// create a connection back to ourselves
coid = ConnectAttach (0, 0, chid, 0, 0);
if (coid == -1) {

fprintf (stderr, "%s: couldn’t ConnectAttach to self!\n", progname);
perror (NULL);
exit (EXIT_FAILURE);

318 Appendix: C • Sample Programs October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. time1.c

}

// set up the kind of event that we want to deliver -- a pulse
SIGEV_PULSE_INIT (&event, coid, SIGEV_PULSE_PRIO_INHERIT, CODE_TIMER, 0);

// create the timer, binding it to the event
if (timer_create (CLOCK_REALTIME, &event, &timerid) == -1) {

fprintf (stderr, "%s: couldn’t create a timer, errno %d\n",
progname, errno);

perror (NULL);
exit (EXIT_FAILURE);

}

// setup the timer (1s delay, 1s reload)
timer.it_value.tv_sec = 1;
timer.it_value.tv_nsec = 0;
timer.it_interval.tv_sec = 1;
timer.it_interval.tv_nsec = 0;

// and start it!
timer_settime (timerid, 0, &timer, NULL);

}

/*
* gotAPulse
*
* This routine is responsible for handling the fact that a timeout
* has occurred. It runs through the list of clients to see
* which client has timed-out, and replies to it with a timed-out
* response.
*/

void
gotAPulse (void)
{

ClientMessageT msg;
int i;

if (debug) {
time_t now;

time (&now);
printf ("Got a Pulse at %s", ctime (&now));

}

// prepare a response message
msg.messageType = MT_TIMEDOUT;

// walk down list of clients
for (i = 0; i < MAX_CLIENT; i++) {

// is this entry in use?
if (clients [i].in_use) {

// is it about to time out?
if (--clients [i].timeout == 0) {

// send a reply
MsgReply (clients [i].rcvid, EOK, &msg, sizeof (msg));

// entry no longer used
clients [i].in_use = 0;

}

October 20, 2008 Appendix: C • Sample Programs 319

time1.c © 2008, QNX Software Systems GmbH & Co. KG.

}
}

}

/*
* gotAMessage
*
* This routine is called whenever a message arrives. We look at the
* type of message (either a "wait for data" message, or a "here’s some
* data" message), and act accordingly. For simplicity, we’ll assume
* that there is never any data waiting. See the text for more discussion
* about this.

*/

void
gotAMessage (int rcvid, ClientMessageT *msg)
{

int i;

// determine the kind of message that it is
switch (msg -> messageType) {

// client wants to wait for data
case MT_WAIT_DATA:

// see if we can find a blank spot in the client table
for (i = 0; i < MAX_CLIENT; i++) {

if (!clients [i].in_use) {

// found one -- mark as in use, save rcvid, set timeout
clients [i].in_use = 1;
clients [i].rcvid = rcvid;
clients [i].timeout = 5;
return;

}
}

fprintf (stderr, "Table full, message from rcvid %d ignored, "
"client blocked\n", rcvid);

break;

// client with data
case MT_SEND_DATA:

// see if we can find another client to reply to with this
// client’s data
for (i = 0; i < MAX_CLIENT; i++) {

if (clients [i].in_use) {

// found one -- reuse the incoming message as an
// outgoing message
msg -> messageType = MT_OK;

// reply to BOTH CLIENTS!
MsgReply (clients [i].rcvid, EOK, msg, sizeof (*msg));
MsgReply (rcvid, EOK, msg, sizeof (*msg));

clients [i].in_use = 0;
return;

}
}

320 Appendix: C • Sample Programs October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. tp1.c

fprintf (stderr, "Table empty, message from rcvid %d ignored, "
"client blocked\n", rcvid);

break;
}

}

tp1.c
For more information about this program, see “Controlling the number of threads” in
the Processes and Threads chapter.

/*
* tp1.c
*
* Thread Pool Example (1)
*
* 1999 06 26 R. Krten

*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/neutrino.h>
#include <sys/dispatch.h>

char *progname = "tp1";

void
tag (char *name)
{
time_t t;
char buffer [BUFSIZ];

time (&t);
strftime (buffer, BUFSIZ, "%T ", localtime (&t));
printf ("%s %3d %-20.20s: ", buffer, pthread_self (), name);
}

THREAD_POOL_PARAM_T *
blockfunc (THREAD_POOL_PARAM_T *ctp)
{
tag ("blockfunc"); printf ("ctp %p\n", ctp);
tag ("blockfunc"); printf ("sleep (%d);\n", 15 * pthread_self ());
sleep (pthread_self () * 15);
tag ("blockfunc"); printf ("done sleep\n");
tag ("blockfunc"); printf ("returning 0x%08X\n", 0x10000000 + pthread_self ());
return ((void *) (0x10000000 + pthread_self ())); // passed to handlerfunc
}

THREAD_POOL_PARAM_T *
contextalloc (THREAD_POOL_HANDLE_T *handle)
{
tag ("contextalloc"); printf ("handle %p\n", handle);
tag ("contextalloc"); printf ("returning 0x%08X\n", 0x20000000 + pthread_self ());
return ((void *) (0x20000000 + pthread_self ())); // passed to blockfunc
}

void

October 20, 2008 Appendix: C • Sample Programs 321

tp1.c © 2008, QNX Software Systems GmbH & Co. KG.

contextfree (THREAD_POOL_PARAM_T *param)
{
tag ("contextfree"); printf ("param %p\n", param);
}

void
unblockfunc (THREAD_POOL_PARAM_T *ctp)
{
tag ("unblockfunc"); printf ("ctp %p\n", ctp);
}

int
handlerfunc (THREAD_POOL_PARAM_T *ctp)
{
static int i = 0;

tag ("handlerfunc"); printf ("ctp %p\n", ctp);
if (i++ > 15) {
tag ("handlerfunc"); printf ("exceeded 15 operations, return 0\n");
return (0);
}
tag ("handlerfunc"); printf ("sleep (%d)\n", pthread_self () * 25);
sleep (pthread_self () * 25);
tag ("handlerfunc"); printf ("done sleep\n");

/*
i = 0;
if (i++ & 1) {
tag ("handlerfunc"); printf ("returning 0\n");
return (0);
} else {
*/
tag ("handlerfunc"); printf ("returning 0x%08X\n", 0x30000000 + pthread_self ());
return (0x30000000 + pthread_self ());
/*
}
*/
}

main ()
{
thread_pool_attr_t tp_attr;
void *tpp;

memset (&tp_attr, 0, sizeof (tp_attr));
tp_attr.handle = (void *) 0x12345678; // passed to contextalloc
tp_attr.block_func = blockfunc;
tp_attr.unblock_func = unblockfunc;
tp_attr.context_alloc = contextalloc;
tp_attr.context_free = contextfree;
tp_attr.handler_func = handlerfunc;

tp_attr.lo_water = 3;
tp_attr.hi_water = 7;
tp_attr.increment = 2;
tp_attr.maximum = 10;

tpp = thread_pool_create (&tp_attr, POOL_FLAG_USE_SELF);
if (tpp == NULL) {

fprintf (stderr,
"%s: can’t thread_pool_create, errno %s\n",
progname, strerror (errno));

322 Appendix: C • Sample Programs October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. tt1.c

exit (EXIT_FAILURE);
}

thread_pool_start (tpp);

fprintf (stderr, "%s: thread_pool_start returned; errno %s\n",
progname, strerror (errno));

sleep (3000);
exit (EXIT_FAILURE);
}

tt1.c
For more information about this program, see “Kernel timeouts with pthread_join()”
in the Clocks, Timers, and Getting a Kick Every So Often chapter.

/*
* tt1.c

*/

#include <stdio.h>
#include <pthread.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/neutrino.h>

#define SEC_NSEC 1000000000LL // 1 billion nanoseconds in a second

void *
long_thread (void *notused)
{

printf ("This thread runs for more than 10 seconds\n");
sleep (20);

}

int
main (void) // ignore arguments
{

uint64_t timeout;
struct sigevent event;
int rval;
pthread_t thread_id;

// set up the event -- this can be done once

// This or event.sigev_notify = SIGEV_UNBLOCK:
SIGEV_UNBLOCK_INIT (&event);

// create a thread
pthread_create (&thread_id, NULL, long_thread, NULL);

// set up for 10 second timeout
timeout = 10LL * SEC_NSEC;

TimerTimeout (CLOCK_REALTIME, _NTO_TIMEOUT_JOIN, &event, &timeout, NULL);

rval = pthread_join (thread_id, NULL);
if (rval == ETIMEDOUT) {

printf ("Thread %d is still running after 10 seconds!\n",

October 20, 2008 Appendix: C • Sample Programs 323

tt1.c © 2008, QNX Software Systems GmbH & Co. KG.

thread_id);
}

sleep (5);

TimerTimeout (CLOCK_REALTIME, _NTO_TIMEOUT_JOIN, &event, &timeout, NULL);
rval = pthread_join (thread_id, NULL);
if (rval == ETIMEDOUT) {

printf ("Thread %d is still running after 25 seconds (bad)!\n",
thread_id);

} else {
printf ("Thread %d finished (expected!)\n", thread_id);

}
}

324 Appendix: C • Sample Programs October 20, 2008

Glossary

October 20, 2008 Glossary 325

© 2008, QNX Software Systems GmbH & Co. KG.

absolute timer

A timer with an expiration point defined as a fixed time, for example, January 20, 2005
at 09:43:12 AM, EDT. Contrast with relative timer.

alignment

The characteristic that accessing an N-byte data element must be performed only on an
address that is a multiple of N. For example, to access a 4-byte integer, the address of
the integer must be a multiple of 4 bytes (e.g., 0x2304B008, and not 0x2304B009). On
some CPU architectures, an alignment fault will occur if an attempt is made to
perform a non-aligned access. On other CPU architectures (e.g., x86) a non-aligned
access is simply slower than an aligned access.

asynchronous

Used to indicate that a given operation is not synchronized to another operation. For
example, the timer tick interrupt that is generated by the system’s timer chip is said to
be “asynchronous” to a thread that’s requesting a delay of a certain amount of time,
because the thread’s request is not synchronized in any way to the arrival of the
incoming timer tick interrupt. Contrast with synchronous.

atomic (operation)

An operation that is “indivisible,” that is to say, one that will not get interrupted by any
other operation. Atomic operations are critical especially in interrupt service routines
and multi-threaded programs, as often a “test and set” sequence of events must occur
in one thread without the chance of another thread interrupting this sequence. A
sequence can be made atomic from the perspective of multiple threads not interfering
with each other through the use of mutexes or via InterruptLock() and
InterruptUnlock() when used with Interrupt service routines. See the header file
<atomic.h> as well.

attribute (structure)

A structure used within a resource manager that contains information relating to the
device that the resource manager is manifesting in the pathname space. If the resource
manager is manifesting multiple devices in the pathname space (for example, the serial
port resource manager might manifest /dev/ser1 and /dev/ser2) there will be an
equal number of attribute structures in the resource manager. Contrast with OCB.

barrier (synchronization object)

A thread-level synchronization object with an associated count. Threads that call the
blocking barrier call (pthread_barrier_wait()) will block until the number of threads
specified by the count have all called the blocking barrier call, and then they will all be
released. Contrast this with the operation of semaphores.

October 20, 2008 Glossary 327

© 2008, QNX Software Systems GmbH & Co. KG.

blocking

A means for threads to synchronize to other threads or events. In the blocking state (of
which there are about a dozen), a thread doesn’t consume any CPU — it’s waiting on a
list maintained within the kernel. When the event occurs that the thread was waiting
for, the thread is unblocked and is able to consume CPU again.

channel

An abstract object on which a server receives a message. This is the same object to
which a client creates a connection in order to send a message to the server. When
the channel is created via ChannelCreate(), a “channel ID” is returned. This channel
ID (or “chid” for short) is what a resource manager will advertise as part of its
registered mountpoint.

client

Neutrino’s message-passing architecture is structured around a client/server
relationship. In the case of the client, it’s the one that is requesting services of a
particular server. The client generally accesses these services using standard
file-descriptor-based function calls (e.g., lseek()), which are synchronous, in that the
client’s call doesn’t return until the request is completed by the server. A thread can
be both a client and a server at the same time.

condition variable

A synchronization object used between multiple threads, characterized by acting as a
rendezvous point where multiple threads can block, waiting for a signal (not to be
confused with a UNIX-style signal). When the signal is delivered, one or more of the
threads will unblock.

connection

The concept of a client being attached to a channel. A connection is established by
the client either directly by calling ConnectAttach() or on behalf of the client by the
client’s C library function open(). In either case, the connection ID returned is usable
as a handle for all communications between the client and the server.

connection ID

A “handle” returned by ConnectAttach() (on the client side) and used for all
communications between the client and the server. The connection ID is identical to
the traditional C library’s “file descriptor.” That is to say, when open() returns a file
descriptor, it’s really returning a connection ID.

deadlock

A failure condition reached when two threads are mutually blocked on each other,
with each thread waiting for the other to respond. This condition can be generated
quite easily; simply have two threads send each other a message — at this point, both
threads are waiting for the other thread to reply to the request. Since each thread is
blocked, it will not have a chance to reply, hence deadlock. To avoid deadlock, clients

328 Glossary October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG.

and servers should be structured around a send hierarchy (see below). (Of course,
deadlock can occur with more than two threads; A sends to B, B sends to C, and C
sends back to A, for example.)

FIFO (scheduling)

In FIFO scheduling, a thread will consume CPU until a higher priority thread is ready
to run, or until the thread voluntarily gives up CPU. If there are no higher priority
threads, and the thread does not voluntarily give up CPU, it will run forever. Contrast
with round robin scheduling.

interrupt service routine

Code that gets executed (in privileged mode) by the kernel as a result of a hardware
interrupt. This code cannot perform any kernel calls and should return as soon as
possible, since it runs at a priority level effectively higher than any other thread
priority in the system. Neutrino’s interrupt service routines can return a struct
sigevent that indicates what event, if any, should be triggered.

IOV (I/O Vector)

A structure where each member contains a pointer and a length. Generally used as an
array of IOVs, rather than as a single IOV. When used in the array form, this array of
structures of pointers and lengths defines a scatter/gather list, which allows the
message-passing operations to proceed much more efficiently (than would otherwise
be accomplished by copying data individually so as to form one contiguous buffer).

kernel callouts

The Neutrino operating system can be customized to run on various hardware, without
requiring a source license, by supplying kernel callouts to the startup program. Kernel
callouts let the developer supply code that knows how to deal with the specifics of the
hardware. For example, how to ask an interrupt controller chip about which interrupt
fired, or how to interface to the timer chip to be able to arrange for periodic interrupts,
etc. This is documented in great depth in the Building Embedded Systems book.

message-passing

The Neutrino operating system is based on a message passing model, where all
services are provided in a synchronous manner by passing messages around from
client to server. The client will send a message to the server and block. The server
will receive a message from the client, perform some amount of processing, and then
reply to the client’s message, which will unblock the client.

MMU (Memory Management Unit)

A piece of hardware (usually embedded within the CPU) that provides for virtual
address to physical address translation, and can be used to implement a virtual
memory system. Under Neutrino, the primary benefit of an MMU is the ability to
detect when a thread has accessed a virtual address that is not mapped into the
process’s address space.

October 20, 2008 Glossary 329

© 2008, QNX Software Systems GmbH & Co. KG.

mutex

A Mutual Exclusion object used to serialize a number of threads so that only one
thread at a time has access to the resources defined by the mutex. By using a mutex
every time (for example) that you access a given variable, you’re ensuring that only
one thread at a time has access to that variable, preventing race conditions. See also
atomic (operation).

Neutrino

Quoting from the Sudbury Neutrino Observatory web pages (found at
http://www.sno.phy.queensu.ca/):

Neutrinos are tiny, possibly massless, neutral elementary particles which
interact with matter via the weak nuclear force. The weakness of the weak
force gives neutrinos the property that matter is almost transparent to
them. The sun, and all other stars, produce neutrinos copiously due to
nuclear fusion and decay processes within the core. Since they rarely
interact, these neutrinos pass through the sun and the earth (and you)
unhindered. Other sources of neutrinos include exploding stars
(supernovae), relic neutrinos (from the birth of the universe) and nuclear
power plants (in fact a lot of the fuel’s energy is taken away by neutrinos).
For example, the sun produces over two hundred trillion trillion trillion
neutrinos every second, and a supernova blast can unleash 1000 times
more neutrinos than our sun will produce in its 10-billion year lifetime.
Billions of neutrinos stream through your body every second, yet only one
or two of the higher energy neutrinos will scatter from you in your
lifetime.

OCB (open context block)

A data structure used by a resource manager that contains information for each
client’s open() call. If a client has opened several files, there will exist a corresponding
OCB for each file descriptor that the client has in the respective resource managers.
Contrast with the attribute (structure).

PDP-8

An antique computer, “Programmable Data Processor,” manufactured between 1965
and the mid 1970’s by Digital Equipment Corporation (now Compaq) with the coolest
front panel. Also, the first computer I ever programmed. Unfortunately, this wonderful
12-bit machine does not run Neutrino :-(!

periodic timer

See Repeating timer

330 Glossary October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG.

physical address

An address that is emitted by the CPU onto the bus connected to the memory
subsystem. Since Neutrino runs in virtual address mode, this means that an MMU
must translate the virtual addresses used by the threads into physical addresses usable
by the memory subsystem. Contrast with virtual address and virtual memory.

process

A non-schedulable entity that occupies memory, effectively acting as a container for
one or more threads.

pthreads

Common name given to the set of function calls of the general form pthread_*(). The
vast majority of these function calls are defined by the POSIX committee, and are used
with threads.

pulse

A non-blocking message which is received in a manner similar to a regular message.
It is non-blocking for the sender, and can be waited upon by the receiver using the
standard message-passing functions MsgReceive() and MsgReceivev() or the special
pulse-only receive function MsgReceivePulse(). While most messages are typically
sent from client to server, pulses are generally sent in the opposite direction, so as not
to break the send hierarchy (breaking which would cause deadlock). Contrast with
signal.

QNX Software Systems

The company responsible for the QNX 2, QNX 4, and Neutrino operating systems.

QSS

An abbreviation for QNX Software Systems.

receive a message

A thread can receive a message by calling MsgReceive() or MsgReceivev(). If there is
no message available, the thread will block, waiting for one. See Message passing. A
thread that receives a message is said to be a Server.

receive ID

When a server receives a message from a client, the server’s MsgReceive() or
MsgReceivev() function returns a “receive ID” (often abbreviated in code as rcvid).
This rcvid then acts as a handle to the blocked client, allowing the server to reply
with the data back to the client, effectively unblocking the client. Once the rcvid has
been used in a reply operation, the rcvid ceases to have any meaning for all function
calls, except MsgDeliverEvent().

October 20, 2008 Glossary 331

© 2008, QNX Software Systems GmbH & Co. KG.

relative timer

A timer that has an expiration point defined as an offset from the current time, for
example, 5 minutes from now. Contrast with absolute timer.

repeating timer

An absolute or relative timer that, once expired, will automatically reload with
another relative interval and will keep doing that until it is canceled. Useful for
receiving periodic notifications.

reply to a message

A server will reply to a client’s message in order to deliver the results of the client’s
request back to the client.

resource manager

Also abbreviated “resmgr.” This is a server process which provides certain
well-defined file-descriptor-based services to arbitrary clients. A resource manager
supports a limited set of messages, which correspond to standard client C library
functions such as open(), read(), write(), lseek(), devctl(), etc.

round robin (scheduling)

In Round Robin (or “RR”) scheduling, a thread will consume CPU until a higher
priority thread is ready to run, until the thread voluntarily gives up CPU, or until the
thread’s timeslice expires. If there are no higher priority threads, the thread doesn’t
voluntarily give up CPU, and there are no other threads at the same priority, it will run
forever. If all the above conditions are met except that a thread at the same priority is
ready to run, then this thread will give up CPU after its timeslice expires, and the other
thread will be given a chance to run. Contrast with FIFO scheduling.

scatter/gather

Used to define the operation of message passing where a number of different pieces
of data are “gathered” by the kernel (on either the client or server side) and then
“scattered” into a (possibly) different number of pieces of data on the other side. This
is extremely useful when, for example, a header needs to be prepended to the client’s
data before it’s sent to the server. The client would set up an IOV which would contain
a pointer and length of the header as the first element, and a pointer and length of the
data as the second element. The kernel would then “gather” this data as if it were one
contiguous piece and send it to the server. The server would operate analogously.

semaphore

A thread synchronization primitive characterized by having a count associated with it.
Threads may call the sem_wait() function and not block if the count was non-zero at
the time of the call. Every thread that calls sem_wait() decrements the count. If a
thread calls sem_wait() when the count is zero, the thread will block until some other
thread calls sem_post() to increment the count. Contrast with barrier.

332 Glossary October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG.

send a message

A thread can send a message to another thread. The MsgSend*() series of functions
are used to send the message; the sending thread blocks until the receiving thread
replies to the message. See Message passing. A thread that sends a message is said
to be a Client.

send hierarchy

A design paradigm whereby messages sent flow in one direction, and messages
replied to flow in another direction. The primary purpose of having a send hierarchy
is to avoid deadlock. A send hierarchy is accomplished by assigning clients and
servers a “level,” and ensuring that messages that are being sent go only to a higher
level. This avoids the potential for deadlock where two threads would send to each
other, because it would violate the send hierarchy — one thread should not have sent
to the other thread, as that other thread must have been at a lower level.

server

A server is a regular, user-level process that provides certain types of functionality
(usually file-descriptor-based) to clients. Servers are typically Resource Managers,
and there’s an extensive library provided by QSS which performs much of the
functionality of a resource manager for you. The server’s job is to receive messages
from clients, process them, and then reply to the messages, which unblocks the
clients. A thread can be both a client and a server at the same time.

signal

A mechanism dating back to early UNIX systems that is used to send asynchronous
notification of events from one thread to another. Signals are non-blocking for the
sender. The receiver of the signal may decide to treat the signal in a synchronous
manner by explicitly waiting for it. Contrast with pulse.

sporadic

Scheduling algorithm whereby a thread’s priority can oscillate dynamically between a
“foreground” or normal priority and a “background” or low priority. A thread is given
an execution budget of time to be consumed within a certain replenishment period.
See also FIFO and round robin.

synchronous

Used to indicate that a given operation has some synchronization to another operation.
For example, during a message-passing operation, when the server does a
MsgReply() (to reply to the client), the unblocking of the client is said to be
synchronous to the reply operation. Contrast with Asynchronous.

thread

A single, schedulable, flow of execution. Threads are implemented directly within the
Neutrino kernel and correspond to the POSIX pthread*() function calls. A thread will
need to synchronize with other threads (if any) by using various synchronization

October 20, 2008 Glossary 333

© 2008, QNX Software Systems GmbH & Co. KG.

primitives such as mutexes, condition variables, semaphores, etc. Threads are
scheduled in FIFO, Round Robin, or sporadic scheduling mode.

unblock

A thread that had been blocked will be unblocked when the condition it has been
blocked on is met. For example, a thread might be blocked waiting to receive a
message. When the message is sent, the thread will be unblocked.

virtual address

An address that’s not necessarily equivalent to a physical address. Under Neutrino,
all threads operate in virtual addressing mode, where, through the magic of an MMU,
the virtual addresses are translated into physical addresses. Contrast with physical
address and virtual memory.

virtual memory

A “virtual memory” system is one in which the virtual address space may not
necessarily map on a one-to-one basis with the physical address space. The typical
example (which Neutrino doesn’t support as of this writing) is a “paged” system
where, in the case of a lack of RAM, certain parts of a process’s address space may be
swapped out to disk. What Neutrino does support is the dynamic mapping of stack
pages.

334 Glossary October 20, 2008

Index

!

/dev/null resource manager 201
_DEVCTL_DATA() 268
_FTYPE_ANY 213
_FTYPE_MQUEUE 213
_IO_CHMOD 230
_IO_CHOWN 231
_IO_CLOSE_DUP 231, 274
_IO_CONNECT 235, 238, 240, 242, 245, 246,

250, 274, 299
_IO_CONNECT_COMBINE 242
_IO_CONNECT_COMBINE_CLOSE 217, 242
_IO_CONNECT_LINK 235
_IO_CONNECT_MKNOD 238
_IO_CONNECT_MOUNT 240
_IO_CONNECT_OPEN 242
_IO_CONNECT_READLINK 245
_IO_CONNECT_RENAME 246
_IO_CONNECT_UNLINK 250
_IO_DEVCTL 206, 233, 264
_IO_DUP 234
_IO_FDINFO 235
_IO_FLAG_RD 220
_IO_FLAG_WR 220
_IO_LSEEK 237, 238, 274
_IO_MMAP 239
_IO_MSG 206, 240, 241, 294–296, 298, 299
_IO_NOTIFY 241
_IO_OPENFD 243
_IO_PATHCONF 243
_IO_READ 244, 254, 274
_IO_SET_CONNECT_RET 240, 242
_IO_SET_FDINFO_LEN 235
_IO_SET_PATHCONF_VALUE 244

_IO_SET_READ_NBYTES 245
_IO_SET_WRITE_NBYTES 252
_IO_SET_WRITE_NBYTES() 263
_IO_SPACE 247
_IO_STAT 248
_IO_SYNC 248
_IO_UTIME 251
_IO_WRITE 252, 260
_IO_XTYPE_NONE 257
_IO_XTYPE_OFFSET 244, 257, 259, 260, 263
_IOFUNC_NFUNCS 225
_IOMGR_PRIVATE_BASE 299
_IOMGR_PRIVATE_MAX 299
_NTO_CHF_COID_DISCONNECT 119
_NTO_CHF_DISCONNECT 118
_NTO_CHF_FIXED_PRIORITY 118, 132
_NTO_CHF_REPLY_LEN 100, 119
_NTO_CHF_SENDER_LEN 100, 119
_NTO_CHF_THREAD_DEATH 118
_NTO_CHF_UNBLOCK 118–121, 146, 165,

250
and kernel timeouts 165
modifying client’s behavior 121

_NTO_INTR_FLAGS_END 178
_NTO_INTR_FLAGS_PROCESS 178
_NTO_INTR_FLAGS_TRK_MSK 178
_NTO_MI_ENDIAN_BIG 99
_NTO_MI_ENDIAN_DIFF 99
_NTO_MI_NET_CRED_DIRTY 99
_NTO_MI_UNBLOCK_REQ 99, 123, 124, 249,

250, 269
_POSIX_DEVDIR_FROM 233
_POSIX_DEVDIR_TO 233
_PULSE_CODE_UNBLOCK 115
_RESMGR_CONNECT_NFUNCS 207

October 20, 2008 Index 335

Index © 2008, QNX Software Systems GmbH & Co. KG.

_RESMGR_DEFAULT 227, 234, 265
_RESMGR_ERRNO (errno) 227
_RESMGR_FLAG_AFTER 212, 213
_RESMGR_FLAG_BEFORE 212, 213
_RESMGR_FLAG_DIR 212, 273
_RESMGR_FLAG_FTYPEALL 212
_RESMGR_FLAG_FTYPEONLY 212
_RESMGR_FLAG_OPAQUE 212
_RESMGR_FLAG_SELF 212
_RESMGR_IO_NFUNCS 208
_RESMGR_NOREPLY 226, 259, 272
_RESMGR_NPARTS() 226, 266
_RESMGR_PTR() 227, 266
_RESMGR_STATUS 210, 230–232, 234,

236–239, 241–243, 245, 247–252
_SC_PAGESIZE 40
<sys/*.h> See individual files
<sys/netmgr.h> 129
<sys/neutrino.h> 94–96, 109, 114, 115,

149, 163
<sys/siginfo.h> 149
<time.h> 147

A

absolute timer 141, 147, 165
converting time formats 148
defined 327
example 148

address space 27
adjusting time of day

abruptly 158
gradually 158

adjusting timebase 158
alignment

defined 327
anonymous union

used in struct sigevent 143
arming timeouts 163, 165
asctime() 148
asynchronous See also synchronous

defined 327
asynchronous messaging See pulses
atomic_*() 186
atomic_set() 186

atomic operation 54
defined 327

attribute structure
defined 327
thread 38

B

barrier
analogy 46
and threads 46
defined 327

base timing resolution
getting and setting 158
limits 159

basename() 32
Bell, Gordon 8
block_func() 71, 76
blocking

defined 328
in client due to message passing 82

blocking state 20

C

cancellation point 113
cautions

about timers and creating threads on trigger
157

channel
abstraction 98
as class of service 98
constants
_NTO_CHF_COID_DISCONNECT 119
_NTO_CHF_DISCONNECT 118
_NTO_CHF_FIXED_PRIORITY 118
_NTO_CHF_REPLY_LEN 119
_NTO_CHF_SENDER_LEN 119
_NTO_CHF_THREAD_DEATH 118
_NTO_CHF_UNBLOCK 118, 250

creation by server 94
defined 328
with multiple threads 98

336 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

channel ID 92, 98, 99
how to find 102
process manager 194

ChannelCreate() 91, 94, 100, 118, 132, 151,
250, 328

example 151
flags 118
_NTO_CHF_COID_DISCONNECT 119
_NTO_CHF_DISCONNECT 118
_NTO_CHF_FIXED_PRIORITY 118
_NTO_CHF_REPLY_LEN 119
_NTO_CHF_SENDER_LEN 119
_NTO_CHF_THREAD_DEATH 118
_NTO_CHF_UNBLOCK 118, 120

priority inheritance 132
ChannelDestroy() 91, 94
CHIDs

message passing 102
chips

82C54 139
chmod() 202
chown() 202
cksum 308
class of service

via channels 98
clearing timeouts 163
client

and not replying to them 155
assumptions about data area 105
basic operation 93
behavior modified

by_NTO_CHF_UNBLOCK 121
being notified by server 117
blocked during MsgSend() 95
busy server 83
connecting to server 92

diagram 94
defined 328
establishing a connection 91
informing server of unblock 165
limiting transfer size 96
multi-threaded server 90
node descriptor 99
operation of 91
reply blocked and server 83
reply-blocked state 83

send-blocked state 83
server/subserver 88
servers with mismatched buffer sizes 104
specifying event to server 118
state

diagram 82
timeouts 149
unblocked by server 95
unblocked by timeout 119
unblocking

due to signal 119
unblocking server 95

client/server 87
analogy 88
example 89
message passing 82
problems with single threaded 87

clock
drift 139
hardware 138
how maintained 138
jitter 140, 141

diagram 140
clock_getres() 157
clock_gettime() 157
CLOCK_MONOTONIC 147, 159, 161, 162

characteristics 161
clock_nanosleep() 162
CLOCK_REALTIME 146, 147, 158–163

used withClockAdjust() 158
clock_settime() 157
CLOCK_SOFTTIME 146, 159, 161, 162
clock tick

adjusting time gradually 158
ClockAdjust() 157

CLOCK_REALTIME 158
struct _clockadjust 158

ClockCycles() 157, 159
ClockPeriod() 22, 157, 158

struct _clockperiod 158
ClockTime() 157
close() 84, 126
CODE_TIMER 152
command

cksum 308
devc-pty 82

October 20, 2008 Index 337

Index © 2008, QNX Software Systems GmbH & Co. KG.

esh 84
export 31
fs-cache 197
fs-qnx4 105, 106, 111
grep 306
gunzip 31
gzip 31, 309
ls 30, 32, 306, 308
make 306
mqueue 213
nice 28
pidin 42, 82, 83
procnto 84
tar 309
telnet 308

condition variable See synchronization
defined 328

condvar See synchronization
ConnectAttach() 91–94, 102, 103, 127, 129,

152, 328
example 92, 152
networked case 126, 127

ConnectDetach() 91, 92
connection

defined 328
connection ID 99, 194

as equivalent to file descriptor 103
defined 328
obtaining 92
resource manager 192

constants
_FTYPE_ANY 213
_FTYPE_MQUEUE 213
_NTO_INTR_FLAGS_END 178
_NTO_INTR_FLAGS_PROCESS 178
_NTO_INTR_FLAGS_TRK_MSK 178
_NTO_MI_ENDIAN_BIG 99
_NTO_MI_ENDIAN_DIFF 99
_NTO_MI_NET_CRED_DIRTY 99
_NTO_MI_UNBLOCK_REQ 99, 123, 124
_SC_PAGESIZE 40
channel
_NTO_CHF_COID_DISCONNECT 119
_NTO_CHF_DISCONNECT 118
_NTO_CHF_FIXED_PRIORITY 118,

132

_NTO_CHF_REPLY_LEN 100, 119
_NTO_CHF_SENDER_LEN 100, 119
_NTO_CHF_THREAD_DEATH 118
_NTO_CHF_UNBLOCK 118–121, 146,

165, 250
clock

CLOCK_MONOTONIC 147, 159, 161,
162

CLOCK_REALTIME 146, 147, 158–163
CLOCK_SOFTTIME 146, 159, 161, 162

CODE_TIMER 152
error

EINTR 119
ENOSYS 35
EOK 101, 194, 197
EROFS 101, 194, 210
ETIMEDOUT 164, 165

FD_CLOEXEC 33
message passing
_NTO_CHF_UNBLOCK 250
_NTO_MI_UNBLOCK_REQ 249, 250,

269
MT_TIMEDOUT 153
ND_LOCAL_NODE 130
open mode

O_RDONLY 220
O_RDWR 220
O_WRONLY 194, 220

P_NOWAIT 33, 34
P_NOWAITO 33
P_OVERLAY 33
P_WAIT 32, 33
POOL_FLAG_EXIT_SELF 72
POOL_FLAG_USE_SELF 72, 73
process

SPAWN_NOZOMBIE 33
PTHREAD_EXPLICIT_SCHED 41
PTHREAD_STACK_LAZY 40
PTHREAD_STACK_NOTLAZY 40
pulse
_PULSE_CODE_UNBLOCK 115

resource manager
_IO_CHMOD 230
_IO_CHOWN 231
_IO_CLOSE_DUP 231, 274

338 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

_IO_CONNECT 235, 238, 240, 242,
245, 246, 250, 274, 299

_IO_CONNECT_COMBINE 242
_IO_CONNECT_COMBINE_CLOSE

217, 242
_IO_CONNECT_LINK 235
_IO_CONNECT_MKNOD 238
_IO_CONNECT_MOUNT 240
_IO_CONNECT_OPEN 242
_IO_CONNECT_READLINK 245
_IO_CONNECT_RENAME 246
_IO_CONNECT_UNLINK 250
_IO_DEVCTL 206, 233, 264
_IO_DUP 234
_IO_FDINFO 235
_IO_FLAG_RD 220
_IO_FLAG_WR 220
_IO_LSEEK 237, 238, 274
_IO_MMAP 239
_IO_MSG 206, 240, 241, 294–296, 298,

299
_IO_NOTIFY 241
_IO_OPENFD 243
_IO_PATHCONF 243
_IO_READ 244, 254, 274
_IO_SET_CONNECT_RET 240, 242
_IO_SET_FDINFO_LEN 235
_IO_SET_PATHCONF_VALUE 244
_IO_SET_READ_NBYTES 245
_IO_SET_WRITE_NBYTES 252
_IO_SPACE 247
_IO_STAT 248
_IO_SYNC 248
_IO_UTIME 251
_IO_WRITE 252, 260
_IO_XTYPE_NONE 257
_IO_XTYPE_OFFSET 244, 257, 259,

260, 263
_IOFUNC_NFUNCS 225
_IOMGR_PRIVATE_BASE 299
_IOMGR_PRIVATE_MAX 299
_POSIX_DEVDIR_FROM 233
_POSIX_DEVDIR_TO 233
_RESMGR_CONNECT_NFUNCS 207
_RESMGR_DEFAULT 227, 234, 265
_RESMGR_FLAG_AFTER 212

_RESMGR_FLAG_BEFORE 212
_RESMGR_FLAG_DIR 212, 273
_RESMGR_FLAG_FTYPEALL 212
_RESMGR_FLAG_FTYPEONLY 212
_RESMGR_FLAG_OPAQUE 212
_RESMGR_FLAG_SELF 212
_RESMGR_IO_NFUNCS 208
_RESMGR_NOREPLY 226, 259, 272
_RESMGR_STATUS 210, 230–232, 234,

236–239, 241–243, 245, 247–252
DCMD_AUDIO_GET_SAMPLE_RATE

266
DCMD_AUDIO_SET_SAMPLE_RATE

266
F_ALLOCSP 247
F_FREESP 247
IOFUNC_ATTR_ATIME 258, 263
IOFUNC_ATTR_DIRTY_TIME 258
IOFUNC_ATTR_MTIME 263
IOFUNC_MOUNT_32BIT 224
IOFUNC_MOUNT_FLAGS_PRIVATE

224
IOFUNC_OCB_FLAGS_PRIVATE 221
IOFUNC_OCB_MMAP 221
IOFUNC_OCB_PRIVILEGED 221
IOFUNC_OCB_T 270
IOFUNC_PC_CHOWN_RESTRICTED

224, 231
IOFUNC_PC_LINK_DIR 224
IOFUNC_PC_NO_TRUNC 224
IOFUNC_PC_SYNC_IO 224

scheduling
SCHED_FIFO 41
SCHED_OTHER 41
SCHED_RR 41

sharing flags
SH_COMPAT 221
SH_DENYNO 221
SH_DENYRD 221
SH_DENYRW 221
SH_DENYWR 221

signal
SIGALRM 144, 157
SIGEV_INTR 143, 145, 182, 186
SIGEV_PULSE 143, 152, 182

October 20, 2008 Index 339

Index © 2008, QNX Software Systems GmbH & Co. KG.

SIGEV_PULSE_PRIO_INHERIT 145,
152

SIGEV_SIGNAL 143–145, 182
SIGEV_SIGNAL_CODE 143–145
SIGEV_SIGNAL_PULSE 145
SIGEV_SIGNAL_THREAD 143–145
SIGEV_SIGNAL family 143
SIGEV_THREAD 143, 144, 182
SIGEV_UNBLOCK 143, 145, 163, 164
SIGEV_UNBLOCK example 163
SIGSEGV 40
SIGUSR1 157

thread
STATE_CONDVAR 24, 63
STATE_DEAD 24
STATE_INTR 24, 25
STATE_JOIN 24
STATE_MUTEX 24
STATE_NANOSLEEP 24, 25
STATE_NET_REPLY 24
STATE_NET_SEND 24
STATE_READY 24, 77, 82, 131, 132,

138, 140, 142, 169, 176, 183
STATE_RECEIVE 24, 25
STATE_RECV 82, 133, 145
STATE_REPLY 24, 25, 120, 155
STATE_RUNNING 24, 169
STATE_SEM 24
STATE_SEND 24, 25, 116, 120
STATE_SIGSUSPEND 24
STATE_SIGWAITINFO 24
STATE_STACK 24
STATE_STOPPED 24
STATE_WAITCTX 24
STATE_WAITPAGE 24
STATE_WAITTHREAD 24

timer
TIMER_ABSTIME 147

consumer
and producer 60

state analysis 61
and producer using condvars

example 63
context_alloc() 71, 75, 76
context_free() 71, 75
context switch 19, 27

conventions
typographical xiii

cookbook 253
counter

high accuracy 159
high frequency 159

CPU hog 138
Creceive() (QNX 4) 289, 300
ctime() 148

D

data structure See structure
data type See structure
data types

struct _clockadjust 158
struct _clockperiod

members 159
struct itimerspec 147
struct sigevent 117, 163

andSIGEV_UNBLOCK 163
shortcut initialization 164

struct sigevent example 163
struct timespec 147

DCMD_AUDIO_GET_SAMPLE_RATE 266
DCMD_AUDIO_SET_SAMPLE_RATE 266
deadlock

defined 329
with message passing 97

decoupling 56
via message passing 81, 85, 86

delay() 140
detaching interrupt handlers 177
devc-pty 82
devctl() 192, 294–296, 298, 332
diagram

big picture of timer chain 139
clock jitter 140
InterruptAttach() and wakeups 184
InterruptAttachEvent() and wakeups 184
interrupts and waking up only when

required 184
interrupts with unnecessary wakeups 184
server/subserver 89
using InterruptAttach() 183

340 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

disabling interrupts 169
discontinuities in time flow 158
dispatch_block() 202
dispatch_context_alloc() 202
dispatch_create() 202, 254
dispatch_handler() 203
Dodge, Dan 8
domain of authority 199

E

edge-sensitive interrupt 172
diagram 172

EINTR 119
message passing 119

enabling interrupts 169
endian

server flags 99
ENOSYS 35
environment variable 31

PATH 32
EOK 101, 194, 197
EROFS 101, 194, 210
errno

MsgError() 102, 227
MsgReply() 102

esh 84
ETIMEDOUT 164, 165
event

and interrupt handlers 180
and interrupts 172
and ISRs 180

example
/dev/null resource manager 201
absolute timers 148
barriers 47
car using timers 137
ChannelCreate() 151
ConnectAttach() 92, 152
connecting to a server 92
creating a tar file 309
creating a thread 41, 43
demultiplexing pulse versus message 114
demultiplexing the pulse code 115
detaching interrupt handler 177

file
time1.c 149
tt1.c 163

filling struct itimerspec 148, 149
interrupt handler 176, 178
InterruptAttach() 176, 178
InterruptAttachEvent() 180
InterruptWait() 180
IOV 108
ISR 176, 178
ISR pseudo-code 171
kernel timeout 163, 164
message passing 84, 93
fs-qnx4 105
multipart messages 108, 111
replying with no data 101
server 96
write() 108

messages 149, 151–154
MsgReadv() 111
MsgReceive() 96, 105, 111, 151
MsgReply() 96, 153, 154
MsgSend() 93, 108
MsgSendv() 108
netmgr_remote_nd() 129
netmgr_strtond() 129
networked message passing 85
node descriptors 129
non-blockingpthread_join() 164
one-shot timers 148
periodic timers 149
priority inversion 130
producer 61
producer and consumer 60, 63
pthread_attr_init() 41
pthread_attr_setdetachstate() 41
pthread_attr_setinheritsched() 41
pthread_attr_setschedpolicy() 41
pthread_attr_t 41
pthread_barrier_init() 47
pthread_barrier_wait() 47
pthread_cond_signal() 63
pthread_cond_wait() 63
pthread_create() 41, 43, 47, 63
pthread_join() 45, 163
pthread_mutex_lock() 63

October 20, 2008 Index 341

Index © 2008, QNX Software Systems GmbH & Co. KG.

pthread_mutex_unlock() 63
pthread_sleepon_lock() 60, 61
pthread_sleepon_signal() 61
pthread_sleepon_unlock() 60, 61
pthread_sleepon_wait() 61
pulses 149, 151–154
receive ID 96
receiving a message 114
receiving a pulse 114
relative timers 148, 149, 151–154
replying with an error code 101
replying with just EOK 101
resource manager

io_devctl() 263, 266
io_open() handler 215
io_read() 255, 256
io_write() 260
returning data to a client 255, 256

SETIOV() macro 111
SIGEV_PULSE_INIT() (macro) 152
SIGEV_THREAD_INIT() (macro) 157
struct itimerspec 152
struct sigevent 152

SIGEV_UNBLOCK 163
the pulse value 115
thread 47
thread_pool_create() 72
thread_pool_start() 72
thread_pool_start() pseudo code 76
thread pool 72
timeouts 149, 151–154
timer_create() 152
timer_create() and signals 157
timer_settime() 152
TimerTimeout() 163, 164

and multiple states 165
where to usepthread_cond_broadcast() 65
where to usepthread_cond_signal() 65
where to usepthread_sleepon_broadcast()

65
where to usepthread_sleepon_signal() 65

exceptions and scheduling 76, 77
exec() 35, 36
exec() family 28–31, 33
execl() 29, 32
execle() 29

execlp() 29, 32
execlpe() 29
execv() 29
execve() 29
execvp() 29
execvpe() 29
exit function 37
exit() 35, 177

and interrupts 177
export 31

F

F_ALLOCSP 247
F_FREESP 247
faults and scheduling 76, 77
fcntl() 33
FD_CLOEXEC 33
fgets() 191, 198
FIFO scheduling 21

defined 329
FILE 192, 198
file descriptor

and Resource managers 192
connection ID 103, 194
resource manager 194

file stream
and Resource managers 192

filesystem
chown restricted 224
server example 104
union 196

fopen() 193, 195, 198
fork() 28, 29, 34–36, 78

and resource managers 36
and threads 35, 36
avoid 35

fprintf() 191
fs-cache 197
fs-qnx4 105, 106, 111, 193
function

atomic
atomic_*() 186
atomic_set() 186

basename() 32

342 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

block_func() 71, 76
channel

ChannelCreate() 91, 94, 100, 118, 120,
151, 328

ChannelCreate() example 151
ChannelDestroy() 91, 94
ConnectAttach() 91–94, 103, 126, 127,

129, 152, 328
ConnectAttach() example 152
ConnectAttach() prototype 92
ConnectDetach() 91, 92

chmod() 202
chown() 202
clock_nanosleep() 162
close() 84, 126
context_alloc() 71, 75, 76
context_free() 71, 75
Creceive() 289, 300
delay() 140
devctl() 192, 294–296, 298, 332
dispatch_create() 202
event related

SIGEV_INTR_INIT() (macro) 145
SIGEV_PULSE_INIT() (macro) 145
SIGEV_SIGNAL_CODE_INIT() (macro)

145
SIGEV_SIGNAL_INIT() (macro) 145
SIGEV_SIGNAL_THREAD_INIT()

(macro) 145
SIGEV_THREAD_INIT() (macro) 145
SIGEV_UNBLOCK_INIT() (macro)

145
exit() 35, 177
fcntl() 33
fgets() 191, 198
fopen() 193, 195, 198
fork() 28, 29, 34–36, 78
fprintf() 191
getppid() 102
gotAMessage() 151, 154
gotAPulse() 151, 153
handler_func() 71, 76
in*() 187
in8() 180
interrupt

Interrupt() family 187

InterruptAttach() 175–178, 182–186,
188

InterruptAttach() diagram 184
InterruptAttachEvent() 175, 176, 178,

180–183, 185–188, 301
InterruptAttachEvent() diagram 184
InterruptAttachEvent() example 180
InterruptAttachEvent() versus

InterruptAttach() 182, 183
InterruptDetach() 177
InterruptDisable() 169, 187, 188
InterruptEnable() 169, 187, 188
InterruptLock() 169, 187, 188, 327
InterruptMask() 187
InterruptUnlock() 169, 187, 188, 327
InterruptUnmask() 187
InterruptWait() 25, 180, 182, 186
InterruptWait() example 180

io_fdinfo() 235
io_read() 255, 260

example 255
io_write() 260

example 260
ISR-safe 186

atomic() family 186
in() family 186
InterruptDisable() 186
InterruptEnable() 186
InterruptLock() 186
InterruptMask() 186
InterruptUnlock() 186
InterruptUnmask() 186
mem() family 186
out() family 186
str() family 186

kill() 289
lseek() 192, 198, 283, 328, 332
malloc() 108, 109, 186
mem*() 186
memcpy() 108, 109, 186
message passing

ChannelCreate() 91, 94, 100, 118, 120,
132, 250

ChannelDestroy() 91, 94
ConnectAttach() 91–94, 102, 103, 126,

127, 129

October 20, 2008 Index 343

Index © 2008, QNX Software Systems GmbH & Co. KG.

ConnectDetach() 91, 92
MsgDeliverEvent() 91, 97, 100, 117,

118, 126, 127, 242, 300, 331
MsgError() 91, 101, 102, 227
MsgInfo() 99, 123
MsgRead() 91, 105, 106, 113, 126–128,

262
MsgReadv() 91
MsgReceive() 91, 95, 96, 98, 99, 101,

104, 105, 111–114, 116, 117, 119,
121–124, 126–128, 131–133, 151, 156,
182, 200, 289, 331

MsgReceive() example 151
MsgReceivePulse() 91, 113, 114, 116,

117, 331
MsgReceivev() 91, 111, 116, 209, 331
MsgReply() 91, 95, 97, 100–102, 107,

114, 122, 123, 126, 127, 258, 259
MsgReply() example 153, 154
MsgReplyv() 91, 112, 226, 259
MsgSend() 91–93, 95–97, 100, 102–104,

109, 110, 112, 113, 119, 165, 240
MsgSend() example 93
MsgSend() family 92, 112
MsgSendnc() 91, 112
MsgSendsv() 91, 112, 113
MsgSendsvnc() 91, 112, 113
MsgSendv() 77, 91, 109, 112, 119, 258,

299
MsgSendvnc() 91, 112
MsgSendvs() 91, 112, 119
MsgSendvsnc() 91, 112
MsgVerifyEvent() 118
MsgWrite() 91, 101, 105, 107, 113, 126,

127, 259
MsgWritev() 91, 112, 259

message queue
mq_open() 213
mq_receive() 213

message-sending See message passing
mktime() 148
MsgVerifyEvent() 118
name_attach() 102, 292
name_close() 102, 292
name_detach() 102, 292
name_open() 102, 292

nanospin() 138
netmgr_remote_nd() 129
netmgr_strtond() 129
network

netmgr_remote_nd() 129
netmgr_strtond() 129

open() 84, 85, 103, 125–128, 192–198,
200, 209, 291, 292, 299, 328, 330, 332

implementation 193
out*() 187
POSIX

mq_open() 213
mq_receive() 213

POSIX threads 331, 334
pread() 257
printf() 34
process

exec() 35, 36
exec() family 28–31, 33
execl() 29, 32
execle() 29
execlp() 29, 32
execlpe() 29
execv() 29
execve() 29
execvp() 29
execvpe() 29
getppid() 102
spawn() 29, 30, 33, 34
spawn() family 28–33, 36
spawnl() 29, 30
spawnle() 29, 30
spawnlp() 29, 30
spawnlpe() 29, 30
spawnp() 29, 30
spawnv() 29, 30
spawnve() 29, 30
spawnvp() 29, 30
spawnvpe() 29, 30

process creation 28–30, 34
process transformation 30
pthread_mutex_timedlock() 160, 161
pulse

MsgReceive() 114
MsgReceivePulse() 114

pulse_attach() 206

344 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

pulses
pulse_attach() 204
pulse_detach() 204

QNX 4
Creceive() 289, 300
qnx_name_attach() 292
qnx_name_locate() 291, 292
qnx_proxy_attach() 300
Receive() 289, 300
Reply() 289
Send() 289, 294
tfork() 288
Trigger() 300

read() 103, 126, 192, 198, 200, 202, 294,
295, 298, 332

rename() 200
Reply() 289
resmgr_attach() 210
resource manager
_DEVCTL_DATA() 268
_IO_SET_WRITE_NBYTES() 263
dispatch_block() 202
dispatch_context_alloc() 202
dispatch_create() 254
dispatch_handler() 203
io_chmod() 230
io_chown() 231
io_close_dup() 231, 234
io_close_ocb() 232
io_close() 228
io_devctl() 214, 215, 232, 263–266, 268
io_dup() 234
io_fdinfo() 235
io_link() 235
io_lock_ocb() 237, 251
io_lock() 236
io_lseek() 237, 274
io_mknod() 238
io_mmap() 239
io_mount() 240
io_msg() 240
io_notify() 241
io_open_default() 215
io_open() 210, 214–216, 230, 232, 242,

243, 271
io_openfd() 243

io_pathconf() 243
io_read() 214, 215, 244, 245, 255,

258–260, 262, 263, 266, 272–274
io_readlink() 245
io_rename() 246
io_shutdown() 247
io_space() 247
io_stat() 248, 258
io_sync() 248
io_unblock() 249, 250, 269
io_unlink() 250
io_unlock_ocb() 251
io_utime() 251
io_write() 214, 215, 244, 252, 260, 266,

269
iofunc_attr_init() 202
iofunc_chmod_default() 230
iofunc_chown_default() 231
iofunc_chown() 231
iofunc_close_dup_default() 231, 232
iofunc_close_dup() 231
iofunc_close_ocb_default() 232
iofunc_devctl_default() 232, 265
iofunc_devctl() 233, 234
iofunc_func_init() 202, 207, 209, 214,

230, 235, 239, 247, 253, 255, 265
iofunc_link() 235
iofunc_lock_default() 223, 236
iofunc_lock_ocb_default() 228, 237
iofunc_lseek_default() 237
iofunc_lseek() 237
iofunc_mknod() 238
iofunc_mmap_default() 223, 239
iofunc_mmap() 239
iofunc_notify_remove() 241
iofunc_notify_trigger() 241, 242
iofunc_notify() 241
iofunc_ocb_attach() 242
iofunc_ocb_calloc() 239
iofunc_open_default() 215, 242
iofunc_open() 242
iofunc_openfd_default() 243
iofunc_openfd() 243
iofunc_pathconf_default() 243
iofunc_pathconf() 243
iofunc_read_default() 244

October 20, 2008 Index 345

Index © 2008, QNX Software Systems GmbH & Co. KG.

iofunc_read_verify() 244, 245, 257, 262
iofunc_readlink() 245
iofunc_rename() 246
iofunc_space_verify() 247
iofunc_stat_default() 248, 258
iofunc_stat() 248
iofunc_sync_default() 248
iofunc_sync_verify() 245, 248, 252
iofunc_sync() 248, 249
iofunc_unblock_default() 249
iofunc_unblock() 249, 250
iofunc_unlink() 250
iofunc_unlock_ocb_default() 228, 251
iofunc_utime_default() 251
iofunc_utime() 251
iofunc_write_default() 252
iofunc_write_verify() 252, 262
pathname_attach() 230
resmgr_attach() 202, 204–206,

210–214, 255
resmgr_bind_ocb() 242
resmgr_detach() 204
resmgr_msgread() 203, 262
resmgr_msgreadv() 203, 210, 233, 252,

262
resmgr_msgwrite() 203
resmgr_msgwritev() 203, 233
resmgr_open_bind() 203, 204, 216

rsrcdbmgr_devno_attach() 225
scheduling

ClockPeriod() 22
sched_get_priority_max() 20
sched_get_priority_min() 20
sched_rr_get_interval() 22
sched_yield() 21
SchedYield() 21

setuid() 176
setupPulseAndTimer() 151, 152
signal

SIGEV_INTR_INIT() (macro) 145
sigev_notify_function() 144
SIGEV_PULSE_INIT() 152
SIGEV_PULSE_INIT() (macro) 145
SIGEV_SIGNAL_CODE_INIT() (macro)

145
SIGEV_SIGNAL_INIT() (macro) 145

SIGEV_SIGNAL_THREAD_INIT()
(macro) 145

SIGEV_THREAD_INIT() (macro) 145
SIGEV_UNBLOCK_INIT() (macro)

145
sigwait() 146

sleep() 25, 77, 137, 138, 160
bad implementation 137

stat() 202
strcmp() 186
strdup() 186
strftime() 148
synchronization

pthread_barrier_init() 47
pthread_barrier_wait() 45, 47, 49, 327
sem_post() 332
sem_wait() 332

sysconf() 40
system() 28, 29
tfork() (QNX 4) 288
thread

pthread_atfork() 35, 36
pthread_attr_destroy() 37, 38
pthread_attr_getdetachstate() 38
pthread_attr_getguardsize() 38
pthread_attr_getinheritsched() 38
pthread_attr_getschedparam() 38
pthread_attr_getschedpolicy() 38
pthread_attr_getscope() 38
pthread_attr_getstackaddr() 38
pthread_attr_getstacklazy() 38
pthread_attr_getstacksize() 38
pthread_attr_init() 37, 38
pthread_attr_set() family 38
pthread_attr_setdetachstate() 38, 39
pthread_attr_setguardsize() 38
pthread_attr_setinheritsched() 38, 39,

41
pthread_attr_setschedparam() 38, 39,

41
pthread_attr_setschedpolicy() 38, 39,

41
pthread_attr_setscope() 38, 39
pthread_attr_setstackaddr() 38
pthread_attr_setstacklazy() 38
pthread_attr_setstacksize() 38

346 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

pthread_cancel() 77, 113
pthread_cond_broadcast() 64
pthread_cond_signal() 64
pthread_cond_wait() 63, 64, 68
pthread_create() 35, 36, 38, 41, 45, 46,

288
pthread_join() 39, 45–47, 49, 77, 163,

164
pthread_join() example 163
pthread_mutex_lock() 64, 69, 288
pthread_mutex_unlock() 64, 69
pthread_rwlock_destroy() 58
pthread_rwlock_init() 58
pthread_rwlock_rdlock() 58, 59
pthread_rwlock_tryrdlock() 59
pthread_rwlock_unlock() 59
pthread_rwlock_wrlock() 58
pthread_rwlockattr_destroy() 58
pthread_rwlockattr_getpshared() 58
pthread_rwlockattr_init() 58
pthread_rwlockattr_setpshared() 58
pthread_setschedparam() 17, 133
pthread_sleepon_broadcast() 63, 64
pthread_sleepon_lock() 60, 64
pthread_sleepon_signal() 61, 63, 64
pthread_sleepon_unlock() 60, 64
pthread_sleepon_wait() 60, 61, 63, 64
thread_pool_control() 70
thread_pool_create() 70, 72, 73
thread_pool_destroy() 70
thread_pool_limits() 70
thread_pool_start() 70, 72, 73
thread_pool() family 86
ThreadCtl() 176

time
asctime() 148
clock_getres() 157
clock_gettime() 157
clock_settime() 157
ClockAdjust() 157, 158
ClockCycles() 157, 159
ClockPeriod() 157
ClockTime() 157
ctime() 148
mktime() 148
strftime() 148

time() 148
timer_create() 146, 147, 152, 157
timer_create() example 152
timer_settime() 147, 149, 152
timer_settime() example 152

timer
ClockCycles() 159
ClockPeriod() 158
delay() 140
timer_create() 146
timer_settime() 147, 149
TimerTimeout() 100, 119, 163–165, 289
TimerTimeout() example 163, 164

timing
nanospin() 138
sleep() 137, 138

unblock_func() 76
vfork() 28, 35, 36, 78
waitpid() 33
write() 84, 104, 105, 108, 295, 299, 332

G

gather/scatter See scatter/gather
getppid() 102
getting help 305, 307

beta versions 308
updates 308

contacting technical support 307
describing the problem 307, 308

be precise 307
narrow it down 309
reproduce the problem 309
RTFM 305
training 309

getting the time 157
gotAMessage() 151, 154
gotAPulse() 151, 153
grep 306
gunzip 31
gzip 31, 309

October 20, 2008 Index 347

Index © 2008, QNX Software Systems GmbH & Co. KG.

H

handler_func() 71, 76
handler routines See resource managers,

handler routines
hardware

82C54 component 139
and polling using timers 156
asynchronous nature of timers 141
changing timer rate 140
clock tick and timers 165
divider, used with timers 139
impact of integer divisor on timer 139
inactivity shutdown 156
used with timers 139
warm-up timer 156

high accuracy counter 159
high frequency interrupts 185

I

I/O Vector See IOV
IBM PC 7
in*() 187
in8() 180
inactivity shutdown 156
initializing

struct sigevent 164
shortcut 164

interrupt
_NTO_INTR_FLAGS_END 178
_NTO_INTR_FLAGS_PROCESS 178
_NTO_INTR_FLAGS_TRK_MSK 178
10 millisecond 138
8259 chip 171
analogy 169
associated thread 171, 172
associating with thread or process 178
attaching handler 175, 176
BSP specific 175
causes 169
chained 174, 175
chaining 178, 185
clearing 170, 171, 182
clock

diagram 139
complex 171
context switches 183
defined 169
detach on death of thread or process 177
disabling 169, 188
cli 169

doing nothing in the ISR 170
doing the work in a thread 171
edge-sensitive 172, 173, 175

and cleanup 177
diagram 172
problems 173, 175

enabling 169, 188
sti 169

end of interrupt (EOI) 172, 173
environment 186
EOI 175
ethernet device 174
events 172
exit() 177
filtering out unnecessary 185
floppy disk controller 171, 172
functions

InterruptAttach() diagram 183
InterruptAttachEvent() diagram 183
InterruptAttachEvent() example 180
InterruptWait() example 180

handlers
detaching 177
detaching the last handler 177
events 180
example 176, 178
goals 186
safe functions 186
volatile 180

handling 169
hardware 77
hardware acknowledgment 170
high frequency 185
ignoring 171
impact on scheduling 170, 171
informing the kernel 169
interrupt identifier 181
InterruptAttach() 175
InterruptAttachEvent() 175

348 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

InterruptAttachEvent() versus
InterruptAttach() 182, 183

InterruptDetach() 177
ISRs 169, 170

detaching 177
detaching the last handler 177
events 180
example 176, 178
goals 186
pseudo-code example 171
safe functions 186
volatile 180

kernel 183
kernel ISR for timer 138
latency 169
level-sensitive 172, 175

and cleanup 177
diagram 172

low frequency 185
managing 169
masking 171
masking after detaching 177
masking on detach of last handler 177
minimizing latency 186
minimizing time spent in 170
not clearing the source 171
order of processing 174
permissions required 176
PIC 171, 175

edge-sensitive mode 172
edge-sensitive mode diagram 172
level-sensitive mode 172
level-sensitive mode diagram 172

priority 170
processing 171
programmable interrupt controller 171

edge-sensitive mode 172
edge-sensitive mode diagram 172
level-sensitive mode 172
level-sensitive mode diagram 172

pulses 116, 172
readying a thread 170–172, 176, 180, 183
realtime 169
realtime clock 77
relationship to thread 171
responsibilities 170

returning struct sigevent 180
role of ISR 170
scheduling 76, 77, 138, 169
SCSI device 174
serial handler 170
servers 177
sharing 173–175, 177

diagram 173, 174
problem 174
problems 175

SIGEV_INTR 143, 182, 186
SIGEV_SIGNAL 182
SIGEV_THREAD 182
signals 172
SMP 53, 188
source 170
specifying order 178
spending a long time in ISR 171
startup code 175
struct sigevent 172, 176, 180, 182
tail-end polling 170
thread interaction 188
thread-level interactions 179
threads 171, 172
timing 138
tracking mask/unmasks 178
unmasking 171
unmasking when attaching 177
unnecessary wakeups

diagram 184
used for timing 138
used with timers 139
using InterruptWait() 182
volatile 179, 188
waiting in thread 182
waking up only when required 184
waking up unnecessarily 184
writing 175

interrupt service routine See also Interrupts
defined 329

Interrupt() family 187
InterruptAttach() 175–178, 182–186, 188

diagram 183, 184
example 178
flags parameter 178

October 20, 2008 Index 349

Index © 2008, QNX Software Systems GmbH & Co. KG.

InterruptAttachEvent() 175, 176, 178, 180–183,
185–188, 301

diagram 184
example 180
flags parameter 178
pseudo-code 185
returning interrupt identifier 181

InterruptAttachEvent() versus InterruptAttach()
182, 183

InterruptDetach() 177
example 177

InterruptDisable() 169, 187, 188
InterruptEnable() 169, 187, 188
InterruptLock() 169, 187, 188, 327
InterruptMask() 187
InterruptUnlock() 169, 187, 188, 327
InterruptUnmask() 187
InterruptWait() 25, 180, 182, 186

andSIGEV_INTR 182, 186
example 180

io_chmod_t 230, 231
io_chmod() 230
io_chown() 231
io_close_dup() 231, 234
io_close_ocb() 232
io_close_t 231, 232
io_close() 228
io_devctl_t 233
io_devctl() 214, 215, 232, 263–266, 268
io_dup_t 234
io_dup() 234
io_fdinfo() 235
io_link_extra_t 235
io_link_t 235
io_link() 235
io_lock_ocb() 237, 251
io_lock_t 236
io_lock() 236
io_lseek_t 237
io_lseek() 237, 274
io_mknod_t 238
io_mknod() 238
io_mmap_t 239, 241
io_mmap() 239
io_mount_t 240
io_mount() 240

io_msg_t 241
io_msg() 240
io_notify() 241
io_open_default() 215
io_open_t 242, 245
io_open() 210, 214–216, 230, 232, 242, 243,

271
io_openfd_t 243
io_openfd() 243
io_pathconf_t 243
io_pathconf() 243
io_read_t 244
io_read() 214, 215, 244, 245, 255, 258–260,

262, 263, 266, 272–274
example 255

io_readlink() 245
io_rename_extra_t 246
io_rename_t 246
io_rename() 246
io_shutdown() 247
io_space_t 247
io_space() 247
io_stat_t 248
io_stat() 248, 258
io_sync_t 248
io_sync() 248
io_unblock() 249, 250, 269
io_unlink_t 250
io_unlink() 250
io_unlock_ocb() 251
io_utime_t 251
io_utime() 251
io_write_t 252
io_write() 214, 215, 244, 252, 260, 266, 269

example 260
IOFUNC_ATTR_ATIME 258, 263
IOFUNC_ATTR_DIRTY_TIME 258
iofunc_attr_init() 202
IOFUNC_ATTR_MTIME 263
iofunc_attr_t 219, 221–224
iofunc_chmod_default() 230
iofunc_chown_default() 231
iofunc_chown() 231
iofunc_close_dup_default() 231, 232
iofunc_close_dup() 231
iofunc_close_ocb_default() 232

350 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

iofunc_devctl_default() 232, 265
iofunc_devctl() 233, 234
iofunc_func_init() 202, 207, 209, 214, 230,

235, 239, 247, 253, 255, 265
iofunc_link() 235
iofunc_lock_default() 223, 236
iofunc_lock_ocb_default() 228, 237
iofunc_lseek_default() 237
iofunc_lseek() 237
iofunc_mknod() 238
iofunc_mmap_default() 223, 239
iofunc_mmap() 239
IOFUNC_MOUNT_32BIT 224
IOFUNC_MOUNT_FLAGS_PRIVATE 224
iofunc_mount_t 219, 222, 224
iofunc_notify_remove() 241
iofunc_notify_trigger() 241, 242
iofunc_notify() 241
iofunc_ocb_attach() 242
iofunc_ocb_calloc() 239
IOFUNC_OCB_FLAGS_PRIVATE 221
IOFUNC_OCB_MMAP 221
IOFUNC_OCB_PRIVILEGED 221
iofunc_ocb_t 219–221
IOFUNC_OCB_T 270
iofunc_open_default() 215, 242
iofunc_open() 242
iofunc_openfd_default() 243
iofunc_openfd() 243
iofunc_pathconf_default() 243
iofunc_pathconf() 243
IOFUNC_PC_CHOWN_RESTRICTED 224, 231
IOFUNC_PC_LINK_DIR 224
IOFUNC_PC_NO_TRUNC 224
IOFUNC_PC_SYNC_IO 224
iofunc_read_default() 244
iofunc_read_verify() 244, 245, 257, 262
iofunc_readlink() 245
iofunc_rename() 246
iofunc_space_verify() 247
iofunc_stat_default() 248, 258
iofunc_stat() 248
iofunc_sync_default() 248
iofunc_sync_verify() 245, 248, 252
iofunc_sync() 248, 249
iofunc_unblock_default() 249

iofunc_unblock() 249, 250
iofunc_unlink() 250
iofunc_unlock_ocb_default() 228, 251
iofunc_utime_default() 251
iofunc_utime() 251
iofunc_write_default() 252
iofunc_write_verify() 252, 262
IOV See also Message passing, See Message

passing
defined 329

iov_t 109, 110
defined 109

ISR See interrupt service routine

K

kernel
as arbiter 19
base timing resolution 159
context switch 19
context-switch 27
preempting thread 20
readying a thread 138, 165
resuming thread 20
special pulse 165
suspending a thread 138
synthesizing unblock pulse 120
timeouts 163

SIGEV_UNBLOCK 143
timer implementation 138, 142
view of data in message pass 110

kernel callouts
defined 329

kernel state
blocking 24
complete list 24
STATE_CONDVAR 24, 63
STATE_DEAD 24
STATE_INTR 24, 25
STATE_JOIN 24
STATE_MUTEX 24
STATE_NANOSLEEP 24, 25
STATE_NET_REPLY 24
STATE_NET_SEND 24

October 20, 2008 Index 351

Index © 2008, QNX Software Systems GmbH & Co. KG.

STATE_READY 24, 77, 82, 131, 132, 138,
140, 142, 169, 176, 183

STATE_RECEIVE 24, 25
STATE_RECV 82, 133, 145

diagram 82
STATE_REPLY 24, 25, 83, 120, 155, 165

diagram 82
STATE_RUNNING 24, 169
STATE_SEM 24
STATE_SEND 24, 25, 83, 116, 120, 165

diagram 82
when abnormal 83
when normal 83

STATE_SIGSUSPEND 24
STATE_SIGWAITINFO 24
STATE_STACK 24
STATE_STOPPED 24
STATE_WAITCTX 24
STATE_WAITPAGE 24
STATE_WAITTHREAD 24
triggering timeout 163

kernel timeout 165
_NTO_CHF_UNBLOCK 165
arming 165
example 164
message passing 165
servers 165
specifying multiple 165
withpthread_join() 163

kill() 289
Krten, Rob 10

L

latency, interrupt 169
level-sensitive interrupts 172

diagram 172
limits

multipart messages 110
range of pulse code values 114

local node descriptor 92
low frequency interrupts 185
ls 30, 32, 306, 308
lseek() 192, 198, 283, 328, 332

M

macros
for filling struct sigevent 145

SIGEV_INTR_INIT() 145
SIGEV_PULSE_INIT() 145
SIGEV_SIGNAL_CODE_INIT() 145
SIGEV_SIGNAL_INIT() 145
SIGEV_SIGNAL_THREAD_INIT() 145
SIGEV_THREAD_INIT() 145
SIGEV_UNBLOCK_INIT() 145

message passing
SETIOV() 109

resource manager
_RESMGR_ERRNO() (deprecated) 227
_RESMGR_NPARTS() 226, 266
_RESMGR_PTR() 227, 266

SETIOV() 109
SIGEV_PULSE_INIT()

example 152
SIGEV_THREAD_INIT()

example 157
SIGEV_UNBLOCK_INIT() 163, 164

example 163
make 306
malloc() 108, 109, 186
masking interrupts 171, 177
meet-me synchronization See synchronization
mem*() 186
memcpy() 108, 109, 186
memory

physical, defined 331
virtual, defined 334

memory management unit See MMU
memory protection 27
message

combined 216–219
why they work 219

connect 194, 200
constants
_NTO_CHF_UNBLOCK 250
_NTO_MI_UNBLOCK_REQ 249, 250,

269
determining if pulse or message 156
functions

ChannelCreate() 250

352 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

MsgDeliverEvent() 242
MsgRead() 262
MsgReply() 258, 259
MsgReplyv() 259
MsgSend() 240
MsgSendv() 258
MsgWrite() 259
MsgWritev() 259

how to tell from pulses 156
I/O 200
not replying to client 155
other 200
receive ID, defined 331
receiving, defined 331
replying to multiple clients 155
replying, defined 332
resource manager 200
_IO_DEVCTL 206
_IO_MSG 206
combine 227
connect 216
processing 227

send hierarchy, defined 333
sending

functions 333
message passing 82

<sys/neutrino.h> 109
advantages 85
as decoupling 133
as object oriented design 86
as synchronization scheme 133
avoiding unnecessary copying 108
blocking client 82, 95
buffer sizes 96
cancellation points 113
channel ID 92, 99
ChannelCreate() 118, 120, 132
client 91
client/server 82
confusion with timeouts 119
ConnectAttach() 126, 127, 129
ConnectDetach() 92
connection ID 99
data flow 95
deadlock 97
dealing with large buffers 107

decoupling of design 81, 85, 86
deferring data transfer 117
defined 329
diagram 95
distributing work over a network 89
done by C library 84
double standard in conventional OS 85
establishing client to server connection 91
example 84, 85
excluding messages 116
filesystem example 105
finding a server 102

ND/PID/CHID 102
using a global variable 102
using a resource manager 102
using global variables 103
using well-known files 102, 103

finding the server’s ND/PID/CHID 102
fs-qnx4 message example 105
handling big messages in server 104
how to handle large transfers 107
interrupts 116
iov_t 109
kernel timeouts 165
limiting transfer size 96, 97, 100
modularity 81
MsgDeliverEvent() 117, 118, 126, 127
MsgError() versus MsgReply() 102
MsgInfo() 123
MsgRead() 105, 106, 113, 126–128
MsgReceive() 95, 105, 111–114, 116, 117,

119, 121–124, 126–128, 131–133
MsgReceive() versus MsgReceivev() 112
MsgReceivePulse() 113, 116, 117
MsgReceivev() 111, 116
MsgReply() 95, 107, 122, 123, 126, 127
MsgReplyv() 112
MsgSend() 92, 109, 110, 112, 113, 119

example 93
MsgSend() family 112
MsgSendnc() 112
MsgSendsv() 112, 113
MsgSendsvnc() 112, 113
MsgSendv() 109, 112, 119
MsgSendvnc() 112
MsgSendvs() 112, 119

October 20, 2008 Index 353

Index © 2008, QNX Software Systems GmbH & Co. KG.

MsgSendvsnc() 112
MsgWrite() 105, 107, 113, 126, 127
MsgWritev() 112
multi-threaded server 90
multipart messages 108

example 108, 111
IOV 108–110
kernel’s view 110
limitations 110

multipart versus linear 113
multiple threads 86
ND/PID/CHIDs 102
network

detailed analysis 125
differences from local 126

network implementation 125
network transparent 133
network-distributed 85
networked 124
networked case

determining how much data should have
been transferred 128

determining how much data was
transferred 127

networked overhead 127
node descriptor 92
not replying to the client 101
notifying client 117
obtaining a connection ID 92
offsetting into the client’s data 107, 112
peeking into a message 105
phases 94
priority 103
process ID 92
pulse

MsgReceive() 114
MsgReceivePulse() 114
receiving 114

race condition with unblock 121
reading from the client’s address space 105
readying a thread 82
receive ID 100

and reply 95
receive-blocked 82

diagram 82
receiving only pulses 116

receiving pulses only 116
REPLY-blocked 165
reply-blocked 83

diagram 82
reply-driven model 88, 101

example 89
important subtlety 89

replying to the client 100
replying with no data 101

example 101
resource manager 84
run time installability of components 81
scatter/gather

defined 332
SEND state

diagram 82
SEND-blocked 165
send-blocked 83

diagram 82
send-driven model 88

example 89
important subtlety 89

server 95
example 96

server connection ID 99
server replying to client 95
server/subserver 86, 87

delegation of work 88
SETIOV() (macro) 109
SMP 86
STATE_RECV state 82

diagram 82
STATE_REPLY state 83

diagram 82
STATE_SEND state 83
summary 133
synthetic unblock pulse 120
thread and channels 98
thread pool 117
timeouts

informing server 165
timeouts and_NTO_CHF_UNBLOCK 165
timer 116
tracking owner of message 98
transmit buffer 95
transparency over network 85

354 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

unblock 121
unblocking
_NTO_MI_UNBLOCK_REQ 123, 124
client 119
server 95

unit testing 86
useful minimal set of functions 91
using IOV (vectored) functions 113
using the_NTO_MI_UNBLOCK_REQ flag

124
validity of receive ID 100
vs. traditional OS 84, 85
with pool of threads 86
write() example 108
writing a header later 107
writing to the client’s address space 107

microkernel 81
mktime() 148
MMU 27

defined 329
modularity due to message passing 81
mountpoint

creating 211, 213
registering 211, 213

mq_open() 213
mq_receive() 213
mqueue 213
MsgDeliverEvent() 91, 97, 100, 117, 127, 242,

300, 331
breaking send hierarchy 97
networked case 126, 127
special use of receive ID 118

MsgError() 91, 101, 102
errno 102, 227

MsgInfo() 99, 123
MsgRead() 91, 105, 106, 113, 127, 128, 262

networked case 126, 127
offset parameter 107

MsgReadv() 91
example 111

MsgReceive() 91, 95, 96, 98, 99, 101, 104, 105,
111–114, 116, 117, 119, 121–124, 127,
128, 131–133, 151, 156, 182, 200, 289,
331

example 96, 105, 111, 151
networked case 126, 127

priority inheritance 132, 133
relationship of parameters to MsgReply()

95
MsgReceivePulse() 91, 113, 114, 116, 117, 331
MsgReceivev() 91, 111, 116, 209, 331
MsgReply() 91, 95, 97, 100–102, 107, 114, 122,

123, 127, 258, 259
errno 102
example 96, 153, 154
networked case 126, 127
relationship of parameters to MsgReceive()

95
MsgReplyv() 91, 112, 226, 259
MsgSend() 91–93, 95–97, 100, 102–104, 109,

110, 112, 113, 119, 165, 240
EINTR 119
example 93, 108

MsgSend() family 92, 112
guide to variants 112

MsgSendnc() 91, 112
MsgSendsv() 91, 112, 113
MsgSendsvnc() 91, 112, 113
MsgSendv() 77, 91, 112, 119, 258, 299

example 108
MsgSendvnc() 91, 112
MsgSendvs() 91, 112, 119
MsgSendvsnc() 91, 112
MsgVerifyEvent() 118
MsgWrite() 91, 101, 105, 107, 113, 127, 259

networked case 126, 127
offset parameter 107

MsgWritev() 91, 112, 259
offset parameter 112

MT_TIMEDOUT 153
multipart messages See Message passing
MUTEX 24
mutex

analogy 16
defined 330

mutual exclusion See mutex

N

name_attach() 102, 292
name_close() 102, 292

October 20, 2008 Index 355

Index © 2008, QNX Software Systems GmbH & Co. KG.

name_detach() 102, 292
name_open() 102, 292
name space See pathname space
nanospin() 138
ND See node descriptor
ND_LOCAL_NODE 130
netmgr_remote_nd() 129

example 129
netmgr_strtond() 129

example 129
network

data transfer 97
determining how much data should have

been transferred 128
determining how much data was transferred

127
distributed architecture 56
message passing 85, 124, 125

ConnectAttach() differences 126, 127
detailed analysis 125
differences from local 126
MsgDeliverEvent() differences 126, 127
MsgRead() differences 126, 127
MsgReceive() differences 126, 127
MsgReply() differences 126, 127
MsgWrite() differences 126, 127
name resolution 125
overhead 127
remote name resolution 126

message passing transparency 85
netmgr_remote_nd() 129
netmgr_strtond() 129
node descriptor 92

of local node 92
node descriptor of client 99
of SMP systems 86
server 88
using message passing to distribute work

89
versus shared memory 56

Neutrino
defined 330
philosophy 86

nice 28
node descriptor 92

<sys/netmgr.h> 129

characteristics 129
contained in struct _msg_info 130
conversion from symbolic name 129
example 129
how to find 102
how to pass within network 129
message passing 102
obtaining remote 129
of local node 92
process manager 194
receiving node’s for transmitting node’s

130
representation of remote 130
transmitting node’s for receiving node’s

130
node ID 128

defined 128
not network unique 128
of self 128

O

O_RDONLY 220
O_RDWR 220
O_WRONLY 194, 220
object oriented design via message passing 86
OCB 209

allocating 271
defined 330
extended 270
monitoring 271

one-shot timers 141, 148
example 148

open context block See OCB
open() 84, 85, 103, 125–128, 192–198, 200,

209, 291, 292, 299, 328, 330, 332
implementation 193

operating system
double standard in conventional 85
message passing vs. traditional 84, 85
microkernel 81
process

background 27
creating 28, 29, 34

out*() 187

356 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

P

P_NOWAIT 33, 34
P_NOWAITO 33
P_OVERLAY 33
P_WAIT 32, 33
PATH 32
pathname

pollution 103
registering 199
resolving 194

pathname_attach() 230
pathname delimiter in QNX documentation xiv
pathname space 193

and procnto 193
defined 193

PDP-8
and Neutrino 330
defined 330

periodic timer 141, 148, See also repeating
timer

example 149
power saving 165
server maintenance 156
servers 149

philosophy of Neutrino 86
physical address

defined 331
pidin 42, 82, 83
platforms

PDP-8 330
polling

for completion of thread 164
timer 156

POOL_FLAG_EXIT_SELF 72
POOL_FLAG_USE_SELF 72, 73
pool, threads See thread
POSIX

signals 157
POSIX thread See thread
power saving 165
pread() 257
printf() 34
priority

boosting 132
inversion 130

message passing 103
thread analogy 17

priority inheritance 131
undoing 132, 133

priority inversion 130
defined 131
example 130
fixed by priority inheritance 131
solution 132
starving CPU 132

process
abstraction 54
aid to maintainability 26
aid to reliability 27
and threads 55
associating with interrupt handler 178
background 27
child 34, 35
consisting of threads 26
context-switch 27
coupling 54, 55
creating 28, 29, 34
creating from program 28

exec() family 28, 29
fork() 28, 34
spawn() family 28, 29
system() 28
vfork() 28, 35

decoupling 56
decoupling of design 26
defined 331
distributability 56
fork() 34, 35
in system 26
multi-threaded 15
mutex 69
network distributed 56
parent 34, 35
scalability 56
shared memory 55
single-threaded 15
starting 27
starting from shell 27
thread 15, 55

process ID 92
getppid() 102

October 20, 2008 Index 357

Index © 2008, QNX Software Systems GmbH & Co. KG.

how to find 102
message passing 102
process manager 194

process IDs See PIDs
process manager

channel ID 194
finding 194
node descriptor 194
process ID 194

processing interrupts 171
procnto 84, 193
producer

and consumer 60
state analysis 61

and consumer using condvars
example 63

pthread_atfork() 35, 36
pthread_attr_destroy() 37, 38
pthread_attr_getdetachstate() 38
pthread_attr_getguardsize() 38
pthread_attr_getinheritsched() 38
pthread_attr_getschedparam() 38
pthread_attr_getschedpolicy() 38
pthread_attr_getscope() 38
pthread_attr_getstackaddr() 38
pthread_attr_getstacklazy() 38
pthread_attr_getstacksize() 38
pthread_attr_init() 37, 38
pthread_attr_set() family 38
pthread_attr_setdetachstate() 38, 39
pthread_attr_setguardsize() 38
pthread_attr_setinheritsched() 38, 39, 41
pthread_attr_setschedparam() 38, 39, 41
pthread_attr_setschedpolicy() 38, 39, 41
pthread_attr_setscope() 38, 39
pthread_attr_setstackaddr() 38
pthread_attr_setstacklazy() 38
pthread_attr_setstacksize() 38
pthread_attr_t 37

defined 37
pthread_barrier_init() 47

example 47
pthread_barrier_wait() 45, 47, 49, 327

example 47
pthread_cancel() 77, 113
pthread_cond_broadcast() 64

pthread_cond_signal() 64
example 63

pthread_cond_t 64
pthread_cond_wait() 63, 64, 68

example 63
pthread_create() 35, 36, 38, 41, 45, 46, 288

example 41, 43, 47, 63
PTHREAD_EXPLICIT_SCHED 41
pthread_join() 39, 45–47, 49, 77, 163, 164

example 45, 163
explanation 46
non-blocking 164
timeout 164
with timeout 163

pthread_mutex_lock() 64, 69, 288
example 63

pthread_mutex_timedlock() 160, 161
pthread_mutex_unlock() 64, 69

example 63
pthread_rwlock_destroy() 58
pthread_rwlock_init() 58
pthread_rwlock_rdlock() 58, 59
pthread_rwlock_t 58
pthread_rwlock_tryrdlock() 59
pthread_rwlock_unlock() 59
pthread_rwlock_wrlock() 58
pthread_rwlockattr_destroy() 58
pthread_rwlockattr_getpshared() 58
pthread_rwlockattr_init() 58
pthread_rwlockattr_setpshared() 58
pthread_setschedparam() 17, 133
pthread_sleepon_broadcast() 63, 64
pthread_sleepon_lock() 60, 64

example 60, 61
pthread_sleepon_signal() 61, 63, 64

example 61
pthread_sleepon_unlock() 60, 64

example 60, 61
pthread_sleepon_wait() 60, 61, 63, 64

example 61
PTHREAD_STACK_LAZY 40
PTHREAD_STACK_NOTLAZY 40
pthread_t 36, 46
pthreads, defined 331
pulse

_PULSE_CODE_UNBLOCK 115

358 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

content 114
defined 113, 331
example 114, 149, 151–154
excluding messages 116
functions

pulse_attach() 206
how to tell from messages 156
MsgReceive() 114
MsgReceivePulse() 114
payload content 114
POSIX 152
range of code member 114
receiving 114
receiving pulses only 116
special 165
struct sigevent 165
synthetic unblock 120
timeout example 149, 151–154
timers 142
using the code member 115
using the value member 115
versus signals 146

pulse_attach() 204, 206
pulse_detach() 204

Q

Qnet 10, 98, 125–128, 206
QNX

advantages of architecture 7
anecdote 7
applications 7
history of 8
on 8088 CPUs 8
QNX 2 8
QNX 4 8

qnx_name_attach() (QNX 4) 292
qnx_name_locate() (QNX 4) 291, 292
qnx_proxy_attach() (QNX 4) 300
QNX Software Systems 331

website 307
QSS, defined 331
Quantum Software Systems Ltd. 8
queue

RUNNING 142

timer 138
timer queue 165

QUNIX 7, 8

R

read() 103, 126, 192, 198, 200, 202, 210, 294,
295, 298, 332

readers/writer locks See synchronization
READY 24
realtime

interrupts 169
priority inversion 130

realtime clock 77
getting and setting 157
interrupts 77

receive ID 95, 100
content 100
defined 331
duplication 119
example of use 96
MsgReply() 95
special use 118
when valid 100

Receive() (QNX 4) 289, 300
receive-blocked 82

diagram 82
receiving a message

defined 331
registering

pathname 199
relative timer 141, 147, 165

defined 332
example 148, 149, 151–154

rename() 200
rendezvous

and thread synchronization 46
repeating timer, defined 332
Reply() (QNX 4) 289
reply-blocked 83

diagram 82
reply-driven model 88, 101

example 89
important subtlety 89

replying to a message, defined 332

October 20, 2008 Index 359

Index © 2008, QNX Software Systems GmbH & Co. KG.

resmgr See resource manager
resmgr_attach() 202, 204–206, 210–214, 255
resmgr_attr_t 205, 210
resmgr_bind_ocb() 242
resmgr_connect_funcs_t 205, 206
resmgr_context_t 205–209, 226
resmgr_detach() 204
RESMGR_HANDLE_T 207, 208
resmgr_io_funcs_t 205, 206, 208
resmgr_msgread() 203, 262
resmgr_msgreadv() 203, 210, 233, 252, 262
resmgr_msgwrite() 203
resmgr_msgwritev() 203, 233
RESMGR_OCB_T 208
resmgr_open_bind() 203, 204, 216
resolution of timebase

adjusting 158
resource manager 191

/dev/null 201
advanced topics 269
allocating OCBs 271
and fork() 36
as a means of advertising

ND/PID/CHID 102
binding mount structure 270
blocking 202, 272
characteristics 192
client 192

summary 198
clients 192
combined messages 216–219
connecting 193
connection ID 192, 194
constants
_FTYPE_ANY 213
_FTYPE_MQUEUE 213
_IO_CHMOD 230
_IO_CHOWN 231
_IO_CLOSE_DUP 231, 274
_IO_CONNECT 235, 238, 240, 242,

245, 246, 250, 274
_IO_CONNECT_COMBINE 242
_IO_CONNECT_COMBINE_CLOSE

217, 242
_IO_CONNECT_LINK 235
_IO_CONNECT_MKNOD 238

_IO_CONNECT_MOUNT 240
_IO_CONNECT_OPEN 242
_IO_CONNECT_READLINK 245
_IO_CONNECT_RENAME 246
_IO_CONNECT_UNLINK 250
_IO_DEVCTL 233, 264
_IO_DUP 234
_IO_FDINFO 235
_IO_FLAG_RD 220
_IO_FLAG_WR 220
_IO_LSEEK 237, 238, 274
_IO_MMAP 239
_IO_MSG 240, 241
_IO_NOTIFY 241
_IO_OPENFD 243
_IO_READ 244, 254, 274
_IO_SET_CONNECT_RET 240, 242
_IO_SET_FDINFO_LEN 235
_IO_SET_PATHCONF_VALUE 244
_IO_SET_READ_NBYTES 245
_IO_SET_WRITE_NBYTES 252
_IO_SPACE 247
_IO_STAT 248
_IO_SYNC 248
_IO_UTIME 251
_IO_WRITE 252
_IO_XTYPE_NONE 257
_IO_XTYPE_OFFSET 244, 257, 259,

260, 263
_IOFUNC_NFUNCS 225
_POSIX_DEVDIR_FROM 233
_POSIX_DEVDIR_TO 233
_RESMGR_DEFAULT 227, 234, 265
_RESMGR_FLAG_AFTER 212, 213
_RESMGR_FLAG_BEFORE 212, 213
_RESMGR_FLAG_DIR 212, 273
_RESMGR_FLAG_FTYPEALL 212
_RESMGR_FLAG_FTYPEONLY 212
_RESMGR_FLAG_OPAQUE 212
_RESMGR_FLAG_SELF 212
_RESMGR_NOREPLY 226, 259, 272
_RESMGR_STATUS 230–232, 234,

236–239, 241–243, 245, 247–252
DCMD_AUDIO_GET_SAMPLE_RATE

266

360 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

DCMD_AUDIO_SET_SAMPLE_RATE
266

F_ALLOCSP 247
F_FREESP 247
IOFUNC_ATTR_ATIME 258, 263
IOFUNC_ATTR_DIRTY_TIME 258
IOFUNC_ATTR_MTIME 263
IOFUNC_MOUNT_32BIT 224
IOFUNC_MOUNT_FLAGS_PRIVATE

224
IOFUNC_OCB_FLAGS_PRIVATE 221
IOFUNC_OCB_MMAP 221
IOFUNC_OCB_PRIVILEGED 221
IOFUNC_OCB_T 270
IOFUNC_PC_CHOWN_RESTRICTED

224, 231
IOFUNC_PC_LINK_DIR 224
IOFUNC_PC_NO_TRUNC 224
IOFUNC_PC_SYNC_IO 224
SH_COMPAT 221
SH_DENYNO 221
SH_DENYRD 221
SH_DENYRW 221
SH_DENYWR 221

context blocks 204
cookbook 253
custom 204
defined 191, 332
design 196
device numbers and inodes 225, 226
domain of authority 199
example 253

io_devctl() 263, 266
io_open() handler 215
io_read() 255, 256
io_write() 260
returning data to a client 255, 256

extended OCB 270
extending attributes 271
file descriptor 194
file descriptors 192
file streams 192
filesystem example 191
finding 193, 194
functions
_DEVCTL_DATA() 268

_IO_READ 244
_IO_SET_WRITE_NBYTES() 263
connect 206
custom handlers 214
default 209
default handlers 207, 214
dispatch_create() 254
I/O 208
io_chmod() 230
io_chown() 231
io_close_dup() 231, 234
io_close_ocb() 232
io_close() 228
io_devctl() 214, 215, 232, 263–266, 268
io_dup() 234
io_fdinfo() 235
io_link() 235
io_lock_ocb() 237, 251
io_lock() 236
io_lseek() 237, 274
io_mknod() 238
io_mmap() 239
io_mount() 240
io_msg() 240
io_notify() 241
io_open() 210, 214–216, 230, 232, 242,

243, 271
io_openfd() 243
io_pathconf() 243
io_read() 214, 215, 244, 245, 255,

258–260, 262, 263, 266, 272–274
io_readlink() 245
io_rename() 246
io_shutdown() 247
io_space() 247
io_stat() 248, 258
io_sync() 248
io_unblock() 249, 250, 269
io_unlink() 250
io_unlock_ocb() 251
io_utime() 251
io_write() 214, 215, 244, 252, 260, 266,

269
iofunc_chmod_default() 230
iofunc_chown_default() 231
iofunc_chown() 231

October 20, 2008 Index 361

Index © 2008, QNX Software Systems GmbH & Co. KG.

iofunc_close_dup_default() 231, 232
iofunc_close_dup() 231
iofunc_close_ocb_default() 232
iofunc_devctl_default() 232, 265
iofunc_devctl() 233, 234
iofunc_func_init() 207, 209, 214, 230,

235, 239, 247, 253, 255, 265
iofunc_link() 235
iofunc_lock_default() 223, 236
iofunc_lock_ocb_default() 228, 237
iofunc_lseek_default() 237
iofunc_lseek() 237
iofunc_mknod() 238
iofunc_mmap_default() 223, 239
iofunc_mmap() 239
iofunc_notify_remove() 241
iofunc_notify_trigger() 241, 242
iofunc_notify() 241
iofunc_ocb_attach() 242
iofunc_ocb_calloc() 239
iofunc_open_default() 242
iofunc_open() 242
iofunc_openfd_default() 243
iofunc_openfd() 243
iofunc_pathconf_default() 243
iofunc_pathconf() 243
iofunc_read_default() 244
iofunc_read_verify() 244, 257, 262
iofunc_readlink() 245
iofunc_rename() 246
iofunc_space_verify() 247
iofunc_stat_default() 248, 258
iofunc_stat() 248
iofunc_sync_default() 248
iofunc_sync_verify() 248, 252
iofunc_sync() 248, 249
iofunc_unblock_default() 249
iofunc_unblock() 249, 250
iofunc_unlink() 250
iofunc_unlock_ocb_default() 228, 251
iofunc_utime_default() 251
iofunc_utimes() 251
iofunc_write_default() 252
iofunc_write_verify() 252, 262
pathname_attach() 230
resgmr_open_bind() 216

resmgr_attach() 206, 210–214, 255
resmgr_bind_ocb() 242
resmgr_msgread() 262
resmgr_msgreadv() 210, 233, 252, 262
resmgr_msgwritev() 233

future expansion capabilities 207
gate keeper 215
handler routines 226

context 226
messages 228

handlers
connect functions 230
I/O functions 230
unblocking 230

handling directories 195
header as first part of message 106
initializing a connection 215, 216
internal context 202
library 200, 202, 205

base layer 203
POSIX layer 203

macros
_RESMGR_ERRNO() (deprecated) 227
_RESMGR_NPARTS() 226, 266
_RESMGR_PTR() 227, 266

message passing 84
messages 192, 206
_IO_DEVCTL 206
_IO_MSG 206
combine 237
combined 227
connect 194, 200, 216
creating custom 206
handling 203
I/O 200
other 200
processing 227

mountpoints 211, 213
multiple entries 199
OCB monitoring 271
ordering 213
ordering in pathname space 213
outcalls 215
overriding allocation functions 270
pathname 199
POSIX layer 204, 219

362 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

program flow 215
receiving messages 200
registering 199, 211, 213
resolving 197, 199
returning directory entries 273
reusing data space at end of message 269
serial port example 191
setting the iov size 227
skeleton 253
structure 210
structures 205
io_chmod_t 230
io_chown_t 231
io_close_t 231, 232
io_devctl_t 233
io_dup_t 234
io_link_extra_t 235
io_link_t 235
io_lock_t 236
io_lseek_t 237
io_mknod_t 238
io_mmap_t 239
io_mount_t 240
io_msg_t 241
io_notify_t 241
io_open_t 242, 245
io_openfd_t 243
io_pathconf_t 243
io_read_t 244
io_rename_extra_t 246
io_rename_t 246
io_spaced_t 247
io_stat_t 248
io_sync_t 248
io_unlink_t 250
io_utime_t 251
io_write_t 252
iofunc_attr_t 219, 221–224
iofunc_mount_t 219, 222, 224
iofunc_ocb_t 219–221
POSIX layer 219
resmgr_attr_t 205, 210
resmgr_connect_funcs_t 205, 206
resmgr_context_t 205–210, 226
RESMGR_HANDLE_T 207, 208
resmgr_io_funcs_t 205, 206, 208

RESMGR_OCB_T 208
struct _io_chmod 230
struct _io_chown 231
struct _io_close 231, 232
struct _io_connect 229, 235,

238–240, 242, 245, 246, 250
struct _io_connect_link_reply

235, 238, 240, 242, 245, 246, 250
struct _io_devctl 233
struct _io_devctl_reply 233
struct _io_dup 234
struct _io_lock 236
struct _io_lock_reply 236
struct _io_lseek 237
struct _io_mmap 239
struct _io_mmap_reply 239
struct _io_msg 241
struct _io_notify 241
struct _io_notify_reply 241
struct _io_openfd 243
struct _io_pathconf 243
struct _io_read 244
struct _io_space 247
struct _io_stat 248
struct _io_sync 248
struct _io_utime 251
struct _io_write 252
struct dirent 244

writing 204
round robin

defined 332
round-robin scheduling 21
RR See round-robin
rsrcdbmgr_devno_attach() 225
RTC

getting and setting values 157
synchronizing to current time of day 158

RUNNING 24
and SMP 24

S

scalability 56
due to modularity 81
over network of SMP 90

October 20, 2008 Index 363

Index © 2008, QNX Software Systems GmbH & Co. KG.

scatter/gather
defined 332
operation 110

SCHED_FIFO 41
sched_get_priority_max() 20
sched_get_priority_min() 20
SCHED_OTHER 41
SCHED_RR 41
sched_rr_get_interval() 22
sched_yield() 21
scheduling 76

algorithms 21
FIFO 21
RR 21

events in the future using timers 141
faults 76, 77
FIFO

defined 329
hardware interrupts 76, 77, 138
impact of interrupts 170
interrupts 77, 169
kernel calls 76, 77, 138
one shot events in the future 141
other hardware 77
periodic events using timers 141
priority zero 41
round robin

defined 332
SCHED_FIFO 41
SCHED_OTHER 41
SCHED_RR 41
the realtime clock 77
thread creation 37
timers 77

scheduling scope 39
SchedYield() 21
SEM 24
sem_post() 332
sem_wait() 332
semaphore

defined 332
in analogy 17

send hierarchy
avoiding deadlock 97
breaking 97, 117

implementation 117

with MsgDeliverEvent() 117
defined 333
designing 97
struct sigevent 117
thread 117

Send() (QNX 4) 289, 294
send-blocked 83

diagram 82
send-blocked state

when abnormal 83
when normal 83

send-driven model 88
example 89
important subtlety 89

sending a message
defined 333

server
acting on unblock pulse 120
assumptions about client data area 105
authentication of client 98
basic operation 93
being informed of client unblock 165
binding of client 100
boosting priority 132
busy 83
channels 98
class of service 98
client buffer size 104
client connecting to

diagram 94
client priority 99
clients with mismatched buffer sizes 104
creating a channel 94
defined 333
delivering event to client 118
endian flags 99
filesystem example 104
finding 102

by name 102
global variable 102
global variables 103
resource manager 102
well-known files 102, 103

finding out who sent message 98
framework 96
general flow 100

364 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

handling big messages 104
how to handle large transfers 107
ignoring unblock pulse 120
limiting transfer size 96
logging of client 98
mixing multithreaded and server/subserver

88
multi-threaded 90
multiple requests 101
network distributed 88
node descriptor of client 99
not replying to client 101, 155
notifying client 117
periodic timers 149
phases of message passing 94
receive ID 95
reply blocked client 83
replying to multiple clients 155
server connection ID 99
server/subserver 87, 88

delegation of work 88
SMP 88, 90
state transition

diagram 82
state transitions 82
storing the struct sigevent 117
thread pool 69
thread pools 86
timeouts 149
unblock pulse handling 121
unblocked by client 95
unblocking

client 95
using MsgInfo() 99
using MsgReceive() 99
using pulses for timeouts 145
using signals for timeouts 146
verifying validity of event 118
writing a header later 107

server/subserver 101
analogy 88
diagram 89
example 89
implementation description 89
message passing 86

SETIOV() macro

defined 109
example 111

setting the time 157
setuid() 176
setupPulseAndTimer() 151, 152
SH_COMPAT 221
SH_DENYNO 221
SH_DENYRD 221
SH_DENYRW 221
SH_DENYWR 221
shared memory 55

versus network 56
sharing interrupts 173–175

diagram 173, 174
SIGALRM 144, 157
SIGEV_INTR 143, 145, 182, 186

and interrupts 182, 186
andInterruptWait() 182
and struct sigevent 143

SIGEV_INTR_INIT() (macro) 145
sigev_notify_function() 144
SIGEV_PULSE 143, 152, 182

and struct sigevent 143, 152
SIGEV_PULSE_INIT() 152
SIGEV_PULSE_INIT() (macro) 145

example 152
SIGEV_PULSE_PRIO_INHERIT 145, 152
SIGEV_SIGNAL 143–145, 182

and interrupts 182
and struct sigevent 143, 144

SIGEV_SIGNAL_CODE 143–145
and struct sigevent 143, 144

SIGEV_SIGNAL_CODE_INIT() (macro) 145
SIGEV_SIGNAL_INIT() (macro) 145
SIGEV_SIGNAL_PULSE 145
SIGEV_SIGNAL_THREAD 143–145

and struct sigevent 143, 144
SIGEV_SIGNAL_THREAD_INIT() (macro)

145
SIGEV_SIGNAL family 143
SIGEV_THREAD 143, 144, 182

and interrupts 182
and struct sigevent 143

SIGEV_THREAD_INIT() (macro) 145
example 157

SIGEV_UNBLOCK 143, 145, 163, 164

October 20, 2008 Index 365

Index © 2008, QNX Software Systems GmbH & Co. KG.

and struct sigevent 143, 163
example 163

SIGEV_UNBLOCK_INIT() (macro) 145, 163,
164

example 163
signal

defined 333
SIGALRM 157
SIGUSR1 157
struct sigevent 165
timers 142, 157
versus pulses 146

SIGSEGV 40
SIGUSR1 157
sigwait() 146
sleep() 25, 77, 137, 138, 160

bad implementation 137
sleepon locks See synchronization
slowing down time 158
SMP 19, 81

application 49
atomic operations 54
coding for SMP or single processor 44
concurrency 53
condvars 68
constraints 50
creating enough threads 44
in a networked system 86
interrupts 53, 188
message passing 86
multiple threads 49
scalability 90
soaker thread 52
STATE_RUNNING 24
thread pools 87
threads 43
timing

diagram 49, 50, 52
tips 53
underutilization 52
utilization 51

soaker thread 52
SPAWN_NOZOMBIE 33
spawn() 29, 30, 33, 34
spawn() family 28–33, 36
spawnl() 29, 30

spawnle() 29, 30
spawnlp() 29, 30
spawnlpe() 29, 30
spawnp() 29, 30
spawnv() 29, 30
spawnve() 29, 30
spawnvp() 29, 30
spawnvpe() 29, 30
speeding time up 158
stack

for thread 37
postmortem analysis 40

stat() 202
STATE_CONDVAR 24, 63
STATE_DEAD 24
STATE_INTR 24, 25
STATE_JOIN 24
STATE_MUTEX 24
STATE_NANOSLEEP 24, 25
STATE_NET_REPLY 24
STATE_NET_SEND 24
STATE_READY 24, 77, 82, 131, 132, 138, 140,

142, 169, 176, 183
STATE_READY state 82
STATE_RECEIVE 24, 25
STATE_RECV 82, 133, 145
STATE_RECV state

diagram 82
STATE_REPLY 24, 25, 120, 155, 165
STATE_REPLY state 83

diagram 82
STATE_RUNNING 24, 169
STATE_SEM 24
STATE_SEND 24, 25, 116, 120, 165
STATE_SEND state 83

diagram 82
STATE_SIGSUSPEND 24
STATE_SIGWAITINFO 24
STATE_STACK 24
STATE_STOPPED 24
STATE_WAITCTX 24
STATE_WAITPAGE 24
STATE_WAITTHREAD 24
strcmp() 186
strdup() 186
strftime() 148

366 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

struct _clockadjust 158
struct _clockperiod 158

members 159
struct _io_chmod 230
struct _io_chown 231
struct _io_close 231, 232
struct _io_connect 229, 235, 238–240,

242, 245, 246, 250
struct _io_connect_link_reply 235,

238, 240, 242, 245, 246, 250
struct _io_devctl 233
struct _io_devctl_reply 233
struct _io_dup 234
struct _io_lock 236
struct _io_lock_reply 236
struct _io_lseek 237
struct _io_mmap 239
struct _io_mmap_reply 239
struct _io_msg 241
struct _io_notify 241
struct _io_notify_reply 241
struct _io_openfd 243
struct _io_pathconf 243
struct _io_read 244
struct _io_space 247
struct _io_stat 248
struct _io_sync 248
struct _io_utime 251
struct _io_write 252
struct _msg_info 99, 123, 127

declaration 130
fields in 99
flags 127
node descriptors 130

struct _pulse 114, 115
declaration 114

struct _thread_pool_attr

defined 70
members 75

struct dirent 244
struct itimerspec 147, 148

defined 147
example 152
example of filling 148, 149
it_interval member 148
it_value member 148

struct sigevent 117, 142, 143, 146, 147,
157, 163–165, 172, 176, 180, 182, 183,
290, 300, 301, 329

anonymous union 143
creating threads 157
defined 142
example 152, 163
how to initialize 142
interrupts 176, 180, 182
macros for filling 145
persistency 172
pulse 165
pulses 152
send hierarchy 117
shortcut initialization 164
sigev_code member 143, 144
sigev_coid member 143
SIGEV_INTR 143
sigev_notify_attributes member 144
sigev_notify_function member 144
sigev_notify member 143, 144
sigev_priority member 143
SIGEV_PULSE 143, 152
SIGEV_SIGNAL 143, 144
SIGEV_SIGNAL_CODE 143, 144
SIGEV_SIGNAL_THREAD 143, 144
sigev_signo

and pulses 152
sigev_signo member 144
SIGEV_THREAD 143
SIGEV_UNBLOCK 143, 163
sigev_value member 143, 144
signal 165
timers 142

struct timespec 147, 148
defined 147

structures
attribute

defined 327
FILE 192, 198
iov_t 109, 110
pthread_attr_t 37
pthread_cond_t 64
pthread_rwlock_t 58
pthread_t 36, 46
resmgr_attr_t 205, 210

October 20, 2008 Index 367

Index © 2008, QNX Software Systems GmbH & Co. KG.

resmgr_connect_funcs_t 205, 206
resmgr_context_t 205–209
RESMGR_HANDLE_T 207, 208
resmgr_io_funcs_t 205, 206, 208
RESMGR_OCB_T 208
resource manager
io_chmod_t 230
io_chown_t 231
io_close_t 231, 232
io_devctl_t 233
io_dup_t 234
io_link_extra_t 235
io_link_t 235
io_lock_t 236
io_lseek_t 237
io_mknod_t 238
io_mmap_t 239
io_mount_t 240
io_msg_t 241
io_notify_t 241
io_open_t 242, 245
io_openfd_t 243
io_pathconf_t 243
io_read_t 244
io_rename_extra_t 246
io_rename_t 246
io_space_t 247
io_stat_t 248
io_sync_t 248
io_unlink_t 250
io_utime_t 251
io_write_t 252
iofunc_attr_t 219, 221–224
iofunc_mount_t 219, 222, 224
iofunc_ocb_t 219–221
resmgr_context_t 226
struct _io_chmod 230
struct _io_chown 231
struct _io_close 231, 232
struct _io_connect 229, 235,

238–240, 242, 245, 246, 250
struct _io_connect_link_reply

235, 238, 240, 242, 245, 246, 250
struct _io_devctl 233
struct _io_devctl_reply 233
struct _io_dup 234

struct _io_lock 236
struct _io_lock_reply 236
struct _io_lseek 237
struct _io_mmap 239
struct _io_mmap_reply 239
struct _io_msg 241
struct _io_notify 241
struct _io_notify_reply 241
struct _io_openfd 243
struct _io_pathconf 243
struct _io_read 244
struct _io_space 247
struct _io_stat 248
struct _io_sync 248
struct _io_utime 251
struct _io_write 252
struct dirent 244

struct _msg_info 99, 119, 123, 127,
130

chid 99
coid 99
dstmsglen 119
flags 99
msglen 99
nd 99
pid 99
priority 99
scoid 99
srcmsglen 100, 119
srcnd 99
tid 99

struct _pulse 114, 115
struct itimerspec 148

it_interval member 148
it_value member 148

struct sigevent 142, 143, 146, 147,
157, 164, 165, 172, 176, 180, 182, 183,
290, 300, 301, 329

struct timespec 148
thread_pool_attr_t 70
union sigval 115

sub-second timers 148
synchronization

association of mutex and condvar 68
barrier 78

defined 327

368 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

condition variable 57, 63
defined 328

condvar 78
versus sleepon 64

condvar versus sleepon 67
deadlock

defined 329
joining 78
mutex 78

across process boundaries 69
defined 330

reader/writer lock 57
rendezvous 46
semaphore 78

defined 332
signal versus broadcast 64
sleepon

versus condvar 64
sleepon lock 57, 59, 78
sleepon versus condvar 67
to termination of thread 45
using a barrier 46

synchronizing time of day 158
synchronous See also asynchronous

defined 333
sysconf() 40
system

as consisting of processes and threads 26
system() 28, 29

T

tar 309
example 309

TDP (Transparent Distributed Processing) 98,
See also Qnet

technical support 305, 307
beta versions 308

updates 308
contacting 307
describing the problem 307

be precise 307
narrow it down 309
reproduce the problem 309
RTFM 305

training 309
telnet 308
termination synchronization 45
tfork() 288
thread

associating with interrupt handler 178
barriers 46
blocking states 20
concurrent 19
context switch 19
coupling 55
created by timer trigger 157
creating

attribute structure initialization 38
detached 37
example 43
joinable 37
on timer expiry 142
registering exit function 37
scheduling parameters 37
specifying scheduling algorithm 41
specifying stack 37

creating on timer expiration 144
creating via struct sigevent 144
deadlock

defined 329
defined 334
design abstraction 19
example of creation 41
FIFO scheduling 21
fork() 35, 36
fundamentals 15
in mathematical operations 43
in process 26
interrupt interaction 188
interrupt interactions 179
interrupts 171, 172
message passing 86, 98
multiple threads 15
mutex 16
operating periodically 137
pidin 42
polling for completion 164
pool 69, 87

analysis 73
and SMP 87

October 20, 2008 Index 369

Index © 2008, QNX Software Systems GmbH & Co. KG.

example 72
functions 70
message passing 86
POOL_FLAG_EXIT_SELF 72
POOL_FLAG_USE_SELF 72

POSIX 331, 334
postmortem stack analysis 40
preemption 20
priorities 17
Processes 15
processes 55
pthread_join() 163, 164
readers/writer locks 57
readied by timer 165
readying via message pass 82
resumption 20
RR scheduling 21
scheduling algorithm 20
scheduling algorithms 21
semaphore 17
single threads 15
SMP 43

and interrupts 53
concurrency 53
determining how many threads to create

44
timing diagram 49, 50, 52

soaker 52
stack 40
states

receive-blocked 82
receive-blocked diagram 82
reply-blocked 83
reply-blocked diagram 82
send-blocked 83
send-blocked diagram 82
STATE_READY 82
STATE_RECV 82
STATE_RECV diagram 82
STATE_REPLY 83
STATE_REPLY diagram 82
STATE_SEND 83
STATE_SEND diagram 82

synchronizing to termination of 45
utilizing SMP 51
where to use 42, 54

thread_pool_attr_t 70
thread_pool_control() 70
thread_pool_create() 70, 72, 73

example 72
thread_pool_destroy() 70
thread_pool_limits() 70
thread_pool_start() 70, 72, 73

example 72
thread_pool() family 86
thread pool

message passing 117
ThreadCtl() 176
ticksize 22
time

adjusting forwards or backwards 158
adjusting gradually 158
discontinuities in flow 158
retarding flow of 158
synchronizing current time of day 158

time() 148
timebase 158
timeout 163

and kernel states 163
arming 163, 165
clearing 163
kernel timeouts 156
pthread_join() 164
server-driven 156
server-maintained 149

example 149, 151–154
triggering 163
unblocking

client 119
withpthread_join() 163

timeout notification 142
pulse 145
signal 146

timer
<time.h> 147
10 millisecond 138
absolute 141, 147, 165

defined 327
example 148

accuracy 139, 140
adjusting base timing resolution 158
asynchronous nature 141

370 Index October 20, 2008

© 2008, QNX Software Systems GmbH & Co. KG. Index

behavior if expired 140
changing resolution 140
CLOCK_MONOTONIC 147
CLOCK_REALTIME 146
CLOCK_SOFTTIME 146
ClockPeriod() 158
converting time formats 148
creating 146
creating a thread 143, 144
creating threads on expiry 142
creating threads on trigger 157
delivering a pulse 143
delivering a signal 143
diagram showing big picture 139
drift 139
flags 147
getting and setting the realtime clock 157
hardware divider 139
hardware divisor 139
implementation 138, 142, 149, 165
improving accuracy 158
inactivity shutdown 156
jitter 140, 141

diagram 140
kernel timeouts 165
limits on base timing resolution 159
one-shot 141, 148

example 148
periodic 141, 148

and server maintenance 156
and servers 149
example 149

polling 156
preemption 140
pulse versus signal 146
pulses 116, 142, 143, 149, 151–154
putting a thread on hold 138
readying a thread 140, 165
relative 141, 147, 165

defined 332
example 148, 149, 151–154

repeating
defined 332

resolving 140
scheduling an event in the future 141
sending a signal 144

specifying code number 144
specifying signal number 144

setting type 147
SIGALRM 157
SIGEV_THREAD 143
signals 142, 157

specifying a signal 157
SIGUSR1 157
specifying sub-second values 148
starting 147
struct itimerspec 147, 148
struct sigevent 142
struct timespec 147, 148
timeout notification 142

by pulse 145
by signal 146

TIMER_ABSTIME 147
timer_create() 146
timer_settime() 147
types 141, 147, 148
usage examples 149
using 146
using pulses with servers 145
warm-up timer 156

TIMER_ABSTIME 147
timer_create() 146, 147, 152

example 152
flags argument 147
signal example 157

timer_settime() 147, 149, 152
andTIMER_ABSTIME 147
example 152

TimerTimeout() 100, 119, 163–165, 289
andCLOCK_REALTIME 163
example 163–165
specifying multiple kernel states 165

timeslice 22
timestamps 159
timing

busy wait 138
fine grained 138
high accuracy 159
hogging CPU 138
using ClockCycles() 159

tips
broadcast versus signal 65

October 20, 2008 Index 371

Index © 2008, QNX Software Systems GmbH & Co. KG.

SMP gotchas 53
when to use condvar 67
when to use sleepon 67
where to use a thread 42, 54

Transparent Distributed Processing (TDP) 98,
See also Qnet

Trigger() (QNX 4) 300
triggering timeouts 163
Trunley, Paul 7
typographical conventions xiii

U

unblock
defined 334
using a timeout 163

unblock_func() 76
union sigval 115

declaration 115
unit testing

message passing 86

V

vfork() 28, 35, 36, 78
virtual address

defined 334
virtual memory

defined 334
volatile 180

and interrupts 179, 188

W

waitpid() 33
warm-up timer 156
website, QNX 307
write() 84, 104, 105, 108, 295, 299, 332
www.qnx.com 307

372 Index October 20, 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

