
Design and Synthesis of an IEEE-754Exponential FunctionHung Tien Bui and So��ene TaharDept. of Electrical and Computer Engineering, Concordia University1455 De Maisonneuve W., Montreal, Quebec, H3G 1M8, CanadaEmail: fht bui, taharg@ece.concordia.caAbstractThis work aims at designing a
oating-point ex-ponential function using the table-driven method.The algorithm was �rst implemented using sequen-tial VHDL and later translated to concurrent Verilog.The main part of the work consisted of creating mod-ules that would handle basic IEEE-754 single preci-sion number manipulation routines such as addition,multiplication, and rounding to nearest integer. Us-ing these routines, a model was implemented based onthe table-driven algorithm. The VHDL design, as wellas the Verilog design, were simulated and the resultsproved to be satisfactory. Synthesis was performedusing CMOSIS5 technology on the VHDL code andyielded a fairly large result.1 IntroductionThe last two decades have brought extraordinaryadvances in numerical calculations. The improve-ments in hardware and in execution speed have con-tributed to the great progress in mathematical calcu-lation speed and accuracy. Along with these advancescame the development, in 1985, of a format that wouldrevolutionize the world of science: the IEEE-754 singleand double precision formats [2]. The numbers repre-sented under these formats, which are respectively 32and 64 bits in length, have a greater range than their2's complement counterparts. In the early days, therewas no hardware available to implement
oating-pointarithmetics. The only way to perform these operationswould be to write software routines. Unfortunately,the creation of such programs is rather complex andis not a trivial task for most people. Furthermore, theexecution speed would be very slow when comparedto a hardware implementation.

The interest then shifted to hardware design of suchmathematical modules. The objective is to createan integrated circuit that would handle the transcen-dental mathematical functions in the IEEE-754 singleand double precision formats. This paper outlines thework that was put into creating the hardware imple-mentation of an exponential function. The design ofthe circuit was done using two di�erent hardware de-scription languages, namely Verilog and VHDL. Al-though the implementation was following the algo-rithm outlined in [5] and [3], several changes had tobe made to accommodate our single-precision imple-mentation, in contrast to the reference, which useddouble-precision operations.2 Floating-Point Exponential FunctionThe table-driven implementation of the exponentialfunction used by Ping Tak Peter Tang [5] consists ofthree main parts. The input value is �rst reduced to acertain working range. A shifted exponential functionis then estimated using known polynomial approxima-tions. Finally, the exponential function of the originalinput is reconstructed using a certain formula.
FUNCTION

FLOATING-POINT

EXPONENTIAL
X EXP(X)

Figure 1: "Black-Box" Representation

Figure 1 depicts the black-box representation of the
oating-point exponential function. The input X canbe seen as being composed of many parts [5]:x = (32 �m+ j) � (log2)=32+ (r1 + r2) (1)where jr1+r2j � (log2)=64, m and j are integers, andr1 and r2 are real numbers. Note that all logarithmicfunctions are, in reality, natural logarithmic functions(base e).The polynomial approximation required is that ofexp(r) � 1 which can be expressed as a Taylor series.p(r) = r + a1 � r2 + a2 � r3 + ::: (2)where a1 and a2 are the coe�cients and r is the vari-able of the Taylor series.The exponential function can then be reconstructed inthe following manner starting from equation (1) andequating r = r1 + r2:x = (32 �m+ j) � (log2)=32+ r (3)x = m � log2 + (j � log2)=32+ r (4)exp(x) = exp((m � log2) + (j=32) � log2 + r) (5)exp(x) = exp(log2m + log2j=32 + r) (6)exp(x) = exp(log2m) � exp(log2j=32) � exp(r) (7)exp(x) = 2m � 2j=32 � (p(r) + 1) (8)exp(x) = 2m � (2j=32 + 2j=32 � p(r)) (9)The objective of the algorithm would then be to isolatem and j and �nd the coe�cients for the polynomial(a1 and a2).Figure 2 contains the algorithm written by JohnHarrison [3] used in this implementation of the table-driven method for the
oating-point exponential func-tion. The algorithm begins by checking for exceptionalinputs. These are inputs for which the algorithmwould yield an incorrect or undetermined answer. Ex-amples of these type of exceptions are NaN (not anumber), both in�nities, an upper limit for which theoutput is positive in�nity and a lower limit for whichthe output can be approximated by simple arithmeticoperation. If the input does not fall into one of the

Int 32 = Int(32)Int 2e9 = Int(2 EXP 9)Plus one = float(0, 127, 0)THRESHOLD 1 = float(0, 134, 6066890)THRESHOLD 2 = float(0, 102, 0)Inv L = float(0, 132, 3713595)L1 = float(0, 121, 3240448)L2 = float(0, 102, 4177550)A1 = float(0, 126, 68)A2 = float(0, 124, 2796268)var x:float, E:float, R1:float, R2:float,R:float, P:float, Q:float,S:float, E1:float, N:Int, N1:Int, N2:Int,M:Int, J:Int;if Isnan(X) then E:=Xelse if X == Plus infinity then e:=Plus infinityelse if X == Minus infinity then e:=Plus zeroelse if (abs(X) > THRESHOLD 1 thenif X > Plus zero then E := Plus infinityelse E := Plus zeroelse if abs(X) < THRESHOLD 2 then E :=Plus one + Xelse(N := INTRND(X * Inv L);N2 := N % Int 32;N1 := N - N2;if abs(N) � Int 2e9 thenR1 := (X - Tofloat(N1) * L1) -Tofloat(N2) * L1elseR1 := X - Tofloat(N) * L1;R2 := Tofloat(N) * L2;M := N1 / Int 32;J := N2;R := R1 + R2;Q := R * R (A1 + R * A2);P := R1 + (R2 + Q);S := S Lead(J) + S Trail(J);E1 := S Lead(J) + (S Trail(J) + S * P);E := Scalb(E1, M)) Figure 2: Exponential Function Algorithm

previously mentioned categories, the program contin-ues.The next step is to calculate the values for m andj. The required values can be obtained by �rst mul-tiplying equation (1) by a value of 32=(log2), knownas INV L. Performing these operations on equation(1), we getX�32=(log2) = (32�m+j)+(r1+r2)�32=(log2) (10)Knowing that the value of (r1+r2)�32=(log2) cannotexceed 0.5 (because r1+r2 � (log2)=64), the previousequation can be approximated quite accurately byINTEGER(X � 32=(log2)) = (32 �m+ j) (11)The left hand side of this equation can easily be solvedand will be assigned the letter N . Using the modulo-32 function, the values for (32 �m) and j, named N1and N2, respectively, can be calculated with little orno error.Equation (11) can be rewritten asN = N1 +N2 (12)where N = INTEGER(X � 32=(log2)), N1 = 32 �m,and N2 = jThe variables m and j can be derived from the previ-ous results as follows:m = N1=32 (13)j = N2 (14)With the value of N in hand, the value of r1 can becalculated as follows [5]:If the absolute value of N < 29then r1 = (X �N � L1) (15)else r1 = (X �N � L1)�N2 �L1 (16)The value of r2 is obtained byr2 = �N � L2 (17)L1 and L2 are constants that can be added togetherin order to approximate 32/(log 2). The reason forseparating the value into two constants is to increasethe accuracy to one that is higher than that of singleprecision.The sum of r1 and r2 will represent the scaling ofthe input X to a value r in the interval [-(log 2)/64,

(log 2)/64]. Using the value of r in the Taylor series(2), the function of exp(r) � 1 can be approximated.For convenience purposes, only the �rst three elementswill be considered.The following step consists of forming the Taylorseries which can be done in many ways. The imple-mented algorithm �rst calculated the second and thirdorder elements. The coe�cients a1 and a2 are con-stants that were calculated by Ping Tak Peter Tangusing a Remez algorithm [5].Examination of equation (9) reveals that only twomore values need to be calculated in order to obtainthe �nal result: 2m and 2j=32. The table-driven im-plementation was named so because of the fact thatthe values for 2j=32, j ranging from 0 to 31, were cal-culated beforehand and stored in a table. These num-bers are broken down into two parts, namely s leadand s trail, to increase the precision roughly by an or-der of two. With these values known, the �nal resultcan be determined, without di�culty, using equation(9).3 Hardware ImplementationThe implementation of the algorithm, was doneusing two di�erent hardware description languages,namely, Verilog and VHDL. The design constructedusing VHDL made use of the sequential mode in con-trast to the Verilog implementation that used combi-national logic. Both essentially implement the samealgorithm outlined in the previous section.The VHDL and Verilog designs are composed of nu-merous procedures that perform IEEE 754 operations.These operations include the addition, multiplication,division by 32, rounding to the nearest integer, mod-ulo 32, comparison and powers of 2. These moduleswere used as building blocks to construct the
oating-point exponential function (Figure 3). To ensure thatthe code is synthesizable, the program was made prim-itive and the length was much greater than it neededto be. A general description of each procedure follows.Interested readers can refer to [1] for a more detaileddescription.3.1 AdditionThe addition procedure covers both the additionand the subtraction operations. The idea is mainlythe same for both but handling both cases togetheris an added degree of complexity. The algorithm putsboth numbers to the same exponent, adds or subtractsthe numbers and then normalizes.

ADDER

ADDER
 N - N2

ROUND MOD32

GET J
TABLE

LOOK UP
ADDER

ADDER
MULT

DIV32 2 POWER M

MULT

MULT

ADDER MULT

ADDER

MULT

ADDER

ADDER

MULT

COMP

ADDER

MULT

MULT

MULT

ADDER

ADDER

MULT

 N < 2^9

INV_L N
N2

J Strail

Slead
P

Strail
Slead

N

L2 R2

R1
A2

R

A1

P1

P

(-)

YES

NO

L1S

N1 M

R1

INPUT

N

N

L1S

L1S

N2

INPUT

INPUT

OUTPUT

R1

Figure 3: Block Diagram of the Hardware Implemen-tationThe �rst part of the addition procedure checkswhich input is greater. This is especially importantin cases where the inputs are of opposite signs. If theinputs carry the same sign, the output sign will thenbe the same. When the signs are di�erent, the inputwith the greater magnitude will impose its sign. Thenext step is to denormalize both inputs and performthe addition. However, before going on to that step,\01" has to be concatenated to both numbers. Thereason for this is that the 1 is the implied 1 containedin the IEEE 754 format. The 0 is there to make surethat the carry bit is not lost. Denormalizing is done byright-shifting the smaller input by an amount deter-mined by the di�erence in exponents. The exponentis unbiased by removing 127 (\01111111") from its bi-ased value. Addition is then performed normally andthe last part is normalizing. Normalization is doneusing a list of IF-THEN-ELSE statements to keep thecode simple. It would have been more convenient touse FOR loops but the code would then be more denseand signi�cantly more complex for later synthesis.3.2 MultiplicationMultiplication is an operation that is quite straight-forward. Its algorithm is divided into three main partscorresponding to the three parts of the single precisionformat. The �rst part, the sign, is determined by anexclusive-OR function of the two input signs. Theexponent of the output, the second part, is calculatedby adding the two input exponents. And �nally, thesigni�cand is determined by multiplying the two input

signi�cands each with a \1" concatenated to it. Theresult obtained will have about twice as many bits asthe signi�cand should normally have and so, the resultwill be truncated, normalized and the implied \1" willbe removed. The normalization process will be fairlysimple knowing that the multiplication of two 24 bitnumbers with a one at the most signi�cant bit positionwill yield a result with a one at the most signi�cantbit (bit 47) or at bit 46. Depending on the situation,the result will either be shifted once or twice.At the beginning of the algorithm, there is anIF statement that checks for exceptional cases wherethere is a zero in at least one of the inputs. Since in-puts such as \zero", \NaN" (Not a Number) and bothin�nities are determined by a speci�c bit pattern, theyhave to be treated separately by the multiplicationprocedure.3.3 Division by 32This function is only required to be used on a spe-ci�c type of numbers: multiples of 32. Knowing thisfact, the procedure does not need to support all pos-sible ranges of inputs. The operations performed canbe explained as follows: the algorithm will output zeroif the input exponent is less than �ve and will simplysubtract �ve from the exponent if it is not the case.3.4 Round to Nearest IntegerThe \Round to Nearest Integer" algorithm startsby checking if the exponent is of the order of -2 orless. This would result in an output of zero. Thesecond case is to check if the exponent is -1 in whichcase the output would be equal to 1. These are twospecial situations that deal with negative exponentssince the main algorithm cannot handle these cases.The basic idea here is to verify the bit at the 0.5position. If the bit is set, the decimal positions are�lled with zero and we add one to the resulting integer.If the bit is reset, the bits located to the right of thedecimal point will be reset. To accomplish this, theinput is �rst shifted right by a number of positionscorresponding to the exponent (so that all the fractionbits are shifted out). The number obtained should bean integer. This number is then incremented by oneif the bit at 0.5 is set else it should be left the same.3.5 Modulo 32Modulo 32 is an operation that is done by simplytaking the �ve �rst bits located to the left of the dec-imal point. The result will then be an unsigned 5-bit

integer that will have to be converted to single preci-sion format.The procedure is somewhat similar to that ofrounding to the nearest integer. The input is �rstshifted right by the number of bits corresponding tothe exponent. The result is then ANDed with the\11111" bit pattern in order to isolate the �ve bits.The conversion process checks where the �rst 1 is lo-cated starting from the most signi�cant position. Anexponent is then assigned accordingly and the result isshifted left to comply with the rules of normalization.3.6 ComparisonUnlike the other procedures, the comparison doesnot output a number in the IEEE 754 format. In-stead, it generates three bits that give a comparativeindication of the size of the �rst input with respect tothe second input. If the �rst input is greater than thesecond one, then the most signi�cant bit is set. If thesecond input is greater than the �rst, then it is theleast signi�cant bit that is set. If the two inputs areequal then the middle bit is set. Only one bit can beset at any given time.3.7 Powers of TwoThe powers of two function can be implemented byrealizing that the value of the input is the value ofthe output exponent. For example, placing four as aninput would result in two to the power of four, yield-ing four in the exponent �eld. The objective of thefunction would then be to convert the input, being anIEEE 754 number, to a 2's complement number. Thebias of 127 would then be added to the result and thesum would be placed in the exponent �eld. The signand signi�cand �elds will be �lled with zeros becausethe result will always be positive and will always bean integer multiple of two.3.8 Get JThe current implementation of the exponential cir-cuit uses the table-driven approach. The table indexshould ideally be an unsigned integer to make thesearch easier. The "Get J" procedure takes care ofthis. It takes a number in the single-precision formatand transforms it to an unsigned number. The pro-cedure examines the exponent and extracts the corre-sponding bits from the signi�cand. Using an unsignednumber for the search makes the task of �nding a cor-rect value for S easier (refer to the algorithm describedin Figure 2).

3.9 Modi�cations and RemarksThe algorithm described by Ping Tak Peter Tang[5] used single precision in combination with doubleprecision in order to achieve better accuracy. Thework presented here does not cover double precisioncalculation and thus, several changes have been mademade.The beginning of the algorithm contains a multi-tude of IF statements checking for special case consid-erations. One of those cases is an upper limit thresholdbeyond which the output goes to in�nity. The secondcase is a lower limit threshold that checks to see if theinput is low enough for the following approximationto hold: OUTPUT = 1 + INPUT. The lower limitcan be left the same without any major consequences.However, the algorithm over
ows for inputs far smallerthan the upper limit and thus, the boundary had tobe changed. The value for Threshold 1 was modi�edto 89 from its initial value of about 220.In addition, modi�cations had to be made to themodulo-32 function which operates di�erently withnegative numbers. The algorithm needs the outputof this function to be positive and so, negative resultswill have 32 added to them.4 Simulation and Synthesis ResultsAfter implementing the algorithm, the next step isto verify the accuracy of the outputs. The veri�cationis done by comparing the expected results obtainedusing a normal calculator to the output generated bythe implemented algorithm.The analysis was performed on 20 test vectors cov-ering a widely-used range of inputs. The results ob-tained are tabulated in Table 1. As it can be seen,the outputs di�er from the expected results by only asmall margin. These errors can be attributed to dif-ferent factors that include errors in reduction, errorsin approximation and rounding errors. Errors in re-duction occur because of the mapping of the input toa range of values r between (log2)=64. The approxi-mation errors are present because of the use of onlythe �rst three elements in the Taylor series to calcu-late the er � 1 function. The rounding errors are dueto the many cases where numbers had to be roundedbecause single precision did not provide enough accu-racy. A more detailed analysis is described in the workof Ping Tak Peter Tang [5]. The numbers given thereare however not applicable here because this projectdoes not cover double precision arithmetics.

Input Output Expected+1 +1 +1-1 0 0Nan Nan NaN0 1.0 1.00.25 1.284025430 1.2840254170.5 1.648721218 1.6487212711 2.718281745 2.7182818282 7.389055728 7.3890560995 148.4131622 148.413159110 22026.46679 22026.4657915 3269017.25 3269017.37220 485165184.0 485165195.4-0.25 0.778800726 0.778800783-0.5 0.606530666 0.606530659-1 0.36787945 0.367879441-2 0.135335296 0.135335283-5 6.737946531E-3 6.737946999E-3-10 4.539992731E-5 4.539992976E-5-15 3.059023469E-7 3.059023205E-7-20 2.061153691E-9 2.061153622E-9Table 1: Simulation ResultsUsing the RTL design of the Exponential Func-tion described in previous sections, synthesis was per-formed using CMOSIS5 technology on the VHDL codeand yielded a fairly large result. This can be at-tributed to the fact that no size restrictions were setin order to accelerate the process. Table 2 shows theresults obtained using Synopsys.Number of Ports 64Number of Nets 15944Number of Cells 14627Combinational Area 14810490Noncombinational Area 47929Total Cell Area 14858419Table 2: Synthesis ResultsIn Table 2, cells refer to the number of standardcells that the design uses, whereas nets refer to in-terconnects (internal input/output wires). All areameasures are given in square microns.5 ConclusionsThis paper describes the functionality of the
oating-point exponential function from the inside. Itpresents a general view of the building blocks that

constitute the design. Two RTL models were cre-ated using VHDL and Verilog and both were simu-lated, showing satisfactory results. The VHDL designwas successfully synthesized and this becomes a goodworking element for future research.Even though the contribution made by this workis substantial, there is still a lot of room left for im-provement in terms of accuracy and compactness ofthe code. Most modi�cations will, however, not havea great impact on the performance of the design. As a�nished product, this project seems promising in thatit can be integrated along with other similar modulesto form a transcendental mathematical unit.Using the synthesized design, veri�cation proce-dures can be made to formally verify the di�erent lev-els of abstraction and eventually, check if the RTL im-plementation implies the high-level speci�cation. Theprocess of formally verifying the algorithm describedin [5] has previously been targeted by John Harrison[3]. He used a version of the HOL prover, namely HOLLight [4], to perform this veri�cation at a high levelof abstraction. In contrast to this, we aim a lowerlevel veri�cation that the implementation implies thealgorithm.References[1] Hung Tien Bui, Bashar Khalaf and So��ene Tahar.Table-Driven Floating-Point Exponential Func-tion. Technical Report. Department of Electri-cal and Computer Engineering, Concordia Uni-versity, Montreal, Canada, October 1998[2] IEEE Standard for Binary Floating Point Arith-metic. ANSI/IEEE Standard 754-1985. The In-stitute of Electrical and Electronic Engineers, Inc.[3] John Harrison. Floating-Point Veri�cation inHOL Light: The Exponential Function. Tech-nical Report No. 428, University of CambridgeComputer Laboratory, UK, June 1997.[4] John Harrison. HOL Light: A Tutorial Introduc-tion. Srivas, M. and Camilleri, A. (eds), For-mal Methods in Computer-Aided Design , Vol-ume 1166 of Lectures Notes in Computer Science,Spinger-Verlag, 1996, pp. 265-269.[5] Ping Tak Peter Tang. Table-Driven Implemen-tation of the Exponential Function in IEEEFloating-Point Arithmetic. ACM Transactionson Mathematical Software, Vol. 15, No. 2, 1989.

