Design and Synthesis of an IEEE-754
Exponential Function

Hung Tien Bui and Sofiene Tahar

Dept. of Electrical and Computer Engineering, Concordia University
1455 De Maisonneuve W., Montreal, Quebec, H3G 1MS8, Canada
Email: {ht_bui, tahar}@ece.concordia.ca

Abstract

This work aims at designing a floating-point ex-
ponential function wusing the table-driven method.
The algorithm was first implemented using sequen-
tial VHDL and later translated to concurrent Verilog.
The main part of the work consisted of creating mod-
ules that would handle basic IEEE-T754 single preci-
sion number manipulation routines such as addition,
multiplication, and rounding to nearest integer. Us-
ing these routines, a model was implemented based on
the table-driven algorithm. The VHDL design, as well
as the Verilog design, were simulated and the results
proved to be satisfactory. Synthesis was performed
using CMOSIS5 technology on the VHDL code and
yielded a fairly large result.

1 Introduction

The last two decades have brought extraordinary
advances in numerical calculations. The improve-
ments in hardware and in execution speed have con-
tributed to the great progress in mathematical calcu-
lation speed and accuracy. Along with these advances
came the development, in 1985, of a format that would
revolutionize the world of science: the IEEE-754 single
and double precision formats [2]. The numbers repre-
sented under these formats, which are respectively 32
and 64 bits in length, have a greater range than their
2’s complement counterparts. In the early days, there
was no hardware available to implement floating-point
arithmetics. The only way to perform these operations
would be to write software routines. Unfortunately,
the creation of such programs is rather complex and
is not a trivial task for most people. Furthermore, the
execution speed would be very slow when compared
to a hardware implementation.

The interest then shifted to hardware design of such
mathematical modules. The objective is to create
an integrated circuit that would handle the transcen-
dental mathematical functions in the IEEE-754 single
and double precision formats. This paper outlines the
work that was put into creating the hardware imple-
mentation of an exponential function. The design of
the circuit was done using two different hardware de-
scription languages, namely Verilog and VHDL. Al-
though the implementation was following the algo-
rithm outlined in [5] and [3], several changes had to
be made to accommodate our single-precision imple-
mentation, in contrast to the reference, which used
double-precision operations.

2 Floating-Point Exponential Function

The table-driven implementation of the exponential
function used by Ping Tak Peter Tang [5] consists of
three main parts. The input value is first reduced to a
certain working range. A shifted exponential function
is then estimated using known polynomial approxima-
tions. Finally, the exponential function of the original
input is reconstructed using a certain formula.

FLOATING-POINT

EXP(X
X EXPONENTIAL PX)

FUNCTION

Figure 1: ”Black-Box” Representation

Figure 1 depicts the black-box representation of the
floating-point exponential function. The input X can
be seen as being composed of many parts [5]:

z=(32xm+j)x(log2)/32+ (r1 +r2) (1)

where |r1+7r2| < (log2)/64, m and j are integers, and
rl and r2 are real numbers. Note that all logarithmic
functions are, in reality, natural logarithmic functions
(base e).

The polynomial approximation required is that of
exp(r) — 1 which can be expressed as a Taylor series.

p(ry=r+al*xr2+a2xr3+ .. (2)

where al and a2 are the coefficients and r is the vari-
able of the Taylor series.

The exponential function can then be reconstructed in
the following manner starting from equation (1) and
equating r = rl + r2:

x=(32xm+j) *(log2)/32 +r (3)

z=mxlog2+ (j*1log2)/32+r (4)
exp(z) = exp((m * log2) + (j/32) ¥ log2 +7) (5)
exp(z) = exp(log2™ + log2?/3? + 1) (6)
exp(z) = exp(log2™) exp(log2?/??) x exp(r) (7)
eap(z) = 2™ % 27732« (p(r) + 1) (8)

exp(x) = 2™ % (27732 4 21/32 4 p(r)) (9)

The objective of the algorithm would then be to isolate
m and j and find the coefficients for the polynomial
(al and a2).

Figure 2 contains the algorithm written by John
Harrison [3] used in this implementation of the table-
driven method for the floating-point exponential func-
tion. The algorithm begins by checking for exceptional
inputs. These are inputs for which the algorithm
would yield an incorrect or undetermined answer. Ex-
amples of these type of exceptions are NaN (not a
number), both infinities, an upper limit for which the
output is positive infinity and a lower limit for which
the output can be approximated by simple arithmetic
operation. If the input does not fall into one of the

Int_32 = Int(32)

Int 2e9 = Int(2 EXP 9)

Plus_one = float(0, 127, 0)
THRESHOLD_1 = float(0, 134, 6066890)
THRESHOLD 2 = float (0, 102, 0)

Inv_L = float(0, 132, 3713595)

L1 = float(0, 121, 3240448)

L2 = float(0, 102, 4177550)
A1 = float(0, 126, 68)
A2 = float(0, 124, 2796268)

var x:float, E:float, Rl:float, R2:float,
R:float, P:float, Q:float,

S:float, El:float, N:Int, Ni1:Int, N2:Int,
M:Int, J:Int;

if Isnan(X) then E:=X

else if X == Plus_infinity then e:=
Plus_infinity

else if X == Minus_infinity then e:=
Plus_zero

else if (abs(X) > THRESHOLD_1 then

if X > Plus_zero then E := Plus_infinity

else E := Plus_zero
else if abs(X) < THRESHOLD 2 then E :=
Plus_one + X
else

(N := INTRND(X * Inv.L);
N2 := N % Int_32;
N1 := N - N2;
if abs(N) > Int_2e9 then
Rl := (X - Tofloat(N1) * L1) -
Tofloat (N2) * L1
else
Rl := X - Tofloat(N) * L1;
R2 := Tofloat(N) * L2;
:= N1 / Int_32;
:= N2;
:= R1 + R2;
:= R * R (A1 + R * A2);
:=R1 + (R2 + Q);
:= S_Lead(J) + S_Trail(J);
El := S_Lead(J) + (S_Trail(J) + S x P);
Scalb(E1l, M)

0o xmo =
|

=
1]

Figure 2: Exponential Function Algorithm

previously mentioned categories, the program contin-
ues.

The next step is to calculate the values for m and
j. The required values can be obtained by first mul-
tiplying equation (1) by a value of 32/(log2), known
as INV _L. Performing these operations on equation
(1), we get

X %32/(log2) = (32xm+75)+(r1+r2)x32/(log2) (10)

Knowing that the value of (r1+7r2)%32/(log2) cannot
exceed 0.5 (because r1+72 < (log2)/64), the previous
equation can be approximated quite accurately by

INTEGER(X %32/(log2)) = (32xm +j) (11)

The left hand side of this equation can easily be solved
and will be assigned the letter N. Using the modulo-
32 function, the values for (32 *x m) and j, named N1
and N2, respectively, can be calculated with little or
no error.

Equation (11) can be rewritten as
N =N1+N2 (12)

where N = INTEGER(X x32/(log2)), N1 = 32%m,
and N2 =)

The variables m and j can be derived from the previ-
ous results as follows:

m = N1/32 (13)
j=N2 (14)

With the value of N in hand, the value of r1 can be
calculated as follows [5]:

If the absolute value of N < 2°
then
rl=(X —N=xL1) (15)

else
rl=(X—-NxLl)-N2xL1 (16)

The value of r2 is obtained by
r2=—-NxL2 (17)

L1 and L2 are constants that can be added together
in order to approximate 32/(log 2). The reason for
separating the value into two constants is to increase
the accuracy to one that is higher than that of single
precision.

The sum of r1 and r2 will represent the scaling of
the input X to a value r in the interval [-(log 2)/64,

(log 2)/64]. Using the value of r in the Taylor series
(2), the function of exp(r) — 1 can be approximated.
For convenience purposes, only the first three elements
will be considered.

The following step consists of forming the Taylor
series which can be done in many ways. The imple-
mented algorithm first calculated the second and third
order elements. The coefficients al and a2 are con-
stants that were calculated by Ping Tak Peter Tang
using a Remez algorithm [5].

Examination of equation (9) reveals that only two
more values need to be calculated in order to obtain
the final result: 2™ and 2j/32. The table-driven im-
plementation was named so because of the fact that
the values for 27/32, j ranging from 0 to 31, were cal-
culated beforehand and stored in a table. These num-
bers are broken down into two parts, namely s_lead
and s_trail, to increase the precision roughly by an or-
der of two. With these values known, the final result
can be determined, without difficulty, using equation

(9)-

3 Hardware Implementation

The implementation of the algorithm, was done
using two different hardware description languages,
namely, Verilog and VHDL. The design constructed
using VHDL made use of the sequential mode in con-
trast to the Verilog implementation that used combi-
national logic. Both essentially implement the same
algorithm outlined in the previous section.

The VHDL and Verilog designs are composed of nu-
merous procedures that perform IEEE 754 operations.
These operations include the addition, multiplication,
division by 32, rounding to the nearest integer, mod-
ulo 32, comparison and powers of 2. These modules
were used as building blocks to construct the floating-
point exponential function (Figure 3). To ensure that
the code is synthesizable, the program was made prim-
itive and the length was much greater than it needed
to be. A general description of each procedure follows.
Interested readers can refer to [1] for a more detailed
description.

3.1 Addition

The addition procedure covers both the addition
and the subtraction operations. The idea is mainly
the same for both but handling both cases together
is an added degree of complexity. The algorithm puts
both numbers to the same exponent, adds or subtracts
the numbers and then normalizes.

Figure 3: Block Diagram of the Hardware Implemen-
tation

The first part of the addition procedure checks
which input is greater. This is especially important
in cases where the inputs are of opposite signs. If the
inputs carry the same sign, the output sign will then
be the same. When the signs are different, the input
with the greater magnitude will impose its sign. The
next step is to denormalize both inputs and perform
the addition. However, before going on to that step,
“01” has to be concatenated to both numbers. The
reason for this is that the 1 is the implied 1 contained
in the IEEE 754 format. The 0 is there to make sure
that the carry bit is not lost. Denormalizing is done by
right-shifting the smaller input by an amount deter-
mined by the difference in exponents. The exponent
is unbiased by removing 127 (“01111111”) from its bi-
ased value. Addition is then performed normally and
the last part is normalizing. Normalization is done
using a list of IF-THEN-ELSE statements to keep the
code simple. It would have been more convenient to
use FOR loops but the code would then be more dense
and significantly more complex for later synthesis.

3.2 Multiplication

Multiplication is an operation that is quite straight-
forward. Its algorithm is divided into three main parts
corresponding to the three parts of the single precision
format. The first part, the sign, is determined by an
exclusive-OR function of the two input signs. The
exponent of the output, the second part, is calculated
by adding the two input exponents. And finally, the
significand is determined by multiplying the two input

significands each with a “1” concatenated to it. The
result obtained will have about twice as many bits as
the significand should normally have and so, the result
will be truncated, normalized and the implied “1” will
be removed. The normalization process will be fairly
simple knowing that the multiplication of two 24 bit
numbers with a one at the most significant bit position
will yield a result with a one at the most significant
bit, (bit 47) or at bit 46. Depending on the situation,
the result will either be shifted once or twice.

At the beginning of the algorithm, there is an
IF statement that checks for exceptional cases where
there is a zero in at least one of the inputs. Since in-
puts such as “zero”, “NaN” (Not a Number) and both
infinities are determined by a specific bit pattern, they
have to be treated separately by the multiplication
procedure.

3.3 Division by 32

This function is only required to be used on a spe-
cific type of numbers: multiples of 32. Knowing this
fact, the procedure does not need to support all pos-
sible ranges of inputs. The operations performed can
be explained as follows: the algorithm will output zero
if the input exponent is less than five and will simply
subtract five from the exponent if it is not the case.

3.4 Round to Nearest Integer

The “Round to Nearest Integer” algorithm starts
by checking if the exponent is of the order of -2 or
less. This would result in an output of zero. The
second case is to check if the exponent is -1 in which
case the output would be equal to 1. These are two
special situations that deal with negative exponents
since the main algorithm cannot handle these cases.

The basic idea here is to verify the bit at the 0.5
position. If the bit is set, the decimal positions are
filled with zero and we add one to the resulting integer.
If the bit is reset, the bits located to the right of the
decimal point will be reset. To accomplish this, the
input is first shifted right by a number of positions
corresponding to the exponent (so that all the fraction
bits are shifted out). The number obtained should be
an integer. This number is then incremented by one
if the bit at 0.5 is set else it should be left the same.

3.5 Modulo 32

Modulo 32 is an operation that is done by simply
taking the five first bits located to the left of the dec-
imal point. The result will then be an unsigned 5-bit

integer that will have to be converted to single preci-
sion format.

The procedure is somewhat similar to that of
rounding to the nearest integer. The input is first
shifted right by the number of bits corresponding to
the exponent. The result is then ANDed with the
“11111” bit pattern in order to isolate the five bits.
The conversion process checks where the first 1 is lo-
cated starting from the most significant position. An
exponent is then assigned accordingly and the result is
shifted left to comply with the rules of normalization.

3.6 Comparison

Unlike the other procedures, the comparison does
not output a number in the IEEE 754 format. In-
stead, it generates three bits that give a comparative
indication of the size of the first input with respect to
the second input. If the first input is greater than the
second one, then the most significant bit is set. If the
second input is greater than the first, then it is the
least significant bit that is set. If the two inputs are
equal then the middle bit is set. Only one bit can be
set at any given time.

3.7 Powers of Two

The powers of two function can be implemented by
realizing that the value of the input is the value of
the output exponent. For example, placing four as an
input would result in two to the power of four, yield-
ing four in the exponent field. The objective of the
function would then be to convert the input, being an
IEEE 754 number, to a 2’s complement number. The
bias of 127 would then be added to the result and the
sum would be placed in the exponent field. The sign
and significand fields will be filled with zeros because
the result will always be positive and will always be
an integer multiple of two.

3.8 GetJ

The current implementation of the exponential cir-
cuit uses the table-driven approach. The table index
should ideally be an unsigned integer to make the
search easier. The "Get J” procedure takes care of
this. It takes a number in the single-precision format
and transforms it to an unsigned number. The pro-
cedure examines the exponent and extracts the corre-
sponding bits from the significand. Using an unsigned
number for the search makes the task of finding a cor-
rect value for S easier (refer to the algorithm described
in Figure 2).

3.9 Modifications and Remarks

The algorithm described by Ping Tak Peter Tang
[5] used single precision in combination with double
precision in order to achieve better accuracy. The
work presented here does not cover double precision
calculation and thus, several changes have been made
made.

The beginning of the algorithm contains a multi-
tude of IF statements checking for special case consid-
erations. One of those cases is an upper limit threshold
beyond which the output goes to infinity. The second
case is a lower limit threshold that checks to see if the
input is low enough for the following approximation
to hold: OUTPUT = 1 + INPUT. The lower limit
can be left the same without any major consequences.
However, the algorithm overflows for inputs far smaller
than the upper limit and thus, the boundary had to
be changed. The value for Threshold_1 was modified
to 89 from its initial value of about 220.

In addition, modifications had to be made to the
modulo-32 function which operates differently with
negative numbers. The algorithm needs the output
of this function to be positive and so, negative results
will have 32 added to them.

4 Simulation and Synthesis Results

After implementing the algorithm, the next step is
to verify the accuracy of the outputs. The verification
is done by comparing the expected results obtained
using a normal calculator to the output generated by
the implemented algorithm.

The analysis was performed on 20 test vectors cov-
ering a widely-used range of inputs. The results ob-
tained are tabulated in Table 1. As it can be seen,
the outputs differ from the expected results by only a
small margin. These errors can be attributed to dif-
ferent factors that include errors in reduction, errors
in approximation and rounding errors. Errors in re-
duction occur because of the mapping of the input to
a range of values r between (log2)/64. The approxi-
mation errors are present because of the use of only
the first three elements in the Taylor series to calcu-
late the e” — 1 function. The rounding errors are due
to the many cases where numbers had to be rounded
because single precision did not provide enough accu-
racy. A more detailed analysis is described in the work
of Ping Tak Peter Tang [5]. The numbers given there
are however not applicable here because this project
does not cover double precision arithmetics.

| Input | Output | Expected
+00 +o0 +00
-00 0 0
Nan Nan NaN
0 1.0 1.0
0.25 1.284025430 1.284025417
0.5 1.648721218 1.648721271
1 2.718281745 2.718281828
2 7.389055728 7.389056099
) 148.4131622 148.4131591
10 22026.46679 22026.46579
15 3269017.25 3269017.372
20 485165184.0 485165195.4
-0.25 | 0.778800726 0.778800783
-0.5 0.606530666 0.606530659
-1 0.36787945 0.367879441
-2 0.135335296 0.135335283
-5 6.737946531E-3 | 6.737946999E-3
-10 4.539992731E-5 | 4.539992976F-5
-15 3.059023469E-7 | 3.059023205E-7
-20 2.061153691E-9 | 2.061153622E-9

Table 1: Simulation Results

Using the RTL design of the Exponential Func-
tion described in previous sections, synthesis was per-
formed using CMOSIS5 technology on the VHDL code
and yielded a fairly large result. This can be at-
tributed to the fact that no size restrictions were set
in order to accelerate the process. Table 2 shows the
results obtained using Synopsys.

Number of Ports 64
Number of Nets 15944
Number of Cells 14627
Combinational Area 14810490
Noncombinational Area | 47929
Total Cell Area 14858419

Table 2: Synthesis Results

In Table 2, cells refer to the number of standard
cells that the design uses, whereas nets refer to in-
terconnects (internal input/output wires). All area
measures are given in square microns.

5 Conclusions

This paper describes the functionality of the
floating-point exponential function from the inside. It
presents a general view of the building blocks that

constitute the design. Two RTL models were cre-
ated using VHDL and Verilog and both were simu-
lated, showing satisfactory results. The VHDL design
was successfully synthesized and this becomes a good
working element for future research.

Even though the contribution made by this work
is substantial, there is still a lot of room left for im-
provement in terms of accuracy and compactness of
the code. Most modifications will, however, not have
a great impact on the performance of the design. As a
finished product, this project seems promising in that
it can be integrated along with other similar modules
to form a transcendental mathematical unit.

Using the synthesized design, verification proce-
dures can be made to formally verify the different lev-
els of abstraction and eventually, check if the RTL im-
plementation implies the high-level specification. The
process of formally verifying the algorithm described
in [5] has previously been targeted by John Harrison
[3]. He used a version of the HOL prover, namely HOL
Light [4], to perform this verification at a high level
of abstraction. In contrast to this, we aim a lower
level verification that the implementation implies the
algorithm.

References

[1] Hung Tien Bui, Bashar Khalaf and Sofiéne Tahar.
Table-Driven Floating-Point Exponential Func-
tion. Technical Report. Department of Electri-
cal and Computer Engineering, Concordia Uni-
versity, Montreal, Canada, October 1998

[2] IEEE Standard for Binary Floating Point Arith-
metic. ANSI/TEEE Standard 754-1985. The In-
stitute of Electrical and Electronic Engineers, Inc.

[3] John Harrison. Floating-Point Verification in
HOL Light: The Exponential Function. Tech-
nical Report No. 428, University of Cambridge
Computer Laboratory, UK, June 1997.

[4] John Harrison. HOL Light: A Tutorial Introduc-
tion. Srivas, M. and Camilleri, A. (eds), For-
mal Methods in Computer-Aided Design , Vol-
ume 1166 of Lectures Notes in Computer Science,
Spinger-Verlag, 1996, pp. 265-269.

[5] Ping Tak Peter Tang. Table-Driven Implemen-
tation of the Exponential Function in IEEE
Floating-Point Arithmetic. ACM Transactions
on Mathematical Software, Vol. 15, No. 2, 1989.

