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The Evolution of a Circuit Designer…

EE101A,B EE114 EE214 EE314
EE315A,B
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Analog Design

Bandwidth

EE 114

Bandwidth

Power Dissipation
EE 214

DistortionElectronic Noise DistortionElectronic Noise
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Significance of Electronic Noise (1)

Signal-to-Noise Ratio

2
signal signal

2

P V
SNR

P V
= ∝

g

noise noiseP V
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Significance of Electronic Noise (2)

Example: Noisy image

http://www.soe.ucsc.edu/~htakeda/kernelreg/kernelreg.htm
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Significance of Electronic Noise (3)

Th "fid lit " f l t i t i ft d t i d b th i SNRThe "fidelity" of electronic systems is often determined by their SNR

– Examples
• Audio systems

• Imagers cameras• Imagers, cameras

• Wireless and wireline transceivers

Electronic noise directly trades with power dissipation and speed

I t i it l i di t t l it ( d/ ll R– In most circuits, low noise dictates large capacitors (and/or small R, 
large gm), which means high power dissipation

Noise has become increasingly important in modern technologies with 
reduced supply voltagesreduced supply voltages

– SNR ~ Vsignal
2/Vnoise

2 ~ (αVDD)2/Vnoise
2

Designing a low-power, high-SNR circuit requires good understanding of 
l t i ielectronic noise
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Distortion

vvo

vii

Small-signal approximation

All electronic circuits exhibit some level of nonlinear behavior

– The resulting waveform distortion is not captured in linearized small-The resulting waveform distortion is not captured in linearized small
signal models

The distortion analysis tools covered in EE214 will allow us to quantify 
the impact of nonlinearities on sinusoidal waveforms
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the impact of nonlinearities on sinusoidal waveforms



Significance of Distortion

For a single tone input, the nonlinear terms in a circuit’s transfer function 
primarily result in signal harmonics

For a two-tone input, the nonlinear terms in a circuit’s transfer function 
lt i ll d “i t d l ti d t ”result in so-called “intermodulation products”

Example: Two interferer tones create an 
intermodulation product that corrupts the 
signal in a desired (radio-) channel
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Noise and Distortion Analysis in EE214

Main objective

– Acquire the basic tools and intuition needed to analyze noise and 
distortion in electronic circuits

– Look at a few specific circuit examples to “get a feel” for situations 
where noise and/or distortion may matter

Leave application-specific examples for later

– EE314: Noise and distortion in LNAs, mixers and power amplifiers, p p

– EE315A: Noise and distortion in filters and sensor interfaces

– EE315B: Noise and distortion in samplers, A/D & D/A converters
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Technology

MOSFET Bipolar Junction Transistor (BJT)

EE114EE114

EE214
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Bipolar vs. CMOS (1)

Advantages of bipolar transistors

– Lower parametric variance

Hi h l l– Higher supply voltages

– Higher intrinsic gain (gmro)

– Higher fT for a given feature size/lithographyT

Disadvantages of bipolar transistors

– Lower integration density, larger features

– Higher cost
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Bipolar vs. CMOS (2)

A.J. Joseph, et al., "Status and 
Direction of Communication 
Technologies SiGe BiCMOS andTechnologies - SiGe BiCMOS and 
RFCMOS," Proceedings of the 
IEEE, vol.93, no.9, pp.1539-1558, 
September 2005. 

• CMOS tends to require finer lithography to achieve same speed as 
BiCMOS process with advanced BJT
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p

Example that Leverages High-Speed BJTs:
40Gb/s Integrated Optical Transponder
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Die Photo of 40Gb/s CDR Circuit *

• 120-GHz fT / 100GHz fmax

0.18μm SiGe BiCMOS0.18μm SiGe BiCMOS

• 144 pins

• 3.5mm x 4.2mm

• +1.8V and –5.2V supplies

• 7.5W power dissipation

* A O t l ISSCC 2003
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* A. Ong, et al., ISSCC 2003

Radar Sensor

R t l ISSCC 2009Ragonese et al., ISSCC 2009
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Example that Leverages Densely Integrated CMOS:
RF Transceiver System-on-a-Chip (SoC)

In modern CMOS 
technology, millions of 
l i t blogic gates can be 
integrated on a chip

– Together with 
moderate- to highmoderate to high 
performance analog 
blocks

Mehta et al., "A 1.9GHz Single-Chip 
CMOS PHS Cellphone," ISSCC 2006.
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45nm CMOS (Intel)

Steve Cowden
THE OREGONIAN

July 2007
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Research in Device Technology
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Time 

Thoughts on Device Technology

In the future, innovative circuit designers must embrace “whichever” 
technology is most suitable (in terms of performance, cost, reliability, etc. 
f th i ifi blfor their specific problem

– Regardless of the respective I-V law and associated nonidealities

In EE214, we will use bipolar and MOS technology to illustrate the 
similarities and differences between two advanced technologies

The device parameters and simulation models of the “EE214The device parameters and simulation models of the EE214 
technology” correspond to a modern 0.18-μm SiGe BiCMOS technology

– See e.g. S. Wada, et al., “A manufacturable 0.18-um SiGe BiCMOS 
technology for 40-Gb/s optical communication LSIs,” in Proc. 2002 
Bipolar/BiCMOS Circuits and Technology Meeting, pp. 84–87.
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Analysis of Feedback Circuits

F db k i it b t di d i lFeedback circuits can be studied in several ways

– Return ratio analysis (EE114)

– Two-port analysis (EE214)

Both methods have their own merits and demerits, and a good circuit 
designer should understand both approaches

Two-port analysis nicely captures a number of practical scenarios in 
which the forward amplifier (“a”) and feedback network (“f”) can be 
intuitively identified and separated (while maintaining loading effects) 

– Shunt-shunt, shunt-series, series-shunt, series-series configurations

Example: 
Shunt series feedback circuitShunt-series feedback circuit
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Root Locus Techniques

Provides intuitive guidance on “where the poles move” when the loop 
gain is varied

Valuable for stability analysis and frequency compensation
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Course Outline

BJT & short channel MOS device models

Review of elementary amplifier stages (BJT focus)y p g ( )

Two-port feedback circuit analysis

Root locus

Wideband amplifiers

Noise analysis

Distortion analysisDistortion analysis

OpAmps and output stages
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Summary of Learning Goals

Understand device behavior and models for transistors available in 
advanced integrated circuit technologies 

– SiGe BJT, short channel MOS

Acquire the basic intuition and models for

– Distortion analysis

– Noise analysis

– Two-port feedback circuit analysis

– Root locus techniques and their application to broadband amplifiers

Solidify the above topics in a hands-on project involving the design and 
optimization of a broadband amplifier circuit
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Staff and Website

Instructors

– Boris Murmann, Drew Hall

Teaching assistants

– Kamal Aggarwal, Pedram Lajevardi

Administrative supportAdministrative support

– Ann Guerra, CIS 207

Lectures are televised

– But please come to class to keep the discussion interactive!

Web page: http://ccnet.stanford.edu/ee214

– Check regularly, especially bulletin board

– Register for online access to grades and solutions
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Text and Prerequisites

EE214 C dEE214 Course reader

– Hardcopies available at Stanford Bookstore (~1/3)

Required textbook

– Gray, Hurst, Lewis and Meyer, Analysis and Design of Analog 
Integrated Circuits, 5th ed., Wiley 

Reference text

– B. Razavi, Design of Integrated Circuits for Optical Communications, 
McGraw-Hill, 2002

Course prerequisite: EE114 or equivalentp q q

– Basic device physics and models

– Frequency response, dominant pole approximation, ZVTC

– Biasing, small-signal modelsg, g

– Common source, common gate, and common drain stages

– Port impedance calculations

– Feedback basics 
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Assignments

Homework (20%)
– Handed out on Wed, due following Wed in class

L t HW ill b d d– Lowest HW score will be dropped
– Policy for off-campus students

• Fax or email to SCPD before deadline stated on handout

Midt E (30%)Midterm Exam (30%)

Design Project (20%)
– Design of an amplifier using HSpice (no layout)

W k i t f t– Work in teams of two
– OK to discuss your work with other teams, but no file exchange!

Final Exam (30%)
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Honor Code

Please remember you are bound by the honor code

– We will trust you not to cheat 

– We will try not to tempt you

But if you are found cheating it is very serious

– There is a formal hearingg

– You can be thrown out of Stanford

Save yourself a huge hassle and be honest

For more info
– http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/pdf/honorcode.pdf
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Chapter 2
Bipolar Junction Transistorsp

B. Murmann

Stanford University

Reading Material: Sections 1.1, 1.2, 1.3, 1.4, 2.5, 2.6, 2.7, 2.11, 2.12

History

W. Brinkman, D. Haggan, and W. Troutman, “A history of the invention 
of the transistor and where it will lead us,” IEEE J. Solid-State Circuits, 
vol. 32, no. 12, pp. 1858-1865, Dec. 1997. 

Bardeen, Brattain, and Shockley, 1947

W Shockley M Sparks and G K Teal “P N junctionW. Shockley, M. Sparks, and G. K. Teal, P-N junction 
transistors,” Phys. Rev. 83, pp. 151–162, Jul. 1951.
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Conceptual View of an NPN Bipolar Transistor (Active Mode)

Device acts as a voltage 
controlled current sourceq/kT

VBE

eI ∝
– VBE controls IC

The base-emitter junction is 
forward biased and the base-

q
C eI ∝

forward biased and the base
collector junction is reverse 
biased

The device is built such thatp

n-
IB << IC

VCE

C

B

– The base region is very thin

– The emitter doping is much 
higher than the base doping

n+
VBE

CE

E

– The collector doping is much 
lower than the base doping
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Outline of Discussion

In order to understand the operation principle of a BJT, we will look at

– The properties of a forward biased pn+ junction

– The properties of a reverse biased pn- junction

– And the idea of combining the two junctions such that they are joined 
by a very thin (p-type) base region

The treatment in the following slides is meant to be short and qualitative

– See any solid-state physics text for a more rigorous treatment 
(involving band diagrams, etc.)
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pn+ Junction in Equilibrium (No Bias Applied)

D0n ion)concentrat (Donor   Nn ≅

A

2
i

0p

2
i

0p

A0p

N

n

p

n
n

ion)concentrat (Acceptor   Np

≅=

≅

D

2
i

0n

2
i

0n N

n

n

n
p ≅=

nn Concentration of electrons on n side (majority carriers)
pn Concentration of holes on n side (minority carriers)
np Concentration of electrons on p side (minority carriers)p p ( y )
pp Concentration of holes on p side (majority carriers)

The subscript “0” in the carrier concentrations
denotes equilibrium (no bias applied) 
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Built-in Potential

The built in potential sets up an electric field that opposes the diffusion of 
mobile holes and electrons across the junction

dp

q

kT
V

n

NN
lnV

n

n
lnV

p

p
lnV

)(Diffusion     
dx

dp
qDpEq     )Drift(

T2
i

DA
T

0p

0n
T

0n

0p
T0

pp

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=ψ⇒

=μ
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pn+ Junction with Forward Bias (1)

Depletion region narrows, diffusion processes are no longer balanced byDepletion region narrows, diffusion processes are no longer balanced by 
electrostatic force

At the edge of the depletion region (x=0), the concentration of minority 
carriers [np(0)] can be computed as followscarriers [np(0)] can be computed as follows

BE BE BE

T T T

0

T

V V V2
V V Vn D D i

0 BE T T p p0
p p AV

n N N n
V V ln V ln n (0) e n e e

n (0) n (0) N
e

ψ

⎛ ⎞ ⎛ ⎞
ψ − = ≅ ∴ = ⋅ = ≅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

B. Murmann EE214 Winter 2010-11 – Chapter 2 7

T
p p Ve⎝ ⎠ ⎝ ⎠

pn+ Junction with Forward Bias (2)

Th lt th i lid h th t f d bi i iThe result on the previous slide shows that forward biasing increases 
the concentration of electrons at the “right” edge of the depletion region 
by a factor of exp(VBE/VT)

Th h ld f h l t th “l ft” d f th d l ti iThe same holds for holes at the “left” edge of the depletion region

T

BE

T

BE

V

V

D

2
iV

V

0nn e
N

n
ep)0(p ⋅≅⋅=

Since ND >> NA, it follows that pn(0) << np(0), i.e. the concentration of 
minority carriers is much larger at the lightly doped edge

Since there must be charge neutrality in theSince there must be charge neutrality in the 
regions outside the depletion region, the 
concentration of the majority carriers at the 
edge of the depletion region must also increase

− However, this increase is negligible when 
np(0) << pp ≅ NA  (or pn(0) << nn ≅ ND)

− These conditions are called “low-level 
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What Happens with the Injected Minority Carriers?

Th i ld “lik ” t diff f th i t th t l i b tThe carriers would “like” to diffuse further into the neutral regions, but 
quickly fall victim to recombination

The number of minority carriers decays exponentially, and drops to 1/e 
f th t th ll d diff i l th (L L th d f i )of the at the so-called diffusion length (Lp or Ln, on the order of microns)

In each region, there are now two types of currents

− Diffusion of injected minority carriers due to non-zero dnp/dx (or dpn/dx)j y p ( pn )
− Majority carrier currents for recombination

Total Currentn+ p

Jn

Jn

Jp

Jp

Electron diffusion current ( dnp/dx)

Hole current (recombination)

B. Murmann EE214 Winter 2010-11 – Chapter 2 9

Summary – Forward Biased pn+ junction

Lots of electrons being injected into the p-region, not all that many holes 
get injected into the n+ region

– The heavier n-side doping, the more pronounced this imbalance 
becomes

The electrons injected in the p region cause a diffusion current that 
d i th di ti d t bi tidecays in the x-direction due to recombination

The recombination necessitates a flow of holes to maintain charge 
neutrality; as the diffusion current decays, the hole current increases, 
i ldi t t t d it l th d iyielding a constant current density along the device

Near the edge of the depletion region, the electron diffusion current 
dominates over the hole current that supplies carriers for recombination

– This is a very important aspect that we will come back to
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Reverse Biased pn- Junction 

Reverse bias increases the 
width of the depletion 
region and increases the g
electric field

Depletion region extends 
mostly into n- side

Any electron that would 
“somehow” make it into the 
depletion region will be 

E

swept through, into the n-
region

– Due to electric field 
Text, p.2

e-
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Bipolar Junction Transistor – Main Idea

J

Total Currentn+ p

Jn

Jn

Jp

Jp

Electron diffusion current ( dnp/dx)

Hole current (recombination)

“cut here”

Make the p-region of the pn+ junction very thin

Attach an n- region that will “collect” and sweep across most of the g p
electrons before there is a significant amount of recombination
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Complete Picture

n+ p n-

Text, p. 9

Straight line because base is thin; negligible recombination
(“short base” electron profile)
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( short base  electron profile)

BJT Currents

http://en.wikipedia.org/wiki/Bipolar junction transistor

Primary current is due to electrons captured by the collector

T ( d i d) b t t

p p g p _j _

Two (undesired) base current components

– Hole injection into emitter ( 0 for infinite emitter doping)

– Recombination in the base ( 0 for base width approaching zero)
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First-Order Collector Current Expression

Current densityp p
n n n

B

dn (x) n (0)
J qD qD

dx W
= ≅ −

A is the cross-sectional area 
WB is the base width

Result from slide 7
BE

T

p
C n

B

V2
Vi

n (0)
I qAD

W

n
n (0) e

≅

Result from slide 7T

BE

T

p
A

V2
Vn i

C
B A

n (0) e
N

qAD n
I e

W N
∴ ≅

B A

BEV 2
n iqAD n

ITV
C SI I e∴ ≅

n i
S

B A

q
I

W N
=
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Base Current

B B1 B2I I I= + where  IB1 = Recombination in the base
IB2 = Injection into the emitter  

I f ll f di idi th i it i h i th b (Q ) b itIB1 follows from dividing the minority carrier charge in the base (Qe) by its 
“lifetime” (τB)

BE

T

V
2p B Ve B i

B1

1
n (0)W qAQ W qAn12I e

2 N
= = =B1

b b b A2 Nτ τ τ

IB2 depends on the gradient of minority carriers (holes) in the emitter.  For a 
“long” emitter (all minority carriers recombine)long  emitter (all minority carriers recombine)

BE BE

pT T

xV V
2 2

L pV Vn i i
B2 p p

qADdp (x) n nd
I qAD qAD e e e

dx dx N L N

−⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − = − =⎢ ⎥⎜ ⎟⎜ ⎟

p p
D p Dx 0

x 0

dx dx N L N=
=

⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

In modern narrow-base transistors IB2 >> IB1.
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Terminal Currents and Definition of αF, βF

( )E C BI I I= − +

Text, p. 9

( )E C B

C
F

B

I
    (ideally infinite)

I

I

β

β

Th b i t “F” i di t th t th d i i d t t i th

( )
C F

F
E F

I
=    (ideally one)

I 1

βα
− + β

The subscript “F” indicates that the device is assumed to operate in the 
forward active region (BE junction forward biased, BC reverse biased, as 
assumed so far)

– More on other operating regions later
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More on other operating regions later…

Basic Transistor Model

Text, p. 13

Simplified model; very useful for bias point calculationsSimplified model; very useful for bias point calculations
(assuming e.g. VBE(on) = 0.8V)
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Basewidth Modulation (1)

Side note:
BJT inherently has better (higher) 
ro than MOS since lower doping 
on n-side (collector) has most of 
the depletion region inside the 
collector

Text, p. 14

collector

BE

T

V2
VC Cn i B

CE CE B CE A B CE

I IqAD n dW
e

V V W (V ) N W dV

⎛ ⎞∂ ∂= = −⎜ ⎟
⎜ ⎟∂ ∂ ⋅⎝ ⎠

(See eq. (1.18) for dWB/dVCE term)
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Early Voltage (VA)

Text, p. 15

I WC B
A C

C B

CECE

I W
V const.  (independent of I )

I dW

dVV

= − =∂
∂

BE

T

V

V CE
C S

A

V
I I e 1

V

⎛ ⎞
≅ +⎜ ⎟

⎝ ⎠
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Small-Signal Model

BEV
C CVTdI IdC CVT

m S
BE BE T

dI Id
g I e

dV dV V
= = =

CId
⎛ ⎞
⎜ ⎟

F CB m
F

BE BE F T F

d
IdI g1 1

g    (assuming const.)
r dV dV Vπ
π

⎜ ⎟β⎝ ⎠= = = = = β =
β β

BE

T

V

VC CE C
o S

0 CE CE A A

dI V I1 d
g I e 1

r dV dV V V

⎡ ⎤⎛ ⎞⎢ ⎥= = = + ≅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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Intrinsic Gain

C A A
m o T

I V V
g r V 26mV (at room temperature)≅ ⋅ = ≅

In the EE214 technology the SiGe npn device has VA = 90V thus

m o T
T C T

g r V 26mV    (at room temperature)
V I V

≅ ≅

In the EE214 technology, the SiGe npn device has VA  90V, thus

m o
90V

g r 3460
26mV

≅ =
26mV

Much larger than the intrinsic gain of typical MOSFET devices
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Outline – Model Extensions and Technology

Complete picture of BJT operating regions

Dependence of βF on operating conditionsp βF p g

Device capacitances and resistances

Technology

J ti i l t d– Junction isolated

– Oxide isolated with polysilicon emitter

– Heterojunction bipolar (SiGe base)

– BiCMOS

– Complementary bipolar
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BJT Operating Regions

Discussed so far
BE = forward biasedBE  forward biased
CE = reverse biased

Text, p. 17
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Carrier Concentrations in Saturation

Text, p. 16

Base-Collector junction is forward biased

np(WB), and therefore also IC, strongly depend on VBC, VCE

VCE(sat) is the voltage at which the devices enters saturation

– The difference between the two junction voltages, small ~0.05…0.3V
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The difference between the two junction voltages, small 0.05…0.3V

Gummel Plot

A G l l t i i l l t f I d I V (li l )A Gummel plot is a semi-log plot of IC and IB versus VBE (linear scale)

It reveals the regions for which high βF is maintained (region II below)

What happens in regions I and III?pp g

Text, p. 24
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βF Fall-Off

Region III (high current density)

– Injected electron charge in base region nears the level of doping 
(“high level injection”)(“high level injection”)

– For this case, it can be shown that the injected carrier concentration 
rises with a smaller exponent (cut in half) and therefore

BE

T

V1

2 V
C SI I e=

Region I (low current density)

– There exists excess base current due to (unwanted) recombination in 
the depletion layer of the base-emitter junction

– This current becomes significant at low current densities and sets a 
minimum for IB
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Current Profile of a Forward Biased Diode Revisited

Extra current due to

Recombination

recombination (small) Total current
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βF vs. IC and Temperature

Text, p. 24

7000 ppm / C≅ °7000 ppm / C≅
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Junction Isolated npn Transistor

Text, p. 97
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Device Capacitances and Resistances

Big mess!

First focus on intrinsic elements
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Charge Storage

I th i t i i t i t h i t d i th j ti itIn the intrinsic transistor, charge is stored in the junction capacitances, 
Cje and Cjc = Cμ, and as minority carriers in the base and emitter

Both minority carrier charge injected into the base and into the emitter, 
ti l t (V /V )are proportional to exp(VBE/VT)

– But the charge in the base is much larger, as discussed previously

Base terminal must supply charge for neutrality 
Voltage dependent charge capacitance (Cb)

ΔVBE causes change in injected charge

Text, p. 26
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Base Charging Capacitance

e e C
b F m

Q Q I
C g

V I V

∂ ∂ ∂= = τ
∂ ∂ ∂b F m

BE C BE

n pe
F B C

V I V

qAD n (0)Q 1
n (0)W qA I

∂ ∂ ∂

∂ ∂ ⎛ ⎞τ = = =⎜ ⎟F p B C
C C B

2 2
B B

F C
C n n

n (0)W qA I
I I 2 W

W W1 1
I

I 2 D 2 D

τ ⎜ ⎟∂ ∂ ⎝ ⎠

⎛ ⎞∂τ = =⎜ ⎟⎜ ⎟∂ ⎝ ⎠

τ is called the base transit time (in forward direction)

C n n⎝ ⎠

τF is called the base transit time (in forward direction)

Typical values for high-speed transistors are on the order of 1…100ps 
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Junction Capacitance

j0
j n

D

C
C

V
1

=
⎛ ⎞

−⎜ ⎟ψ⎝ ⎠

j02C

0ψ⎝ ⎠

Text, p. 6
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Small-Signal Model with Intrinsic Capacitances

Cμ
B C

rπ Cπ gmv1 ro
–
v1

E

b je b je0C C C C 2Cπ = + = +

jc0
jc n

CB

0c

C
C C

V
1

μ = =
⎛ ⎞

+⎜ ⎟ψ⎝ ⎠0cψ⎝ ⎠
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Model with Additional Parasitics

Neglect 

Text, p. 32

Range of numbers

re ~1-3Ω
r 50 500Ω Values at high end of these ranges may have largerb ~ 50-500Ω
rc ~ 20-500Ω
CCS ~ 3-200fF

Values at high end of these ranges may have large 
impact on performance Try to minimize through 
advanced processing & technology
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BJT in Advanced Technology

Text, p. 107

Oxide isolated

Self-aligned structure (base and emitter align automatically)

Text, p. 107

Very thin base (~100nm or less) through ion implantation

Reduced breakdown voltages compared to more traditional structures
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SiGe Heterojunction Bipolar Technology

A heterojunction is a pn junction formed with different materials for the n 
and p regions

Germanium is added to the base of a silicon bipolar transistor to create a 
heterojunction bipolar transistor (HBT)

– Base formed by growing a thin epitaxial layer of SiGe

– Results in a lower bandgap (and higher intrinsic carrier 
concentration) in the base than emitter

In “band diagram speak” the bandgap mismatch increases the barrier to 
the injection of holes (in an npn transistor) from the base into the emitter

One way to enumerate the benefits of a SiGe base is to look at the 
current gain expression
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HBT Current Gain

Intrinsic carrier concentration in the SiGe base (niB) is larger than 
intrinsic carrier concentration in the Si emitter (niE) 

2
n p0 n p0 n iB

2
n D pB B B A iB

F 2 2 2 2

qAD n qAD n qAD n
D N LW W W N n

D N W
β = ≅ = = ⋅F 2 2 2 2

p A Bp0 B p iE p iE p iE iE

b p D p D p D

D N Wn W qA qAD n qAD n qAD n n1
2 L N L N L N

β

+
τ

Added degree of 
freedom for HBT

Base doping (NA) can be increased while maintaining same βF

− Can reduce base width without affecting rb

− Larger ro due to decrease in base width modulation
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SiGe npn HBT

Device Parameter Comparison

Transistor with 0.7μm2

Emitter Area

300
2

= 0.22μm x 3.2μm

90
3.2x10-17A
1pA
2.0V
5 5V

3x smaller device
5x bigger IS

5.5V
3.3V
0.56ps
10ps
25Ω
60

18x smaller τF

16x smaller rb
60Ω
2.5Ω
6.26fF
0.8V
0.4
3.42fF
0.6V
0.33
3.0fF
0 6V

Oxide isolation vs. 
Junction isolation
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BiCMOS Technology

CMOS

Older BJTs used poly Si as “diffusion source” for 
emitter doping Advanced (state-of-the-art) BJTs

Text, p. 154

emitter doping.  Advanced (state-of-the-art) BJTs  
use epitaxial growth of both the SiGe base and 
Si emitter regions
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Advanced Complementary Bipolar Technology
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Cross Section

[Texas Instruments]
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Figures of Merit for BJTs

Product of current gain and Early voltage, β·VA

Product of transit frequency and breakdown voltage, fT·BVCEOq y g , T CEO

Maximum frequency of oscillation, fmax

– More in EE314

T it ( t iti ) f fTransit (or transition) frequency, fT
– Formally defined as the frequency for which the current gain of the 

device falls to unity

Important to keep in mind that the basic device model may fall apart– Important to keep in mind that the basic device model may fall apart 
altogether at this frequency

• Lumped device models tend to be OK up to ~fT/5

– Therefore f should be viewed as an extrapolated parameter or– Therefore, fT should be viewed as an extrapolated parameter, or 
simply as a proxy for device transconductance per capacitance 
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Transit Frequency Calculation (1)

Text, p. 35

Ignore for simplicity

(AC circuit; DC biasing not shown) ( )1 i o m 1
r

v i i g v
1 r s C C

π

π π μ
= =

+ +

( ) ( )
o m

m F
i

i g r 1
g r for

i 1 r j C C r C C
π

π β
π π μ π π μ

= ≅ = β ω << = ω
+ ω + +( ) ( )

( )

i

o m

i

j

i g
for

i j C C

π π μ π π μ

β
π μ

≅ ω >>ω
ω +
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Transit Frequency Calculation (2)

|io/ii|

( )
mg

C Cπ μω +
(asymptote)

Text, p. 36

≅ βF
Note that rπ “matters” only for 
frequencies up to ωβ = ωT/βF

( )
m m

T
T

g g
1

C CC C π μπ μ
= ⇒ ω =

+ω +( )
je jeb

T F
T m m m m m

C CC CC1

g g g g g
μ μτ = = + + = τ + +

ω
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fT versus IC plot

“peak fT”

Text, p. 37

High level 
injection, τF

increases

Cje and Cμ
dominate

The particular current value at which fT is maximized depends on the 
particular parameters of a technology and the emitter area of the BJT

gm = IC/VT increases
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particular parameters of a technology and the emitter area of the BJT

EE214 Technology

Assumed to be similar to a 0 18-μm BiCMOS technology featuring aAssumed to be similar to a 0.18 μm BiCMOS technology featuring a 
high-performance SiGe npn device

– VCC = 2.5V (BJT), VDD=1.8V (MOS)

See e gSee e.g.

– Wada et al., BCTM 2002

– Joseph et al., BCTM 2001

IBM 7HP documentation– IBM 7HP documentation
• https://www-01.ibm.com/chips/techlib/techlib.nsf/products/BiCMOS_7HP)

NPN PMOS/NMOS Poly resistor
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Cross Section of npn Device
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EE214 npn Unit Device

A technology typically comes with an optimized 
layout for a unit device of a certain size

Great care is then taken to extract a Spice modelGreat care is then taken to extract a Spice model 
for this particular layout using measured data

Spice model (usr/class/ee214/hspice/ee214_hspice.sp)

E

AE = 0.22μm x 3.2μm

.model npn214 npn

+ level=1 tref=25 is=.032f bf=300 br=2 vaf=90

+ cje=6.26f vje=.8 mje=.4 cjc=3.42f vjc=.6 mjc=.33

+ re=2 5 rb=25 rc=60 tf=563f tr=10p

B

E

+ re=2.5 rb=25 rc=60 tf=563f tr=10p

+ xtf=200 itf=80m ikf=12m ikr=10.5m nkf=0.9 

Instantiation in a circuit netlist

C

*   C  B  E

q1  n1 n2 n3  npn214
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BJT Model Parameters

For more info consult the HSpice documentation under

/afs/ir.stanford.edu/class/ee/synopsys/B-2008.09-SP1/hspice/docs_help

PDF files:
home.pdf  hspice_cmdref.pdf  hspice_integ.pdf  hspice_relnote.pdf  hspice_sa.pdf
hspice_devmod.pdf  hspice_mosmod.pdf  hspice_rf.pdf  hspice_si.pdf
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Adding Multiple Devices in Parallel

For the unit device, there exists a practical 
upper bound for the collector current

D t th t f hi h l l i j ti– Due to the onset of high level injection

This means that the unit device can only 
deliver a certain maximum gmE E E

If more gm is needed, “m” unit devices can 
be connected in parallel

Instantiation in a circuit netlist (m=3)C

B

C

B

C

B

( )

*   C  B  E

q1  n1 n2 n3  npn214  3
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npn Unit Device Characterization

* ee214 npn device characterization

*   C B E

q1  c b 0  npn214

Vc c 0    1.25 

ib  0 b    1u

.op

.dc ib dec 10 10f 100u

.probe ib(q1) ic(q1) ie(q1)

.probe gm   =  par('gm(q1)')

b (' 0( 1)')

CC

.probe go   =  par('g0(q1)')

.probe cpi =  par('cap_be(q1)')

.probe cmu =  par('cap_ibc(q1)')

.probe beta =  par('beta(q1)')

.options dccap post brief

.inc '/usr/class/ee214/hspice/ee214_hspice.sp'

.end
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DC Operating Point Output

**** bipolar junction transistors

element  0:q1      

model    0:npn214  

ib       999.9996n

ic 288.5105u

vbe 803.4402m

vce 1.2500 

vbc -446.5598m

vs -1.2327 

power    361.4415u

betad 288.5106 

gm        10.2746m

rpi 26 8737krpi 26.8737k

rx 25.0000 

ro 313.4350k

cpi 14.6086f

cmu 2 8621fcmu 2.8621f

cbx        0.     

ccs 0.     

betaac 276.1163 

ft        93.5999g
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Gummel Plot
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Transit Frequency
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Intrinsic Gain

4000
ee215 npn
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B. Murmann EE214 Winter 2010-11 – Chapter 2 57

gm/IC

Important to realize that gm will not be exactly equal to IC/VT at high currents

B. Murmann EE214 Winter 2010-11 – Chapter 2 58



I-V Curves

300

NPN (1x, A
E
=0.7μm2, I

B
=0.2, 0.4, ..., 1μA

800

NMOS 2/0.18, V
GS

=0.6, 0.8, ..., 1.4V

200

250

500

600

700

100

150

I C
 [ μ

A
]

300

400

500

I D
 [ μ

A
]

0

50

0

100

200

0 0.5 1 1.5 2 2.5
0

V
CE

 [V]
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0

V
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Passive Components (1)

Joseph et al., BCTM 2001
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Passive Components (2)

Diffusion Resistor MIM Capacitor

Text, p. 116
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Chapter 3

MOS Transistor Modeling

G /I based DesignGm/ID-based Design

B. Murmann

Stanford University

Reading Material: Sections 1.5, 1.6, 1.7, 1.8 

Basic MOSFET Operation (NMOS)

Text, p.41, p

How to calculate drain current (ID) current as a function of VGS, VDS?

B. Murmann EE214 Winter 2010-11 – Chapter 3 2



Simplifying Assumptions

1) Current is controlled by the mobile charge in the channel. This is a very ) y g y
good approximation.

2) "Gradual Channel Assumption" - The vertical field sets channel charge, 
so we can approximate the available mobile charge through the voltage 
diff b t th t d th h ldifference between the gate and the channel

3) The last and worst assumption (we will fix it later) is that the carrier 
velocity is proportional to lateral field (ν = μE). This is equivalent to Ohm's 
law: velocity (current) is proportional to E-field (voltage)

B. Murmann EE214 Winter 2010-11 – Chapter 3 3

law: velocity (current) is proportional to E field (voltage)

Derivation of First Order IV Characteristics (1)

[ ]n ox GS tQ (y) C V V(y) V= − −

D nI Q v W= ⋅ ⋅

v E= μ ⋅

[ ]D ox GS tI C V V(y) V E W= − − ⋅μ ⋅ ⋅

VW ⎡ ⎤( ) DS
D ox GS t DS

VW
I C V V V

L 2

⎡ ⎤
= μ − − ⋅⎢ ⎥

⎣ ⎦
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Pinch-Off

VGS + – V GS + 

+ V D S – 

N N 

y 

Q    ( y ) ,    V ( y ) n 

Voltage at the end of 
channel is fixed at VGS-Vt

Effective voltage across channel is VGS-Vt

y  =  0 y   =   L 
channel is fixed at VGS Vt

– At the point where channel charge goes to zero, there is a high 
lateral field that sweeps the carriers to the drain

• Recall that electrons are minority carriers in the p-region of a pn 
j ti th b i t t d th ijunction; they are being swept toward the n-region

– The extra drain voltage drops across depletion region

To first order, the current becomes independent of VDS
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Plot of Output Characteristic

Saturation

D

Triode Region Saturation
Region

I D

V V

VDS

VGS-Vt

( ) DSVW
I C V V V

⎡ ⎤
⎢ ⎥( ) DS

D ox GS t DS

VW
I C V V V

L 2

⎡ ⎤
= μ − − ⋅⎢ ⎥

⎣ ⎦
Triode Region:

Saturation Region: ( ) GS t(V V )W
I C V V (V V )

−⎡ ⎤= μ ⋅⎢ ⎥Saturation Region: ( )D ox GS t GS t

2
ox GS t

I C V V (V V )
L 2

1 W
C (V V )

2 L

= μ − − ⋅ −⎢ ⎥⎣ ⎦

= μ −
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Plot of Transfer Characteristic (in Saturation)

I D
VGS

Vt

VOV

( )D
m ox GS t ox OV

GS

dI W W
g C V V C V

dV L L
= = μ − = μ

GS

D
D ox

OV

2IW
2I C

L V
= μ =
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Output Characteristic with “Channel Length Modulation”

Triode Region
Saturation

Region

go= dID/dVDS ≠ 0

I D

VDS

VGS-Vt

2D
o ox GS t ds

DS DS

dI d 1 W
g C (V V ) (1 V )

dV dV 2 L
⎡ ⎤= = μ − + λ⎢ ⎥⎣ ⎦

2 D
ox GS t D

DS

I1 W
C (V V ) I

2 L 1 V

λ= μ − ⋅ λ = ≅ λ
+ λ
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Capacitances

Text, p. 54
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Gate Capacitance Summary

Subthreshold Triode Saturation

C C ½ WLC + C 2/ WLC + CCgs Col ½ WLCox+ Col
2/3 WLCox + Col

Cgd Col ½ WLCox+Col Col

Cgb 0 0
1

js ox

1 1

C WLC

−
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠
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Capacitance Equations and Parameters

Parameter

EE 214 Technology 
(0.18μm)

NMOS PMOS

Cox 8.42 fF/μm2 8.42 fF/μm2

C’ 0 491 fF/μm 0 657 fF/μm

ox
ox

ox

C
t

ε=

'C WC= C ol 0.491 fF/μm 0.657 fF/μm

CJ 0.965 fF/μm2 1.19 fF/μm2

C 0 233 fF/μm 0 192 fF/μm
J JSW

db MJ MJSW

AD C PD C
C

⋅ ⋅
= +

ol olC WC=

CJSW 0.233 fF/μm 0.192 fF/μm

PB 0.8 V 0.8 V

MJ 0.38 0.40

db MJ MJSW

DB DBV V
1 1

PB PB
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

AD WL
MJSW 0.13 0.33

LDIF 0.64 μm 0.64 μm

diffAD WL=

diffPD W 2L= +

B. Murmann EE214 Winter 2010-11 – Chapter 3 11

Complete Small-Signal Model

gd

ogs m gsgs

sbgb db

bsub (Cj0 = 0.2 fF/μm2, “dwell” model)

gg gs gb gdC C C C+ + dd db gdC C C+
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What are μCox (“KP”) and λ (“LAMBDA”) for our Technology?

MODEL nmos214 nmos.MODEL nmos214 nmos
+acm = 3              hdif = 0.32e-6        LEVEL   = 49

+VERSION = 3.1            TNOM    = 27             TOX     = 4.1E-9

+XJ      = 1E-7           NCH     = 2.3549E17      VTH0    = 0.3618397

+K1      = 0.5916053      K2      = 3.225139E-3    K3      = 1E-3

+K3B     = 2.3938862      W0      = 1E-7           NLX     = 1.776268E-7

+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 The HSpice model for an NMOS 
+DVT0    = 1.3127368      DVT1    = 0.3876801      DVT2    = 0.0238708

+U0      = 256.74093      UA      = -1.585658E-9   UB      = 2.528203E-18

+UC      = 5.182125E-11   VSAT    = 1.003268E5     A0      = 1.981392

+AGS     = 0.4347252      B0      = 4.989266E-7    B1      = 5E-6

+KETA    = -9.888408E-3   A1      = 6.164533E-4    A2      = 0.9388917

+RDSW    = 128.705483     PRWG    = 0.5            PRWB    = -0.2

+WR      = 1              WINT    = 0              LINT    = 1.617316E-8

p
device in our technology is shown 
to the left

BSIM 3v3 model
+XL      = 0              XW      = -1E-8          DWG     = -5.383413E-9

+DWB     = 9.111767E-9    VOFF    = -0.0854824     NFACTOR = 2.2420572

+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0

+CDSCB   = 0              ETA0    = 2.981159E-3    ETAB    = 9.289544E-6

+DSUB    = 0.0159753      PCLM    = 0.7245546      PDIBLC1 = 0.1568183

+PDIBLC2 = 2.543351E-3    PDIBLCB = -0.1           DROUT   = 0.7445011

+PSCBE1  = 8E10           PSCBE2  = 1.876443E-9    PVAG    = 7.200284E-3

110 parameters

KP and LAMBDA nowhere to be 
found+DELTA   = 0.01           RSH     = 6.6            MOBMOD  = 1

+PRT     = 0              UTE     = -1.5           KT1     = -0.11

+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9

+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4

+WL      = 0              WLN     = 1              WW      = 0

+WWN     = 1              WWL     = 0              LL      = 0

+LLN     = 1              LW      = 0              LWN     = 1

+LWL 0 CAPMOD 2 XPART 1

found…

+LWL     = 0              CAPMOD  = 2              XPART   = 1

+CGDO    = 4.91E-10       CGSO    = 4.91E-10       CGBO    = 1E-12

+CJ      = 9.652028E-4    PB      = 0.8            MJ      = 0.3836899

+CJSW    = 2.326465E-10   PBSW    = 0.8            MJSW    = 0.1253131

+CJSWG   = 3.3E-10        PBSWG   = 0.8            MJSWG   = 0.1253131

+CF      = 0              PVTH0   = -7.714081E-4   PRDSW   = -2.5827257

+PK2     = 9.619963E-4    WKETA   = -1.060423E-4   LKETA   = -5.373522E-3

+PU0 = 4 5760891 PUA = 1 469028E-14 PUB = 1 783193E-23
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+PU0     = 4.5760891      PUA     = 1.469028E 14   PUB     = 1.783193E 23

+PVSAT   = 1.19774E3      PETA0   = 9.968409E-5    PKETA   = -2.51194E-3

+nlev = 3              kf = 0.5e-25

An Attempt to Extract μCox

Bias MOSFET at constant VDS>VOV, sweep VGS and plot μCox estimate

200

250

300

2 ]

 

NMOS 5/0.18
NMOS 20/0.72

D
ox

2
OV

2I
C

W
V

L

μ =

100

150

200

μ nC
ox

 [ μ
A

/V
2

0 0.1 0.2 0.3 0.4 0.5
0

50

 

V
OV

 [V]

The extracted μCox depends on L and VOV and cannot be viewed as a 
constant parameter
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Questions

Which physical effects explain the large deviation from the basic square 
law model?

How can we design with such a device?

– Is there another “simple” equation that describes its behavior?

We will approach the above two questions by performing a systematic, 
simulation-based device characterization

– And discuss the relevant physical phenomena that explain the p y p p
observed behavior 

As a basis for this characterization, we consider three basic figures of 
merit that relate directly to circuit designy g
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Figures of Merit for Device Characterization

Transconductance efficiency

W t l f littl t mg 2

Square Law

– Want large gm, for as little current
as possible

m

D

g

I OV

2

V
=

Transit frequency

– Want large gm, without large Cgg

m

gg

g

C
OV
2

V3

2 L

μ
≅

g gm g gg

Intrinsic gain

gg

g

2 L

2Intrinsic gain

– Want large gm, but no go

m

o

g

g OV

2

V
≅

λ
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Device Characterization

* NMOS characterization

.param gs=0.7

.param dd=1.8

vds     d 0       dc      'dd/2'

vgs     g 0       dc      'gs'

mn d g 0 0   nmos214  L=0.18um  W=5um

.op

.dc gs 0.2V 1V 10mV

.probe ov = par('gs-vth(mn)')

b id (' ( )/i( )')

DD

.probe gm_id = par('gmo(mn)/i(mn)')

.probe ft     = par('1/6.28*gmo(mn)/cggbo(mn)')

.probe gm_gds = par('gmo(mn)/gdso(mn)')

options post brief dccap.options post brief dccap

.inc /usr/class/ee214/hspice/ee214_hspice.sp

.end
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gm/ID Plot
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Observations

Square law prediction is fairly close for VOV > 150mV

Unfortunately gm/ID does not approach infinity for VOV → 0y gm D pp y OV

It also seems that we cannot do better than a BJT, even though the 
square law equation would predict this for 0 < VOV < 2kT/q ≅ 52mV

For further analysis it helps to identify three distinct operating regionsFor further analysis, it helps to identify three distinct operating regions

– Strong inversion: VOV > 150mV

• Deviations due to short channel effects

Subthreshold: V < 0– Subthreshold: VOV < 0 

• Behavior similar to a BJT, gm/ID nearly constant

– Moderate Inversion: 0 < VOV < 150mV

Transition region an interesting mi of the abo e• Transition region, an interesting mix of the above
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Subthreshold Operation

A plot of the device current in our previous simulation

1 10
0

0.6

0.8

A
] 10

-2

10
-1

A
]

0.2

0.4I D
 [m

A

10
-4

10
-3I D

 [m
A

-0.5 0 0.5 1
0

V [V]
-0.5 0 0.5 1

10
-5

V [V]VOV [V] VOV [V]

Questions

– What determines the current when VOV< 0, i.e. VGS< Vt?

Wh t i th d fi iti f V ?

B. Murmann EE214 Winter 2010-11 – Chapter 3 20

– What is the definition of Vt?



Definition of Vt

Vt is defined as the VGS at which the number of electrons at the surface 
equals the number of doping atomsequals the number of doping atoms

Seems somewhat arbitrary, but makes sense in terms of surface charge 
control
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Mobile Charge versus VOV
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Around VGS=Vt (VOV=0), the relationship between mobile charge in the 
channel and gate voltage becomes linear (Qn ~ CoxVOV)

– Exactly what we assumed to derive the long channel model
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Exactly what we assumed to derive the long channel model



Mobile Charge on a Log Scale

O l l th t th bil h b f hOn a log scale, we see that there are mobile charges before we reach 
the threshold voltage 

– Fundamental result of solid-state physics, not short channels
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BJT Similarity

We have
– An NPN sandwich mobile minority carriers in the P regionAn NPN sandwich, mobile minority carriers in the P region

This is a BJT!
– Except that the base potential is here controlled through a capacitive 

divider, and not directly by an electrode

B. Murmann EE214 Winter 2010-11 – Chapter 3 24

, y y



Subthreshold Current

• We know that for a BJT
BE

T

V

V kT
I I e V= ⋅ =C S TI I e V

q
= ⋅ =

• For the MOSFET in subthreshold we have

GS tV V

V

−

TnV
D 0I I e= ⋅

• n is given by the capacitive divider

js ox js

ox ox

C C C
n 1

C C

+
= = +

where Cjs is the depletion layer capacitancewhere Cjs is the depletion layer capacitance 

• In the EE214 technology n ≅ 1.5
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Comparison – NMOS versus NPN

Vt
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Subthreshold Transconductance

D D
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g 1
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Similar to BJT, but unfortunately n (≅1.5) times lower
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Moderate Inversion

I th t iti i b t bth h ld d t i iIn the transition region between subthreshold and strong inversion, we 
have two different current mechanisms

Drift (MOS)              E

dn kT dn
Diffusion (BJT)        D

ν = μ

ν = = μ( )
dx q dx

ν μ

Both current components are always present

– Neither one clearly dominates in moderate inversion

Can show that ratio of drift/diffusion current ~(VGS-Vt)/(kT/q)GS

– MOS equation becomes dominant at several kT/q
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Re-cap

Subthreshold
OperationOperation

Transition to 

?

Strong Inversion

What causes the discrepancy between 2/VOV and 0.18μm NMOS in 
strong inversion?
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strong inversion?

Short Channel Effects

Velocity saturation due to high lateral field

Mobility degradation due to high vertical fieldy g g

Vt dependence on channel length and width

Vt = f(VDS)

ro = f(VDS)

…

We will limit the discussion in EE214 to the first two aspects of the above 
list, with a focus on qualitative understanding
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Velocity Saturation (1)

I th d i ti f th l d l it i d th t th iIn the derivation of the square law model, it is assumed that the carrier 
velocity is proportional to the lateral E-field, v=μE

Unfortunately, the speed of carriers in silicon is limited (vscl ≅ 105 m/s)

– At very high fields (high voltage drop across the conductive channel), 
the carrier velocity saturates

μE

Text, p. 60

d c scl c

c

μE
ν (E)   μE v for E E

E
1

E

v

≅ ≅ = >>
+(approximation)

scl
c

v
                                 for E E

2
= =
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Velocity Saturation (2)

It i i t t t di ti i h i i i th b l tIt is important to distinguish various regions in the above plot

– Low field, the long channel equations still hold

– Moderate field, the long channel equations become somewhat 
inaccurateinaccurate

– Very high field across the conducting channel – the velocity saturates 
completely and becomes essentially constant (vscl)

T t f l f l tt t l t' fi t ti t th E fi ld iTo get some feel for latter two cases, let's first estimate the E field using 
simple long channel physics

In saturation, the lateral field across the channel is 

6OV V 200mV V
E   e.g. 1.11 10

L 0.18 m m
= = ⋅

μ
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Field Estimates

In our 0.18μm technology, we have for an NMOS device

5 m
10v V

Therefore

6scl
c 2

 v VsE    6.7 10
cm m

150
Vs

= ≅ = ⋅
μ

6

6c

V
1.11 10E m 0.16

VE 6.7 10
m

⋅
= ≅

⋅

Therefore

m

This means that for VOV on the order of 0.2V, the carrier velocity is 
somewhat reduced, but the impairment is relatively small, p y

The situation changes when much larger VOV are applied, e.g. as the 
case in digital circuits
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Short Channel ID Equation

A simple equation that captures the moderate deviation from the long 
channel drain current can be written as (see text, p. 62)

2
D ox OV

OV

c

1 W 1
I C V

2 L V
1

E L

≅ μ ⋅
⎛ ⎞

+⎜ ⎟
⎝ ⎠

( )
c OV

ox OV
c OV

E L V1 W
C V

2 L E L V

⋅≅ μ ⋅
+

Think of this as a “parallel combination"

6 V
E L 6 7 10 0 18 m 1 2V= ⋅ ⋅ μ =Minimum-length NMOS:

c

6
c

E L 6.7 10 0.18 m 1.2V
m

V
E L 16.75 10 0.18 m 3V

m

= ⋅ ⋅ μ =

= ⋅ ⋅ μ =

Minimum length NMOS:

Minimum-length PMOS:
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Modified gm/ID Expression

Assuming VOV << EcL, we can show that (see text, pp. 63-64)

mg 2 1m

D OV OV

c

g

I V V
1

E L

≅ ⋅
⎛ ⎞

+⎜ ⎟
⎝ ⎠

E f NMOS d i ith V 200 V

2 1 2
0 86

0 2
≅ ⋅ = ⋅

⎛ ⎞
mg

.
I V V

E.g. for an NMOS device with VOV=200mV

0 2
1

1 2
⎛ ⎞+⎜ ⎟
⎝ ⎠

D OV OV.I V V
.

Means that the square law model in strong inversion (at VOV ≅ 200mV) q g ( OV )
should be off by about 15%

This prediction agrees well with the simulation data 
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Mobility Degradation due to Vertical Field

In MOS technology, the oxide thickness has been continuously scaled 
down with feature size

– ~6.5nm in 0.35μm, ~4nm in 0.18μm, ~1.8nm in 90nm CMOS

As a result, the vertical electric field in the device increases and tries to 
pull the carriers closer to the "dirty" silicon surface

– Imperfections impede movement and thus mobility

This effect can be included by replacing the mobility term with an 
"effective mobility"

( )eff
OV

1
0.1...0.4

1 V V

μμ ≅ θ =
+ θ

Yet another "fudge factor"

– Possible to lump with EcL parameter, if desired
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Transit Frequency Plot

1 mg
f

1

2
m

T
gg

g
f

C
=

π
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Observations - fT

Again the square-law model doesn't do a very good job

– Large fT discrepancy in subthreshold operation and in strong 
inversion (large VOV)

The reasons for these discrepancies are exactly the same as the ones 
we came across when looking at gm/ID
– Bipolar action in subthreshold operation and moderate inversion

– Short channel effects at large VOV

• Less gm, hence lower gm/Cgg

Same conclusion: we won't be able to make good predictions with a 
simple square law relationship  
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gm/ID· fT Plot

m
T 2

D

g 1 3
f

I 2 L

μ⋅ ≅
π

Square Law:

Sweet spot (?)

Short channel 
effectsSquare law predicts effectsSquare law predicts 

too much gm/ID
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Intrinsic Gain Plot

Impossible to approximate with the “λ” model equation!
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Gradual Onset of 1/gds

VDS = VOV
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Gradual Onset of 1/gds (Zoom)

VDS = VOV VDS = 2/(g /ID)
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VDS  VOV VDS  2/(gm/ID)



“VDSsat” Estimate Based on gm/ID

“VDSsat” defined 
(arbitrarily) as VDS at 
which 1/gds is equal gds q
to ½ of the value at 
VDS = VDD/2 = 0.9V 

≅4kT/q

V* = 2/(g /I ) is a reasonable estimate of “V ”
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V* = 2/(gm/ID) is a reasonable estimate of VDSsat

Observations – Intrinsic Gain

Device shows a rather gradual transition from triode to saturation

– Square law predicts an abrupt change from small to large intrinsic 
gain at VDS = VOV

– V* = 2/(gm/ID) provides a reasonable estimate for the minimum VDS

that is needed to extract gain from a device

T i ll t t t t l t 100 V b thi l i ti l• Typically want to stay at least 100mV above this value in practical 
designs 

The physics that govern the behavior of ro=1/gds are complex

– Channel length modulation

– Drain induced barrier lowering (DIBL)

– Substrate current induced body effect (SCBE)

• Not present in all technologies and/or PMOS devices

If you are interested in more details, please refer to EE316 or similar
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The Challenge

Square-law model is inadequate for design in fine-line CMOS

– But simulation models (BSIM, PSP, …) are too complex for hand-
calculations

This issue tends to drive many designers toward a “spice monkey” 
design methodology

– No hand calculations, iterate in spice until the circuit “somehow” 
t th ifi timeets the specifications

– Typically results in sub-optimal designs

Our goal

– Maintain a systematic design 
methodology in absence of a set of 
compact MOSFET equations

[Courtesy Isaac Martinez]

Strategy

– Design using look-up tables or charts
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[ y ]

The Problem
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The Solution

Use pre-computed spice data in hand calculations 
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Technology Characterization for Design

Pl t th f ll i t f bl f /I dPlot the following parameters for a reasonable range of gm/ID and
channel lengths

– Transit frequency (fT)

Intrinsic gain (g /g )– Intrinsic gain (gm/gds)

– Current density (ID/W)

In addition, may want to tabulate relative estimates of extrinsic 
itcapacitances

– Cgd/Cgg and Cdd/Cgg

Parameters are (to first order) independent of device width

– Enables "normalized design" and re-use of charts

– Somewhat similar to filter design procedure using normalized 
coefficient tables

Do hand calculations using the generated technology data

– Can use Matlab functions to do table-look-up on pre-computed data
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NMOS Simulation Data
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PMOS Simulation Data
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Transit Frequency Chart

L=0.18um

L=0.5um
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Intrinsic Gain Chart

L=0.5um

L 0 18L=0.18um
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Current Density Chart

L=0.18um

L 0 5L=0.5um
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Lookup Functions in Matlab

% Set up path and load simulation data (for VDS=0.9V)
addpath('/usr/class/ee214/matlab');
load techchar.mat;

% Lookup fT for NMOS, L=0.18um, at gm/ID=10S/A
lookup_ft(tech, 'n', 0.18e-6, 10)
ans =   2.2777e+10

% Lookup gm/ID for NMOS, L=0.18um, at fT=20GHz
lookup_gmid(tech, 'n', 0.18e-6, 20e9)
ans =   11.5367

% Lookup ID/W for NMOS, L=0.18um, at gm/ID=10S/A
lookup_idw(tech, 'n', 0.18e-6, 10)
ans =   29.3281
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VDS Dependence

VDS dependence 
is relatively weak
Typically OK to yp y
work with data 
generated for 
VDD/2
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Extrinsic Capacitances (1)
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Extrinsic Capacitances (2)
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Extrinsic Capacitances (3)
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Generic Design Flow

1) Determine gm (from design objectives)

2) Pick L2) Pick L

Short channel high fT (high speed)

Long channel high intrinsic gain

3) Pick g /I (or f )3) Pick gm/ID (or fT)

Large gm/ID low power, large signal swing (low VDSsat)

Small gm/ID high fT (high speed)

4) Determine I (from g and g /I )4) Determine ID (from gm and gm/ID)

5) Determine W (from ID/W, current density chart)

Many other possibilities exist (depending on circuit specifics, design 
constraints and objectives)
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Basic Design Example

Given specifications and objectives

– 0 18μm technology0.18μm technology

– DC gain = -4

– RL=1k, CL=50fF, Ri=10k

– Maximize bandwidth whileMaximize bandwidth while 
keeping IB ≤ 300uA

• Implies L=Lmin=0.18um

– Determine device width

– Estimate dominant and non-
dominant pole
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Small-Signal Model

Calculate gm and gm/ID

v m L m

4
A (0) g R 4 g 4mS

1k
≅ = ⇒ = =

Ω
m

D

g 4mS S
13.3

I 300 A A
= =

μ
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Why can we Neglect ro?

( )v m L o

1

A (0) g R || r

1 1
−

=

⎛ ⎞
m

L o

1 1
g

R r

1 1 1

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

v m L m o

1 1 1

A (0) g R g r

1 1 1

= +

= +
m L m o4 g R g r

= +

Even at L=Lmin= 0.18μm, we have  gmro > 30

ro will be negligible in this design problem 
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Zero and Pole Expressions

High frequency zero
(negligible)

m
z T

gd

g

C
ω ≅ >> ω

Dominant pole
(see Chapter 4) ( )p1

i b L d

1

R C C 1 g R C
ω ≅

⎡ ⎤+ + + ⋅⎣ ⎦

(negligible) gd

(see Chapter 4)

Nondominant pole

( )i gs gb m L gdR C C 1 g R C⎡ ⎤+ + +⎣ ⎦

( )p2
1 1

R R C C C C C C C C
ω ≅

ω ⎡ ⎤ ⎡ ⎤(see Chapter 4) ( )p
p1 i L gs gb L gs gd db L gdR R C C C C C C C Cω ⎡ ⎤ ⎡ ⎤+ + + +⎣ ⎦ ⎣ ⎦

Calculation of capacitances from tabulated parameters:

gs gb gg gdC C C C+ = − db dd gdC C C= −

Calculation of capacitances from tabulated parameters:
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Determine Cgg via fT Look-up

L=0 18umL=0.18um

16.9 GHz
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Find Capacitances and Plug in

mg1 1 4mS
C 37 7fFm

gg
T

gd
gd gg

C 37.7fF
2 f 2 16.9GHz

C
C C 0.24 37.7fF 9.0fF

C

= = =
π π

= = ⋅ =gd gg
gg

dd
dd gg

C

C
C C 0.60 39.4fF 23.6fF

C
= = ⋅ =

ggC

p2f 6.0 GHz∴ ≅1f 196 MHz∴ ≅ p2f 6.0 GHz∴ ≅p1f 196 MHz∴ ≅
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Device Sizing

L=0.18um16.2 A/m
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Circuit For Spice Verification

Device width
D

D

300 AIW 18.5 mI 16.2A / m
W

μ= = = μ

Simulation circuit

i

oB

1F
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Simulated DC Operating Point

element  0:mn1     
region   Saturati
id      326.8330u

Calculation

300 uA
vgs     624.9116m
vds     873.1670m
vdsat   113.7463m
vod 138 5878mvod     138.5878m
gm        4.1668m
gds     108.2225u
...

4 mS Good agreement!

cdtot    21.8712f
cgtot    37.6938f
cgd       8.9163f

23.6 fF
37.7 fF
9.0 fF

...
gm/ID    12.8  13.3 S/A
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HSpice .OP Capacitance Output Variables

C C

HSpice (.OP) Corresponding Small Signal
Model Elements

cdtot   21.8712f

cgtot   37.6938f

cstot 44.2809f

cbtot 34.9251f

cdtot ≡ Cgd + Cdb

cgtot ≡ Cgs + Cgd + Cgb

cstot ≡ Cgs + Csb

bt t ≡ C + C + Ccgs 26.7303f

cgd      8.9163f

cbtot ≡ Cgb + Csb+ Cdb

cgs ≡ Cgs

cgd ≡ Cgd
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Simulated AC Response

11.5 dB (3.8)

213 MHz

5.0 GHz

Calculated  values: |Av(0)|=12 dB (4.0), fp1=196 MHz, fp2=6.0 GHz
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Using .pz Analysis

Netlist statement

.pz v(vo) vi

Output

***************************************************
******   pole/zero analysis  
input =  0:vi          output = v(vo)

poles (rad/sec) poles ( hertz)poles (rad/sec)                 poles ( hertz)
real            imag real            imag
-1.34190g       0.              -213.569x       0.              
-31.4253g       0.              -5.00149g       0.              

( d/ ) ( h t )zeros (rad/sec)                 zeros ( hertz)
real            imag real            imag
458.247g        0.              72.9323g        0.              
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Observations

The design and pole calculations essentially right on target!

– Typical discrepancies are on the order of 10-20%, mostly due to VDS

dependencies, finite output resistance, etc.

We accomplished this by using pre-computed spice data in the design 
process

Even if discrepancies are more significant, there’s always the possibility 
to track down the root causes

– Hand calculations are based on parameters that also exist in Spice,
e.g. gm/ID, fT, etc.

– Different from square law calculations using μCox, VOV, etc.

• Based on artificial parameters that do not exist or have no 
i ifi i th i d lsignificance in the spice model
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Chapter 4Chapter 4
Review of Elementary Circuit 

ConfigurationsConfigurations

B. Murmann

Stanford Universityy

Reading Material: Sections 3.3.1, 3.3.3, 3.3.6, 3.3.8, 3.5, 7.2.3, 7.2.4.1, 7.3.2, 
7.3.4, 4.2.2, 4.2.3, 4.2.4

Basic Single-Stage Amplifier Configurations

MOS

Common 
Source

Common 
Gate

Common 
Drain

Bipolar

Common 
Emitter

Common 
Base

Common 
Collector

Transconductance 
Stage

Current
Buffer

Voltage
Buffer
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Stage Buffer Buffer



Widely Used Two-Transistor Circuits

MOS

Cascode 
Stage

Current 
Mirror

Differential 
Pair

Bipolarp
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Analysis Techniques (1)

N d l l i (KCL KVL)Nodal analysis (KCL, KVL)

– Write KCL for each node, solve for desired transfer function or port 
impedance

Most general method but conveys limited qualitative insight and– Most general method, but conveys limited qualitative insight and 
often yields high-entropy expressions

Miller theorem

Miller approximation

http://paginas.fe.up.pt/~fff/eBook/MDA/Teo_Miller.html

pp

− Approximate the gain across Z as frequency independent, i.e. K(s) ≅ K 
for the frequency range of interest

− This approximation requires a check (or good intuition)
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Analysis Techniques (2)

D i t l i tiDominant pole approximation

2 2

1 1 1

s s s s ss s 1 11 1

= ≅
⎛ ⎞⎛ ⎞ − − + − +⎜ ⎟⎜ ⎟

1 2 1 2 1 1 21 2

1
1 22

1 2 1 2

1 11 1
p p p p p p pp p

b1 1
Given    p ,   p

1 b s b s b b

+ +− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⇒ ≅ − ≅ −
+ +

Zero value time constant analysis

− The coefficient b1 can be found by summing all zero value time 
constants in the circuitconstants in the circuit

1 ib = τ∑
Generalized time constant analysis

− Can also find higher order terms (e.g. b2) using a sum of time 
constant products

− A. Hajimiri, “Generalized Time- and Transfer-Constant Circuit 
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Analysis,” IEEE Trans. Circuits Syst. I, pp. 1105-1121, June 2010.

Analysis Techniques (3)

Return ratio analysis

– See text pp. 599-612

Blackman’s impedance formula

– See text pp. 607-612

Two port feedback analysisTwo-port feedback analysis

– See text pp. 557-587

– More later in this course
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Chapter Overview

BJT-centric review of elementary circuit configurations

– Highlight differences to MOS circuits

Single-stage amplifiers

– Common emitter stage

– Common emitter stage with source degenerationg g

– Common collector stage

– Common base stage

– Common gate stage (discussion of bulk connection)Common gate stage (discussion of bulk connection)

BJT current mirrors

BJT differential pair
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Common-Emitter Stage 

VCC

RL

R

Vo

VCC

IB

~vi

VI

Q1

RS

VO+vo

+

–

DC input bias voltage (V ) biases Q in the forward active region

VI

Vi Vi

DC input bias voltage (VI) biases Q1 in the forward active region

Typically, want VO ≅ VCC/2

Main differences to consider versus common-source stage (MOS)

– Bias point sensitivity

– Finite input resistance (due to rπ)

– Base resistance (rb) often significant
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I

Bias Point Sensitivity

IB

RL
RS

+
VBEVI VCC

IC = βFIB

+
V

  IseqVBE kT

–
VBEVI VCC

–
Vo

I BE(on)
B

S

V V
I

R

−
≅ ( )L

O CC C L CC F B L CC F I BE(on)
S

R
V V I R V I R V V V

R
= − = − β = − β −

The dependence on βF makes “direct voltage biasing” impractical

How to generate VI so as to control Vo?How to generate VI so as to control Vo?

Practical configurations are usually based on feedback, replica biasing, 
ac coupling or differential circuits

B. Murmann EE214 Winter 2010-11 – Chapter 4 9

Small-Signal Equivalent Circuit for CE Stage

r C

Cμ

g v r R

RS rb

vi ~
+
v

+
vC

1 2

rπ Cπ gmv1 ro RL
vi ~

–
v1

–
voCL

For hand analysis, we will usually neglect rc and re

If significant, rb can be included with RS, i.e. RS
* = RS + rb

R lti l f iResulting low-frequency gain

ov r
A (0) g Rπ⎛ ⎞

= − ⋅⎜ ⎟ Lt t LR r || R=V m Ltot*
i S0

A (0) g R
v R rπω=

= − ⋅⎜ ⎟
+⎝ ⎠

=1 for MOS

Ltot o LR r || R=
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Gate Tunnel Conductance for MOSFETS

MOSFET ith t l thi t id d t t d tMOSFETs with extremely thin gate oxide draw a gate current due to 
direct tunneling

This leads to a finite current gain and input resistance

– Similar to BJT! 

A Annema et al “Analog circuits in ultra-deep-submicron CMOS ” IEEE J Solid-State Circuits pp 132-143 Jan 2005
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A. Annema, et al., Analog circuits in ultra deep submicron CMOS,  IEEE J. Solid State Circuits, pp. 132 143, Jan. 2005. 

Frequency Response

Using nodal analysis, we find

1

s
1

zv (s) r

⎛ ⎞
−⎜ ⎟⎛ ⎞ ⎝ ⎠1o

m Ltot* 2
i S 1 2

zv (s) r
g R

v (s) R r 1 b s b s
π

π

⎛ ⎞ ⎝ ⎠= − ⋅⎜ ⎟
+ + +⎝ ⎠

* *b R (C C ) R (C C ) g R R C= + + + +

g

1 S Ltot L m S Ltotb R (C C ) R (C C ) g R R Cπ μ μ μ= + + + +

*
2 S Ltot L Lb R R (C C C C C C )π π μ μ= + +

m
1

g
z

Cμ
= +

z1 is a feedforward zero in the RHP. If C >> Cμ, thenz1 is a feedforward zero in the RHP.  If Cπ  Cμ, then

m m
1 T

g g
z

C C Cμ π μ
= + >> = ω

+
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Dominant Pole Approximation

If d i t l diti i t itIf a dominant pole condition exists, we can write

1 * *

1 1
p

b R (C C ) R (C C ) g R R C
≅ − = −

+ + + +

( )

1 S Ltot L m S Ltot

*
S m Ltot Ltot L

b R (C C ) R (C C ) g R R C

1
             

R C 1 g R C R (C C )

π μ μ μ

π μ μ

+ + + +

= −
⎡ ⎤+ + + +⎣ ⎦

* *
S Ltot L m S Ltot1

2 *
2 S Ltot L L

R (C C ) R (C C ) g R R Cb
p

b R R (C C C C C C )
π μ μ μ

π π μ μ

+ + + +
≅ − = −

+ +2 S Ltot L L( )π π μ μ

If Cμ << Cπ, CL, then

* *
S Ltot L m S Ltot m

2 * *
L L LS Ltot L S

R C R C g R R C Cg1 1
p

R C C CR R C C R C
π μ μ

ππ π

⎛ ⎞+ +
≅ − = − + + ⋅⎜ ⎟

⎝ ⎠
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Emitter Degeneration

VVCC

RL

~vi

RS VO+vo

Ro

R

m
m

m E

g
G

1 g R

R r (1 g R )

≅
+

≅ +
VI

RE

Ri o o m ER r (1 g R )≅ +

Degeneration resistor reduces the transconductance and increases the 
output resistance of the devicep

– Same as in the MOSFET version of this circuit

For the BJT version, RE helps increase the input resistance 
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Calculation of Ri

For the complete nodal analysis, see text p. 196

A more intuitive way to find Ri is via the Miller theorem

e E m E

b m E

v R g R
K

1v 1 g RR
= ≅ =

++b m E
E

m

gR
g

+

( )i m E

m E

m E

r r
R r 1 g R

1 K g R
1

1 g R

π π
π= ≅ = +

− ⎛ ⎞
−⎜ ⎟+⎝ ⎠

The same “bootstrapping” effect applies to Cπ, we see Cπ/(1+gmRE) 
looking into the input

− Assuming K = constant in the frequency range of interest

B. Murmann EE214 Winter 2010-11 – Chapter 4 15

Assuming K = constant in the frequency range of interest

Alternative Calculation of Ri

it it RE( +1)

RE

v1+
vt

-

+
- ( +1)it

v1
+

-+
vt

-

( ) ( ) ( )i E E ER r R 1 r R 1 g r r 1 g R≅ + + β = + + ≅ +

Tricks of this kind are useful for reasoning about low frequency behavior

( ) ( ) ( )i E E m m ER r R 1 r R 1 g r r 1 g Rπ π π π≅ + + β + + ≅ +

g q y

More detailed analyses must be used be taken when investigating 
frequency dependence  
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Small-Signal Equivalent Circuit for Degenerated CE Stage

C

Cμ

g v Rv
+
v

+
v

  RS
*

rπ Cπ gmv1 ro RL
vi ~

–
v1

–
vo

RE

+
vE

R* R –  RS = RS + rb

Deriving the transfer function of this circuit requires solving a 3x3 system 
of equations

In order to obtain an estimate of the circuit’s bandwidth, it is more 
convenient (and intuitive) to perform a zero-value time constant analysis
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Useful Expressions

C ER R
R (f )

+ β

C

B

C E
o o

m E

R R
R r   (for )

1 g R

+≅ β → ∞
+

B ER R
R r

+≅

E

o m E

R r
1 g Rπ π≅

+

left right m left rightR R R G R Rμ = + +
E

( )left B m E

right C

m

R R r 1 g R

R R

g
G

π≅ +

≅

m
m

m E

g
G

1 g R
=

+
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Bandwidth Estimate for Degenerated CE Stage (1)

C

Cμ

g v Rv
+
v

+
v

  RS
*

rπ Cπ gmv1 ro RL
vi ~

–
v1

–
vo

RE

+
vE

R* R

(neglect)

–  RS = RS + rb

( ) ( )
( )

* *
S m E C m S m E C

* * *
S C m C S S v C

R R r 1 g R R G R r 1 g R R

R R G R R R 1 A (0) R

μ π π
⎡ ⎤= + + + +⎣ ⎦

≅ + + = + +

* *
S E S E

m E m E

R R R R
R r

1 g R 1 g Rπ π
+ +≅ ≅

+ +
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Bandwidth Estimate for Degenerated CE Stage (2)

R

( )
E
*

* *S
S v C S

m E

R
1

R
R 1 A (0) R C R C

1 g Rμ π

+
⎡ ⎤τ = + + +⎣ ⎦ +

3dB

1
−ω ≅

τ

Compare to the case of RE = 0

( )* *
S v C SR 1 A (0) R C R Cμ π⎡ ⎤τ ≅ + + +⎣ ⎦ 3dB

1
−ω ≅

τ⎣ ⎦

Adding RE can help improve the bandwidth, provided that gm > 1/RS*

− Note, however, that gm (and hence the power dissipation must be 

τ

, , gm ( p p
increased) to maintain the same Av(0)

Consider another special case where gmRE>>1 and the time constant 
due to C is negligibledue to Cμ is negligible

*
S

E m

R C
1

R g
π⎛ ⎞

τ ≅ +⎜ ⎟
⎝ ⎠

E
3dB T *

E S

C C R

C R R
π μ

−
π

+⎛ ⎞⎛ ⎞
ω ≅ ω ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
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Common-Collector Stage (Emitter Follower)

VCC

Q
RS

RL  

~vi

VI

Q1

IB

VO+vo

CL  

Behavior is very similar to MOS common drain stage, except that

– We do not need to worry about backgate effect

There is finite input resistance due to r– There is finite input resistance due to rπ

– The output resistance depends on RS (in addition to 1/gm)
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Input and Output Resistance

I t i t (b i ti )Input resistance (by inspection)

( )i m LR r 1 g Rπ≅ +

O i ( i h h h i k)Output resistance (using push-through trick)

*
S S bR R r= +

* *
S S

o
m m

R R1 1
R 1

g 1 g rπ

⎛ ⎞
≅ + ≅ +⎜ ⎟β + ⎝ ⎠
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Low Frequency Voltage Gain

RS
*

vi
vb

( )i m LR r 1 g Rπ≅ + RL

vo

( )r 1 g R R+( )
( )

( )

m Lo b o m L
v0 *

i i b m L s m L

*m L
m L s

r 1 g Rv v v g R
A

v v v r 1 g R R 1 g R

g R
     for   r 1 g R R

1 g R

π

π

π

+
= = ≅

+ + +

≅ + >>
+

( )

( )
m L

*
m L m L s

1 g R

1                 for    g R 1   and   r 1 g R Rπ

+

≅ >> + >>
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Frequency Response

o b o oi

i i b i S b

v v v vZ

v v v Z R v
= ⋅ = ⋅

+
Zi

Detailed analysis gives a very complex result for the general frequency 
iresponse expression

Must typically apply approximations based on given component values
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Frequency Response

Assuming that RS is large (often the case, and the reason why the stage 
is used), we expect that the dominant pole is introduced at node vb

For the frequency range up until the dominant pole, we can therefore q y g p p ,
approximate

[ ]( )
o m L

i

v g R 1 1
K Z

v 1 g R sCs C 1 K C
≅ = ≅ =

+ +[ ]( )b m L iv 1 g R sCs C 1 K Cπ μ+ − +

( )p

s in i

1

R R C
ω ≅

See text, pp. 503 for a more detailed analysis, which also captures the 
feedforward zero introduced by C

( )s in i

feedforward zero introduced by Cπ
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Common Collector Output Impedance

Detailed analysis of the common-collector output impedance shows 
potentially inductive behavior for large RS

The inductive behavior can lead to undesired “ringing” (or oscillations)The inductive behavior can lead to undesired ringing  (or oscillations) 
during circuit transients

In other cases, the inductive behavior is utilized for bandwidth extension 
(“inductive peaking”)( inductive peaking )

The capacitance Cμ tends to reduce the inductive frequency range

– Cμ appears in parallel with RS, and creates a low impedance 
termination for high frequenciestermination for high frequencies

– Makes it difficult to use the circuit as a “good inductor”

For a discussion on common collector output impedance and a detailed 
KCL-based analysis, see EE114 or section 7.2.3
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Common-Base Stage

VCC

RL
V +v

( )o C
i i

i E

i i
A A 0

i i 1

β= = =
β +

VO+vo

Ro

R

Neglecting rb, rc, re and rπ, we have

i E

io

Ii + ii RS  (large)

Ri o o m S

L
i

m o m

R r (1 g R )

R1 1
R 1

g r g

≅ +

⎛ ⎞
≅ + ≅⎜ ⎟

⎝ ⎠

Behavior is very similar to MOS common base stage except thatBehavior is very similar to MOS common base stage, except that

– We do not need to worry about backgate effect

– The DC current gain is not exactly unity, due to finite β
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Simplified Small-Signal Model for High-Frequency Analysis

o L

i

v R

i s s
1 1

=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

m
p2 T

C Cg

C C
π μ

π π

+
ω = = ω p1

L L

1

R C
ω =

The time constant associated with the load usually dominates the

i

1 2

1 1
p p

− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

The time constant associated with the load usually dominates the 
frequency response, i.e. ωp1 < ωp2

Note, however, that ωp2 can be important in feedback circuits (phase 
margin)
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Common Gate Stage – Bulk Connection Scenarios

Cgb

Cbsub (DWELL)Cdb

Cgb

Cbsub (DWELL)Cdb

Cgs
Csb

Cgs
Csb

VDD VDD

ii ii

[ ]
m

p2,a
gs gb bsub db

g

C C C C 1 K(s)
ω =

+ + + −
m mb

p2,b
gs sb

g g

C C

+
ω =

+

ωp2,a is always less than ωp2,b Usually a bad idea to connect source to 
bulk in a common gate stage

g g g
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g g

Backgate Effect in the EE214 Technology (1)
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Backgate Effect in the EE214 Technology (2)
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Basic BJT Current Mirror

BE

T

V

V CE2
S2

V
I e 1

VI I V V

⎛ ⎞
+⎜ ⎟ ⎛ ⎞⎝ ⎠

+

IIN IOUT = IC2

BE

T

S2
AC2 S2 CE2 CE1

V
C1 S1 A AV CE1

S1
A

VI I V V
1

I I V VV
I e 1

V

⎜ ⎟ ⎛ ⎞⎝ ⎠= ≅ + −⎜ ⎟
⎝ ⎠⎛ ⎞

+⎜ ⎟
⎝ ⎠

Q2 Vo = VCE2

+

–

Q1 +

–
VBE

Error due to base current

C1 C2 C2
IN C1 B1 B2 C1 C2 S1 S2

I I I
I I I I I I 1 2 for I I

⎛ ⎞= + + = + + ≅ + =⎜ ⎟β β β⎝ ⎠

OUT

IN

I 1 2
1

I 2
1

≅ ≅ −
β⎛ ⎞+⎜ ⎟β⎝ ⎠
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BJT Current Mirror with “Beta Helper”

VCCIIN
IOUT 

Q3
I I I

Q2 VOUT

+

–

Q1

IE3
C1 C2 C2

E3 S1 S2
I I I

I 2 assuming I I− = + ≅ =
β β β

E3 C2I 2I
I C22I 2⎡ ⎤E3 C2
B3I

1 ( 1)
= − ≅

β + β β +
C2

IN C1 B3 C1 C2
2I 2

I I I I I 1
( 1) ( 1)

⎡ ⎤= + ≅ + ≅ +⎢ ⎥β β + β β +⎣ ⎦

I 1 2OUT
2

IN
2

I 1 2
1

I 2
1

≅ ≅ −
⎛ ⎞ β

+ ⎜ ⎟⎜ ⎟β + β⎝ ⎠
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BJT Current Mirror with Degeneration

Q

+

Q

IIN IOUT 

Neglecting base currents

Q2

–

Q1

R2

VOUT

R1

BE1 C1 1 BE2 C2 2V I R V I R+ = +

C1 S2 1
C2 C1 1 T C1

I I R1
I I R V ln I

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎪= + ≅⎨ ⎢ ⎥⎬⎜ ⎟⎜ ⎟
OUT 1I R

I R
≅

Degeneration brings two benefits

C2 C1 1 T C1
2 C2 S1 2R I I R
⎨ ⎢ ⎥⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭ IN 2I R

– Increased output resistance

– Reduces sensitivity of mirror ratio to mismatches in IS

Minimum VOUT for which Q2 remains forward active is increased
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Minimum VOUT for which Q2 remains forward active is increased



Differential Circuits

Vi1 Vo1+ –i1

Vi2
Vo2

Vo1   

– +

Enables straightforward biasing without AC couplingEnables straightforward biasing without AC coupling

Information is carried in “differential” signals that are insensitive to 
“common-mode” perturbations, such as power supply noise

Fully differential circuits are increasingly used for I/O and clock-and-data 
recovery (CDR) circuits to allow the use of small signals at high speeds
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BJT Differential Pair

RC1 RC2

VCC

Differential Input Voltage

V V V−

IC1

Vo2Vo1
IC2

Differential Collector Current

id i1 i2V V V−

cd c1 c2I I I−
Q2Q1Vi1 Vi2

I R

Differential Output Voltage

od o1 o2V V V−

cd c1 c2I I I

VEE

ITAIL RTAIL od o1 o2V V V

The following large signal analysis neglects rb, rc, re, finite REE and 
assumes that the circuit is perfectly symmetric 
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Large Signal Analysis

be1 be2

T T

V V

V V
C1 S1 C2 S2I I e I I e≅ ≅

V V VV V

i1 be1 be2 i2V V V V 0− + − =

be1 be2 idi1 i2

T T T

V V VV V

V V Vc1

c2

I
e e e

I

− −

⇒ = = =

TAIL e1 e2 c1 c2
1

I (I I ) (I I )= − + = +
α id id

T T

TAIL TAIL
c1 c2V V

V V

I I
I I

1 e 1 e
− +

α α
⇒ = =

+ +

id id

id
cd c1 c2 F TAIL F TAILV V

T
V V

V1 1
I I I I I tanh

2V− +

⎡ ⎤
⎛ ⎞⎢ ⎥= − = α − = α ⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥

⎣ ⎦T TV V1 e 1 e
⎢ ⎥+ +⎣ ⎦

id
od od L TAIL L

V
V I R I R tanh

2V

⎛ ⎞
= = α ⎜ ⎟

⎝ ⎠
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od od L TAIL L
T2V⎜ ⎟

⎝ ⎠

Plot of Transfer Characteristics

Text, p. 215 Text, p. 216

Linear region in V vs V characteristic is narrow compared to MOSLinear region in Vod vs. Vid characteristic is narrow compared to MOS

– Recall that full steering in a MOS pair occurs for

BJT differential pair is linear only for |Vid| < VT ≅ 26 mV
id OVV 2V=
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Emitter Degeneration

C itt d ti i t t i th f i tCan use emitter degeneration resistors to increase the range of input 
voltage over which the transfer characteristic of the pair is linear

For large RE, linear range is approximately equal to ITAILRE

VCC

QQ

RC RC

Vo2Vo1

Text, p. 217

Q2Q1Vi1 Vi2

RE
RE

VEE

ITAIL

B. Murmann EE214 Winter 2010-11 – Chapter 4 39

VEE

Voltage Decomposition

1
V (V V )+

VCC

Common-Mode Voltages

ic i1 i2

oc o1 o2

V (V V )
2
1

V (V V )
2

+

+
Voc–Vod/2

RC1 RC2

Voc+Vod/2

Q2Q1

V /2IV /2

Inputs Vi1 and Vi2 can be 
decomposed into a combination
of differential and common mode –Vid/2

VEE

ITAILVid/2

i1 ic id
1

V V V
2

= +

of differential- and common-mode
voltage sources

Vic

i1 ic id

i2 ic id

2
1

V V V
2

= −
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Small Signal Model for vic = 0

Text, p. 224

Define differential mode gain as od
dm

id 0

v
A

v
ic

id v 0=
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Differential Mode Half Circuit

Text, p. 225

od id od
m dm m

id

v v v
g R A g R

2 2 v
= − = = −
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Small Signal Model for vid = 0

Text, p. 227

Define common mode gain as odv
ADefine common mode gain as

id

od
cm

id v 0

A
v =
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Common Mode Half Circuit

Text, p. 227

oc m
oc m ic cm m

v g R
v G Rv A G R

v 1 2g R
= − = = − = −

+
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Interaction of Common Mode and Differential Mode

od
cdm

i

v
A

v
oc

dcm
id 0

v
A

v
and

id
ic v 0

v = ic
id v 0=

In a perfectly balanced (symmetric) circuit, Acdm = Adcm = 0

In practice, Acdm and Adcm are not zero because of component mismatch

A i i t t b it i di t th t t t hi hAcdm is important because it indicates the extent to which a common-
mode input will corrupt the differential output (which contains the actual 
signal information)

S t t ti 3 5 6 9 f d t il d l iSee text, section 3.5.6.9 for a detailed analysis
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Common-Mode Rejecton

For fully differential circuits, the common-mode rejection ratio (CMRR) is 
traditionally defined as

dm

cdm

A
CMRR

A

However, the text defines the ratio as

dm
T

A
CMRR

Text
cm

CMRR
A

This latter definition is appropriate for circuits with a differential input and 
single-ended output, such as operational amplifiers.
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Input-Referred DC Offsets

I f tl t i i it V 0 i ld V 0In a perfectly symmetric circuit, Vid = 0 yields Vod = 0

Imbalances can be modeled as input referred offsets 

VCC VCC

RC1 RC2 RC RC

CC

Q2Q1Vi1

IB1

Vo2Vo1 Vo2

Q2Q1Vi1

Vo1

Vos
+–

Q2Q1Vi1

Vi2

I
IB2

Q2Q1Vi1

Vi2

I

Ios/2

VEE

IEE

VEE

IEE

OFFSETS
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PAIR W/ MISMATCH IDEAL PAIR

Analysis

 Vos − VBE1 + VBE2 = 0

∴ Vos = VT ln
IC1

I

⎛

⎝⎜
⎞

⎠⎟
− VT ln

IC2

I

⎛

⎝⎜
⎞

⎠⎟IS1⎝ ⎠ IS2⎝ ⎠

= VT ln
IC1

IC2

⎛

⎝⎜
⎞

⎠⎟
IS2

IS1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, where VT = kT

q
 

 
IC1RC1 = IC2RC2

If Vod = 0, then

 
∴

IC1

IC2

=
RC2

RC1

Thus

Vos = VT ln
RC2

RC1

⎛

⎝⎜
⎞

⎠⎟
IS2

IS1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Result

For small mismatches ΔRC << RC and ΔIS << IS, it follows that

1
C S C SmR I R Ig

V V
−

⎛ ⎞ ⎛ ⎞⎛ ⎞Δ Δ Δ ΔC S C Sm
os T

C S D C S

R I R Ig
V V

R I I R I

⎛ ⎞ ⎛ ⎞⎛ ⎞Δ Δ Δ Δ≅ − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

And similarly

C C
os

C

I R
I

R

⎛ ⎞Δ Δβ≅ − +⎜ ⎟β β⎝ ⎠
(see text, pp. 231)

Mismatch in IS results primarily from mismatches in the emitter areas 
and the base doping

Mismatch in β results primarily from mismatches in the base widthMismatch in β results primarily from mismatches in the base width

The standard deviations of device-to-device variations in IS and β is 
typically on the order of 5%
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Offset Voltage Drift

dVos

dT
= d

dT

kT

q
−

ΔRC

RC

−
ΔIS
IS

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
Vos

T

Example

V d t i d t b 2 V th h t t 300°K

 
q C S⎝ ⎠⎣⎢ ⎦⎥

– VOS was determined to be 2 mV through a measurement at 300°K

– Means that the offset voltage will drift by 2 mV/300°K = 6.6 μV/°C

For a MOS differential pair, the offset drift is less predictable and turns 
t t b l f ti f l tout to be a complex function of several process parameters
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Comparison of VOS for MOS and BJT Differential Pairs

1
Sm

OS,BJT
D S

Ig R
V

I R I

−
⎛ ⎞⎛ ⎞ ΔΔ≅ − −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
1⎛ ⎞⎛ ⎞ ( )

( )

1
m

OS,MOS t
D

W / Lg R
V V

I R W / L

− ⎛ ⎞Δ⎛ ⎞ Δ≅ Δ + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

The standard deviation of ΔVt can be estimated using the following 

Similar to BJTWorse?

The standard deviation of ΔVt can be estimated using the following 
expression (Pelgrom, JSSC 10/1989)

t
Vt

V
A

WL
Δσ ≅

where Avt ≅ 5mV-μm for a typical 0.18 μm process

WL
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Numerical Example

I i i t i t h f i li it

⎡ ⎤

Ignoring resistor mismatch for simplicity

Assume (gm/ID)MOS = 10 S/A, W = 5 μm, L= 0.2 μm

( )
1

Sm
OS,BJT

D S

Ig
std V std 26mV 5% 1.3mV

I I

−⎡ ⎤⎛ ⎞⎛ ⎞ Δ⎢ ⎥≅ = ⋅ =⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( )
( )

1
m

OS,MOS t
D

W / Lg
std V std V

I W / L

−⎡ ⎤⎛ ⎞Δ⎛ ⎞⎢ ⎥≅ Δ + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( )
2

25mV m
100mV 5%

5 m 0.2 m

⎛ ⎞− μ≅ + ⋅⎜ ⎟⎜ ⎟μ ⋅ μ⎝ ⎠

( ) ( )2 2
5mV 5mV 7.1mV≅ + =

MOS offset is typically 5-10 times worse than BJT
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MOS offset is typically 5 10 times worse than BJT



AVt Data

AVt improves with technology scaling

But, unfortunately, AVt scales not as fast as minimum device area

H V i t h f i i i d i

[Chang, TED 7/2005]
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– Hence Vt mismatch for minimum size devices worsens



Ch t 5Chapter 5

Two-Port Feedback Circuit Analysis

B M

Two Port Feedback Circuit  Analysis

B. Murmann

Stanford University

Reading Material: Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.8

Benefits and Costs of Negative Feeback

Negative feedback provides a means of exchanging gain for 
improvements in other performance metrics

• Reduced sensitivity (improved precision)

Benefits

• Reduced distortion (more later)

• Scaling of impedance levels (up or down)

• Increased bandwidthIncreased bandwidth

Costs

• Lower gain

• Potential instability
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Ideal Feedback (1) 

Σ aSi So

Sfb

+

–

Sε

f
fb

Assumptions for an ideal feedback system:

1. No loading

2. Unilateral transmission in both the forward amplifier 
and feedback network

S = a ⋅S

 

So a Sε

Sfb = f ⋅So

Sε = Si − Sfb

 ⇒ So = (Si − Sfb) = a(Si − f ⋅So)
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Ideal Feedback (2) 

S a�

fbS
T af

S
=�

Closed-Loop Gain:

Loop Gain:
 
⇒ A = a

1+ T

o

i

S a
A

S 1 af
=

+
�

If T >> 1, then

a 1
A

Sε

The feedback loop acts to minimize the error signal, Sε, thus forcing 
S t t k S I ti l

A
T f

≅ =

Sfb to track Si.  In particular,

Sε = Si − f ⋅So = Si − f ⋅ a

1 f

⎛
⎝⎜

⎞
⎠⎟

Si = 1− af

1 f

⎛
⎝⎜

⎞
⎠⎟

⋅Si
 

ε i o i 1+ af⎝⎜ ⎠⎟ i 1+ af⎝⎜ ⎠⎟ i

∴
Sε
Si

= 1− T

1+ T
= 1

1+ T
Sfb

Si

= a ⋅ f
Sε
Si

⎛

⎝⎜
⎞

⎠⎟
= T

1+ T
and
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Gain Sensitivity

Th f db k t k i t i ll i i i t k ithThe feedback network is typically a precision passive network with an 
insensitive, well-defined transfer function f.  The forward amplifier gain is 
generally large, but not well controlled.

F db k t t d t l th i b t l th l tiFeedback acts to reduce not only the gain, but also the relative, or 
fractional, gain error by the factor 1+T

dA d a⎛ ⎞ 1 d 1⎛ ⎞dA

da
= d

da

a

1+ af

⎛
⎝⎜

⎞
⎠⎟

= 1

1+ af
+ a

d

da

1

1+ af

⎛
⎝⎜

⎞
⎠⎟

= (1+ af) − af

(1+ af)2
= 1

(1+ af)2
= 1

(1+ T)2
 (1+ af) (1+ af) (1+ T)

δ dA δ δa

For a change δa in a

 
δa =

da
δa =

(1+ T)2

∴ δA = δa
2

1+ T⎛
⎝⎜

⎞
⎠⎟

= 1⎛
⎝⎜

⎞
⎠⎟

δa
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A (1+ T)2 a⎝⎜ ⎠⎟ 1+ T⎝⎜ ⎠⎟ a

The Two-Port Approach to Feedback Amplifier Design

A practical approach to feedback amplifier analysis and design is basedA practical approach to feedback amplifier analysis and design is based 
on constructing two-port representations of the forward amplifier and 
feedback network

The two-port approach relies on the following assumptions:The two port approach relies on the following assumptions:
– Loading effects can be incorporated in the two-port model for the 

forward amplifier
– Transmission through the forward amplifier is nearly unilateral
– Forward transmission through the feedback network is much less 

than that through the forward amplifier

When the preceding assumptions break down, the two-port approach 
deviates from and is less accurate than the return ratio approachdeviates from, and is less accurate than, the return ratio approach 
devised by Henrik Bode

But, the two-port approach can provide better physical tuition, especially 
with respect to what happens in the frequency domain when the p pp q y
feedback loop is “closed”
– It is basically an effort to model feedback amplifiers in the way that 

Harold Black conceived them
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Feedback Configurations

I th t t h t f db k lifi l i th fIn the two-port approach to feedback amplifier analysis there are four 
possible amplifier configurations, depending on whether the two-port 
networks are connected in SHUNT or in SERIES at the input and output 
of the overall amplifierp

At the OUTPUT

– A shunt connection senses the output voltage

A series connection senses the output current– A series connection senses the output current

At the INPUT

– A shunt connection feeds back a current in parallel with the input

– A series connection feeds back a voltage in series with the input

The four possible configurations are referred to as SERIES-SHUNT,The four possible configurations are referred to as SERIES SHUNT, 
SHUNT-SHUNT, SHUNT-SERIES, and SERIES-SERIES feedback

The following pages illustrate these configurations using ideal two-port 
networks

B. Murmann EE214 Winter 2010-11 – Chapter 5 7

Series-Shunt Feedback

++
+

– –
vovε a

vi

++

– ––
vfb f

vo f
vfba = o

vε
, f = fb

vo

A =
vo

v
= a

1+ af
= a

1+ T

In this case a, A and f are all voltage gains

vi 1+ af 1+ T
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Shunt-Shunt Feedback

ii
+

–
vo

i

iε

a

ifb

f

a =
vo

i
, f =

ifb
iε

,
vo

A =
vo

ii
= a

1+ af
= a

1+ T

a and A are transimpedances; f is a transadmittance
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Shunt-Series Feedback

ii io

iε

a

ifb

f

a =
io
i

, f =
ifb
iiε

,
io

A =
io
ii

= a

1+ af
= a

1+ T

a, A, and f are current gains

 

B. Murmann EE214 Winter 2010-11 – Chapter 5 10



Series-Series Feedback

ioa+ +

–
vε

f

vi

–

+

–
vfb

+

–

a =
io
vε

, f =
vfb

io

a and A are transadmittances; f is transimpedance

A =
io
v i

= a

1+ af
= a

1+ T

a and A are transadmittances; f is transimpedance

Note:  T = af is always dimensionless
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y

Closed Loop Impedances

T ill t t th i fl f f db k th i t d t t i d fTo illustrate the influence of feedback on the input and output impedances of an 
amplifier, consider the following:

– Include finite input and output impedances in a simple, idealized two-port 
model of the forward amplifier

– Assume that the feedback network has ideal input and output impedances so 
as not to load the forward amplifier

Consider two examples, series-shunt and shunt-series amplifiers

SERIES-SHUNT

io

vε avε
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“Ideal” Series-Shunt Impedances

Input Impedance O t t I dInput Impedance

i
i

i i 0

v
Z

i =

�

Output Impedance

o
o

o

v
Z

i
�

o
i i 0=

With io = 0

vo = avε

i
o v 0=

With vi = 0

v + fv = v = 0o ε

vi = vε + fvo = (1+ af)vε

= (1+ T)vε

⎛ ⎞

vε + fvo = vi = 0

io =
vo − avε

zo

= 1

zo

1+ af( )vo

 
i i =

vε
zi

= 1

zi

1

1+ T

⎛
⎝⎜

⎞
⎠⎟

vi = 1

zo

(1+ T)vo

v

 
Z o =

vo

io
=

zo

1+ T
 
Z i =

vi

i i
= (1+ T)z i
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“Ideal” Shunt-Series Impedances

Basic amplifieri ip

+

iε io

ii aiε
zi zo

vo

f io

ifb

Input Impedance
v

–
f o

o

i
i

i v 0

v
Z

i
=

�

With vo = 0

io = aiε
i i= iε + fio = (1+ af) iε = (1+ T)iε

i
i i⎛ ⎞  

⇒ Z i =
vi

i i
=

zi

(1+ T)
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vi = iεzi = i

1+ T⎝⎜ ⎠⎟
zi



O t t I dOutput Impedance

i

o
o

o i 0

v
Z

i
=

�
ii 0

iε + f io = 0

v (i + ai )z (i + afi )z

With ii = 0

⇒ Z =
vo = (1+ T)z

 

vo = (io + aiε )zo = (io + afio)zo

= io(1+ T)zo

⇒ Z o =
io

= (1+ T)zo

In general:

• Negative feedback connected in series increases
the driving point impedance by (1+T)the driving point impedance by (1+T)

• Negative feedback connected in shunt reduces the 
driving point impedance by (1+T)
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Loading Effects – Introductory Example

C id th f ll i f db k i itConsider the following feedback circuit

Analysis methods

− Closed loop transfer function using nodal analysis

− Return ratio analysis (see EE114)

− Two-port feedback circuit analysis

B. Murmann EE214 Winter 2010-11 – Chapter 5 16



Nodal Analysis

Given

0
v1 vo−

R
ii−

RF
i

0
vo v1−

RF
gm v1⋅+

vo
RL

+
RF RL

RF ii⋅ RL ii⋅+⎛⎜
⎜

⎞⎟
⎟

1
1

−⎛
⎜

⎞
⎟

Find v1 vo, ( )
RL gm⋅ 1+

RL ii⋅ RF RL⋅ gm⋅ ii⋅−

RL gm⋅ 1+

⎜
⎜
⎜
⎜⎝

⎟
⎟
⎟
⎟⎠

→ A
vo
ii

RL RF RL⋅ gm⋅−

RL gm⋅ 1+
RF−

1
gm RF⋅

1
1

gm RL⋅
+

⎜
⎜
⎜
⎜
⎝

⎟
⎟
⎟
⎟
⎠

⋅

No information about loop gain (which we need e.g. for stability analysis)

⎝ ⎠
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Return Ratio Analysis

RR d
A Ainf

RR
1 RR+

⋅
d

1 RR+
+ Ainf RF− d RL RR gm RL⋅

g R
RL⎛

⎜
⎞
⎟ 1

1⎛
⎜

⎞
⎟

A RF−
gm RL⋅

1 gm RL⋅+

RL
1 gm RL⋅+

+ RF−

gm RL⋅
RF

−

1 gm RL⋅+

⎜
⎜
⎜
⎝

⎟
⎟
⎟
⎠

RF−

1
gm RF⋅

−

1
1

gm RL⋅
+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

⋅

The result for the closed loop gain (A) matches the nodal analysis perfectly

In addition we have determined (along the way) the loop gain (RR)

gm L⎝ ⎠

In addition, we have determined (along the way) the loop gain (RR)

– This is useful for stability analysis

The return ratio method is accurate and general

The two-port method aims to sacrifice some of this accuracy and generality 
in exchange for better intuition and less computational effort

– The involved approximations follow from the typical design intent for 
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Shunt-Shunt Feedback Model

ii
+

–
vo

iε

a

ifb

f

RF feeds back a current that is proportional to the output voltageRF feeds back a current that is proportional to the output voltage

– The appropriate two-port model to use for this amplifier is therefore 
the “shunt-shunt” configuration 

We wish to identify proper “a” and “f “ blocks that model our circuitWe wish to identify proper a  and f  blocks that model our circuit

The key issue is that “a” and “f” are not perfectly separable without 
making any approximations

R is responsible for feedback but also affects the behavior of “a”
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– RF is responsible for feedback, but also affects the behavior of a

y-Parameter Model for the Feedback Network (1)
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y-Parameter Model for the Feedback Network (2)

1 1
y y= = −11f 12f

F F

21f 22f
F F

y y
R R

1 1
y y

R R

= =

= − =

B. Murmann EE214 Winter 2010-11 – Chapter 5 21

y-Parameter Model for the Feedback Network (3)

Final steps

– Absorb y11 and y22 into forward amplifier

– Neglect feedforward through feedback network (y21)

• This is justified by the usual design intent: we do not want the 
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feedforward through the feedback network to be significant!



Identification of “a” and “f”

i
+
v

iε

aii
–
vo

ifb

a

ff

f
1

RF
− a

vo
v1

v1
ie

⋅ gm−
RL RF⋅

RL RF+
⋅ RF⋅ af gm

RL RF⋅

RL RF+
⋅

A
1
f

1

1
1
f

+
⋅ RF

1

1
1 RF RL+

⋅+
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af 1
gm RF RL⋅

+

Comparison and Generalization

Note that for RL << RF (i.e. small feedforward)

– The product of a and f approaches the true loop gain (RR)

– The two-port closed-loop gain expression (A) approaches the nodal 
analysis and return ratio result

The approach illustrated in the previous example can be generalized to 
cover all four feedback configurations

For all four configurations the following analysis steps applyFor all four configurations, the following analysis steps apply

– Identify input and output variables and feedback configuration

– Find feedback function “f”

– Add loading impedances to input and output port of the basic– Add loading impedances to input and output port of the basic 
amplifier “a”

– Perform calculations using ideal two-port feedback equations 
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General Analysis for Shunt-Shunt Feedback

Forward amplifierp

iS
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Summing currents at the input and output of the overall amplifier

iS = (yS + y11a + y11f )vi + (y12a + y12f )vo

0 (y + y )v + (y + y + y )v 0 = (y21a + y21f )vi + (yL + y22a + y22f )vo

Define 

i S 11a 11fy y y y+ +�i S 11a 11f

o L 22a 22f

y y y y

y y y y

+ +
+ +�

ThenThen 
vi = −

yo

y21a + y21f

vo

i y
−yo

⎛
⎜

⎞
⎟ v + (y + y )viS = yi

o

y21a + y21f⎝⎜ ⎠⎟
vo + (y12a + y12f )vo

= 1

y + y

⎛

⎝⎜
⎞

⎠⎟
−yiyo + (y21a + y21f )(y12a + y12f )⎡⎣ ⎤⎦vo
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y21a + y21f⎝ ⎠

v (y + y )
∴

vo

iS
=

−(y21a + y21f )

yiyo − (y21a + y21f )(y12a + y12f )

−
y21a + y21f

⎛
⎜

⎞
⎟

=
yiyo⎝⎜ ⎠⎟

1−
y21a + y21f

yiyo

⎛

⎝⎜
⎞

⎠⎟
(y12a + y12f )

Comparing this result with the ideal feedback equation

 i o

vo A
a

it is apparent that a feedback representation can be used by defining

o

is
= A =

1+ af

21a 21f

i o

y y
a

y y

f y y

+−

+

�

�

B. Murmann EE214 Winter 2010-11 – Chapter 5 28

12a 12ff y y+�



For the preceding definitions of a and f it is difficult to establish equivalentFor the preceding definitions of a and f, it is difficult to establish equivalent 
circuits for these functions.  However, the situation can be simplified by 
realizing that it may often be possible to neglect reverse transmission in 
the forward amplifier and forward transmission in the feedback network.  
That is, it can often be assumed that 

 y12a << y12f

 y21a >> y21f

and

in which casein which case

A
vo

−y21a

yiyo

⎛

⎝⎜
⎞

⎠⎟
⇒

a = −
y21a

y y

 

A = o

iS
= i o

1+
−y21a

yiyo

⎛

⎝⎜
⎞

⎠⎟
y12f

⇒ yiyo

f = y12f
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For the simplified definitions it is possible to identif separate eq i alentFor the simplified definitions, it is possible to identify separate equivalent 
circuits for a and f :

yi
New forward amplifier

yo

iS

yi = yS + y11a + y11f

New feedback network
 

i S 11a 11f

yo = yL + y22a + y22f

The admittances yS, y11a, y22f and yL have been “pulled” into the forward 
amplifier.  Basically, the “loading” of the feedback network, as well as the 
source and load admittances, is absorbed in the equivalent forward 
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Example – Op Amp w/ Shunt-Shunt Feeback

iiS

Small-signal equivalent circuit:
Feedback network

roo

riiS
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I d d i h l di f h f db k k h f dIn order to determine the loading of the feedback network on the forward 
amplifier, the y parameters of the feedback network are first determined 
using the following circuit :

y11f =
i1
v1 v2 =0

= 1

RF
2

y22f =
i2
v2 v1=0

= 1

RF

 

y12f =
i1
v2 v1=0

= − 1

RF

= f

Also, y21f = –1/RF, but it is neglected in comparison with y21a
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Th ll i i b d i f d d f db k hThe overall circuit can now be separated into forward and feedback paths, 
with the loading of the feedback network included within the forward path

f

ro

Forward amplifier

riiS
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To determine the forward amplifier gain a break the feedback loop at theTo determine the forward amplifier gain, a, break the feedback loop at the 
“output” of the feedback network by setting ifb = 0. 

Then
v1 = (ri PRF)iS =

ri RF
⎛
⎜

⎞
⎟ iSv1 (ri PRF)iS ri + RF⎝

⎜
⎠
⎟ iS

vo = − R

R + r

⎛

⎝
⎜

⎞

⎠
⎟ avv1 where F LR R R� &

  
R + ro⎝ ⎠

Thus

a =
vo = −a

ri RF
⎛
⎜

⎞
⎟

R⎛
⎜

⎞
⎟a

iS ifb =0

av ri + RF⎝
⎜

⎠
⎟

R + ro⎝
⎜

⎠
⎟

Since f = –1/RF, the loop gain, T = af, isF, p g , ,

T = av

ri

r i + RF

⎛

⎝
⎜

⎞

⎠
⎟

RF PRL

RF PRL + ro

⎛

⎝
⎜

⎞

⎠
⎟ = av

ri

r i + RF

⎛

⎝
⎜

⎞

⎠
⎟

RLRF

RLRF + roRF + roRL

⎛

⎝
⎜

⎞

⎠
⎟
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The input and output impedances of the equivalent forward amplifier are

ia F iz R || r=

oa o F Lz r || R || R=

Since the feedback network is connected in shunt at both the input andSince the feedback network is connected in shunt at both the input and 
output of the forward amplifier, the closed-loop input and output 
impedances are 

F ii
R || rz F iia

i

oa o F L
o

R || rz
Z

1 T 1 T
z r || R || R

Z
1 T 1 T

= =
+ +

= =
+ +1 T 1 T+ +
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Series-Series Feedback

In a series-series feedback amplifier, the forward amplifier and feedback p p
network share common currents at the input and output.  Therefore, open 
circuit impedance parameters (z parameters) are used to characterize the 
two-port networks.

v1 = z11i1 + z12 i2
i i v2 = z21i1 + z22 i2

1 1v v
z z� �

where

2 1

1 1
11 12

1 2i 0 i 0

z z
i i= =

� �

2 2
21 22

v v
z z� �
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2 1

21 22
1 2i 0 i 0

z z
i i= =



Series-Series Feedback, cont’d

The two-port representation of a series-series feedback amplifier is then

Forward amplifier
io

ii

vS

B. Murmann EE214 Winter 2010-11 – Chapter 5 37

Series-Series Feedback, cont’d

Summing voltages at the input and output

vS = (zS + z11a + z11f )ii + (z12a + z12f )io

0 ( )i ( )i0 = (z21a + z21f )i i + (zL + z22a + z22f )io

Define
i S 11a 11fz z z z+ +�

o L 22a 22fz z z z+ +�

Again, neglect reverse transmission through the forward amplifier and g , g g p
feedforward through the feedback network; that is, assume

z12a << z12f

 z21a >> z21f

and
 12a 12f

B. Murmann EE214 Winter 2010-11 – Chapter 5 38



Series-Series Feedback Equations

Under the preceding assumptions, the series-series feedback amplifier 
can be represented by a two-port model with

A =
io
vS

=

−z21a

zizo

⎛

⎝
⎜

⎞

⎠
⎟

z⎛ ⎞
= a

1+ af

 

vS
1+

−z21a

zizo

⎛

⎝
⎜

⎞

⎠
⎟ z12f

1+ af

where

a = −
z21a

zizoi o

f = z12f
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Series-Series Feedback Equivalent Two-Port Networks

Equivalent two port networks can now be identified for a and f in which theEquivalent two-port networks can now be identified for a and f in which the 
loading of the feedback network is included in the forward amplifier

New forward amplifier

vS
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Series-Series Triple

io
AC circuit :

io

RC2

RL
RS

Q
Q2

Q3

+

–
vS ~

RC1

C2 iE3

iE1
ii

Q1

RE2

RF
RE1

Feedback Network

The forward amplifier in this circuit is NOT a two-port network because 
i ≠ i and i ≠ i However because i and i are closely related to i

Feedback Network

iE1 ≠ ii and iE3 ≠ io.  However, because iE1 and iE3 are closely related to ii
and io, a two-port approach to feedback analysis can still be used. 

Begin by representing the feedback network as a two-port network.
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g y p g p

ioo

RC2

RL
RS

iQ
Q2

Q3

+

–
vS ~

RC1
iE3

iE1
ii

Q1

z22fz11f

~ z12f iE3 ~z21f iE1

+ +

––

At the output, simply recognize that the feedback network “senses” iE3

rather than io, and that
i

 
iE3 =

io
α3

In effect, α3 is outside the feedback loop
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In effect, α3 is outside the feedback loop



At the input consider the following small-signal equivalent circuitAt the input, consider the following small-signal equivalent circuit

g v

RS

+
v

+ii rπ1 gm1vπ1

z11f

–
vS

–
vπ1

iE1

i

+

–
z12f iE3

v = i R + v + i z + z ivS = iiRS + vπ1 + iE1z11f + z12f iE3

∴ vS − z12f ⋅
io
α3

= iiRS + vπ1 + iE1z11f

From this equation it is apparent that, although the z12f feedback voltage 
generator is in the emitter of Q1, it is still in series with, and subtracts 
from, the input voltage source, vS.  Thus, the z12f generator can be moved 
f th itt t th b f Q
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from the emitter to the base of Q1

N t t d t i th t f th f db k t k id thNext, to determine the z parameters for the feedback network, consider the 
following circuit 

RF
z

v1 R || (R + R )

i1 RE1 RE2 i2
+

–
v2

+

–
v1

 

z11f = 1

i1 i2 =0

= RE1 || (RF + RE2)

z =
v2 = R || (R + R )

 

z22f =
i2 i1=0

= RE2 || (RF + RE1)

v1 RE1
⎛ ⎞ v2

⎛
⎜

⎞
⎟ RE1

⎛ ⎞
z12f =

v1

i2 i1=0

=
RE1

RE1 + RF

⎛

⎝⎜
⎞

⎠⎟
v2

i2 i1=0⎝

⎜
⎜

⎠

⎟
⎟

=
RE1

RE1 + RF

⎛

⎝⎜
⎞

⎠⎟
z22f

RE1
⎛
⎜

⎞
⎟

RE2(RE1 + RF)⎡
⎢

⎤
⎥

RE1RE2

 
= E1

RE1 + RF⎝⎜ ⎠⎟
E2 E1 F

RE1 + RE2 + RF⎣
⎢

⎦
⎥ = E1 E2

RE1 + RE2 + RF

z = z but z is neglected in comparison with z
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z21f = z12f, but z21f is neglected in comparison with z21a



B d th di lt th i i t i l b d l dBased on the preceding results, the series-series triple can be modeled 
with the following equivalent circuit 

io

RC1

RC2

RL
RS

iE3Q1

Q2

Q3

RRE1

+
vS

~

~

vfb=vf
+

–

RR RE2
RE1

–
S

+

–
RE1vf

RF

RE2

RF

In this circuit we have managed to “break” the loop at the output of the 
feedback network Thus the circuit can be used to determine a f and T
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feedback network.  Thus, the circuit can be used to determine a, f and T.

Note that a and f for the series-series triple can be defined in terms of 
either io or iE3. If

A =
io = α

iE3

 
A =

vS

= α3 vS

and a and f are defined with respect to io, then

f =
z12f

α3

= 1

α3

RE1RE2

RE1 + RE2 + RF

⎛

⎝⎜
⎞

⎠⎟

As T = af becomes large

E1 E2 FR R R1
A

⎛ ⎞+ +≅ = α ⎜ ⎟3
E1 E2

A
f R R

≅ = α ⎜ ⎟
⎝ ⎠

Thus, A is not desensitized to α3 by the feedback loop
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Series-Shunt Feedback

In a series-shunt feedback amplifier the forward amplifier and feedbackIn a series shunt feedback amplifier, the forward amplifier and feedback 
network share the same input current and output voltage.  Therefore a 
hybrid h-parameter representation is used for the two-port networks.

v1 = h11i1 + h12 v2

i = h i + h v i2 = h21i1 + h22 v2

1 1
11 12

v v
h h� �

where

2 1

11 12
1 2v 0 i 0

h h
i v= =

2 2
21 22

i i
h h

i
� �
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2 1

21 22
1 2v 0 i 0
i v= =

Series-Shunt Feedback, cont’d

Thus, the two-port model for a series-shunt feedback circuit is

Forward amplifier

ii

vSvS
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Series-Shunt Feedback, cont’d

Summing voltages at the input and currents at the output,

vS = (zS + h11a + h11f )ii + (h12a + h12f )vo

 
0 = (h21a + h21f )i i + (yL + h22a + h22f )io

Define
z z h h+ +�i S 11a 11f

o L 22a 22f

z z h h

y y h h

+ +

+ +

�

�

and neglect reverse transmission through the forward amplifier and 
feedforward through the feedback network; that is, assume

h h

h21a >> h21f

and

h12a << h12f
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21a 21f

Series-Shunt Feedback Equations

With the simplifying assumptions, the series-series feedback amplifier can 
be represented by a two-port model with

A =
vo

vS

=

−h21a

ziyo

⎛

⎝
⎜

⎞

⎠
⎟

h⎛ ⎞
= a

1+ af

 

vS
1+

−h21a

ziyo

⎛

⎝
⎜

⎞

⎠
⎟ h12f

1+ af

where

a = −
h21a

ziyo

 f = h12f
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Series-Shunt Feedback Equivalent Two-Port Networks

E i l t t t i it b id tifi d f d f i hi h thEquivalent two-port circuits can now be identified for a and f in which the 
loading of the feedback network is included in the forward amplifier

New forward amplifier

yozi vo

+

New forward amplifierii

yoi o

–
vS
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Shunt-Series Feedback

In a shunt-series feedback circuit the forward amplifier and feedbackIn a shunt-series feedback circuit, the forward amplifier and feedback 
network share the same input voltage and output current. Thus, a hybrid g-
parameter representation is used for the two-port networks.

i1 = g11v1 + g12i2
v g v + g iv2 = g21v1 + g22i2

1 1
11 12

i i
g g� �

where

2 1

11 12
1 2i 0 v 0

g g
v i= =

2 2
21 22

v v
g g� �
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2 1

21 22
1 2i 0 v 0

g g
v i= =

� �



Shunt-Series Feedback, cont’d

The two-port model for a shunt-series feedback amplifier is thus

Forward amplifier

iSiS
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Shunt-Series Feedback, cont’d

Summing currents at the input and voltages at the output,

iS= (yS + g11a + g11f )v i + (g12a + g12f )io

 
0 = (g21a + g21f )v i + (zL + g22a + g22f )io

Define
y y g g+ +�i S 11a 11f

o L 22a 22f

y y g g

z z g g

+ +

+ +

�

�

and neglect reverse transmission through the forward amplifier and 
feedforward through the feedback network; that is, assume

g21a >> g21f

and
 g12a << g12f
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g21a g21f



Shunt-Series Feedback Equations

With the simplifying assumptions the shunt-series feedback circuit can 
described in the form of the ideal feedback equation

A =
io
iS

=

−g21a

yizo

⎛

⎝⎜
⎞

⎠⎟

−g⎛ ⎞
= a

1+ af

 

iS 1+
g21a

yizo

⎛

⎝⎜
⎞

⎠⎟
g12f

1+ af

where

a = −
g21a

yizo

 f = g12f
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Shunt-Series Feedback Equivalent Two-Port Networks

Based on the above definitions and assumptions, equivalent two-port 
networks for a shunt-series amplifier can be defined as follows

N f d lifi

+

zo

io

New forward amplifier

yivi

–

iS
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Shunt-Series Feedback Pair

io
AC circuit:

o

+ RC1

RL

i

Q1

Q2

–
vi

C1 iE2iS RS

RE

RF

Feedback networkFeedback network

The forward amplifier in this circuit is not a two-port network 
b i ≠ i H th i it b l d i f hibecause io ≠ iE2.  However, the circuit can be analyzed in a fashion 
similar to the series-series triple.  The feedback network can be 
represented by a two-port characterized by g parameters.
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ioo

RC1

RL

i
Q1

Q2

+
i

g22f

iE2

+

–
vi

iS RS

g11f ~ g21f vi
–

g12f iE2

The g parameters for the feedback network can be determined from the 
following circuit :

RFi1

RE i2
+

–
v2

+

–
v1 ~
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g11f =
i1
v1 i2 =0

= 1

RE + RF

g22f =
v2

i2 v1=0

= RE ||RF

g12f =
i1
i2 v1=0

= −
RE

RE + RF

v
g21f =

v 2

v1 i2 =0

= − g12f

g21f is neglected in comparison with g21a

The shunt-series pair can then be redrawn as follows :
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p

io

RC1

RL

iE2

Q1

Q2

+
viS RR +R

R

E2

–
vi

iS RS

i = i

RF+RE

RiF

A i ’ d t b k th l t th t t f th f db k

RE
iE2 = –iF RF

iF

Again, we’ve managed to break the loop at the output of the feedback 
network.  If a and f are defined in terms of io, then

A =
io = α

iE2A =
iS

= α2 iS

f =
ifb
i

= −
iF
i

=
g12f

α
= − 1

α
RE

R + R

⎛

⎝⎜
⎞

⎠⎟
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io io α2 α2 RE + RF⎝⎜ ⎠⎟



Chapter 6
Frequency Response of

Feedback Amplifiers

B. Murmann

Stanford Universityy

Reading Material: Section 9.1, 9.2, 9.3, 9.4, 9.5

Gain and Bandwidth

Consider a feedback amplifier with a single pole in the response of the 
forward-path amplifier and feedback that is frequency independent.

– a(s)vi vo

vfb

+

–

f

a(s) =
a0

 
a(s) =

1− s p1

A(s) �
vo(s)

v (s)
= a(s)

1+ a(s) f
= a(s)

1+ T(s)  vi(s) 1+ a(s) ⋅ f 1+ T(s)

T(s) � a(s) ⋅ f = "Loop Gain"

where
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  T(s) � a(s) ⋅ f = Loop Gain



a0

A(s) =

a0

1− s p1

1+
a0f

1− s p

=
a0

1− s
p1

+ a0f
1 s p1

p1

=
a0

1+ a0f
⋅ 1

1− s
p

1
1+ a f

⎛

⎝⎜
⎞

⎠⎟p1 1+ a0f⎝⎜ ⎠⎟

= Ao ⋅ 1

1− s⎡
⎢

⎤
⎥1

p1(1+ T0)⎣
⎢

⎦
⎥

a
where

 
A0 = A(0) =

a0

1+ a0f

T0 = T(0) = a(0) ⋅ f = a0f = "Low Frequency Loop Gain"
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0 0

Thus, feedback reduces the gain by (1+T0) and increases the –3dB 
bandwidth by (1+T0) for a “one-pole” forward-path amplifier. 
The Gain x Bandwidth (GBW) product remains constant.

20 log10 a020 log10 a0

20 log10 |a(jω)|

20 log10 (1+T0)

20 log10 |A(jω)|
20 log10 A0

|p1|
(1+T0)|p1|
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Locus of the pole of A(s) in the s-plane:

jω

s plane

σx x
p1(1+T0)p1

s-plane

Pole “moves” from p1 to (1+T0)p1

Note that

20 ⋅ log10 a0 − 20 ⋅ log10 A0 = 20 ⋅ log10

a0

A

⎛

⎝⎜
⎞

⎠⎟
g10 0 g10 0 g10 A0⎝⎜ ⎠⎟

= 20 ⋅ log10(1+ T0)

≅ 20 ⋅ log10 T0 when T0 >> 1
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g10 0 0

At the frequency ω = (1+T )|p |At the frequency ω0 = (1+T0)|p1|

 a(jω0) = A0

and therefore

T(jω0) = a(jω0) ⋅ f = A0f =
a0f

1+ a0f

≈ 1

Thus, ω0 is the unity-gain bandwidth of the loop gain, T(s).
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Instability

At a frequency where the phase shift around the loop of a feedback 
amplifier reaches ±180o the feedback becomes positive.  In that case, 
if the loop gain is greater than unity, the circuit is unstable.p g g y,

For a “single-pole” forward path amplifier stability is assured because 
the maximum phase shift is 90o.  However, if a(s), or in general T(s), 
has multiple poles the amount of loop gain that can be used ishas multiple poles, the amount of loop gain that can be used is 
constrained.

The stability of a feedback amplifier can be assessed from:y p

– Nyquist diagram (polar plot of loop gain with frequency as a parameter)

B d l t ( l t f l i d h f ti f f )– Bode plot (plot of loop gain and phase as functions of frequency)

– Locus of poles (root locus) of A(s) in the s-plane
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Bode Stability Criterion

A feedback system is unstable when |T(jω)| > 1 at the frequency where 
Phase[T(jω)] = -180°

Phase margin

– Defined at the frequency where |T(jω)| =1 ω0Defined at the frequency where |T(jω)| 1 ω0

( )0PM 180 Phase T j⎡ ⎤= ° + ω⎣ ⎦

Gain margin

– Defined at the frequency where Phase[T(jω)] = -180° ω180

( )180

1
GM

T j
=

ω
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Example

Gain Margin
20 log10 A0

Gain Margin

| p2 |ω0

Phase MarginPhase Margin
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Practical Phase Margins

P ti l i it t i ll h i t 45°Practical circuits typically use phase margins greater 45°

– For continuous time amplifiers, a common target is ~60°

– For switched capacitor circuits, a phase margin of ~70° is desirable

S EE315A• See EE315A

In order to see the need for phase margin >45°, investigate the closed-
loop behavior of the circuit at ω = ω0

0 0 0
1

T( j ) a( j ) f 1 a( j ) (assuming f is real)
f

ω = ω ⋅ = ⇒ ω =

0
0

0 0

a( j )
A( j )

1 a( j ) a( j )

ωω =
+ ω ω

f

[ ]0

0 0
j(PM 180 )j a( j )

a( j ) a( j )

1 e1 e
− °φ ω

ω ω= =
++
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PM = 45oPM = 45o

A(jω0) =
a(jω0)

j135°
=

a(jω0)
(jω0)

1+ e− j135° 1− 0.7 − 0.7j

=
a(jω0)

0.3 − 0.7j

 
∴ A(jω0) =

a(jω0)

0.76
= 1.3

f
≅ 1.3A0

Thus, |A(jω0)| “peaks” at ω = ω0, it’s nominal –3dB bandwidth.

B. Murmann EE214 Winter 2010-11 – Chapter 6 11

PM = 60o

A(jω0) =
a(jω0)

1+ e− j120°
=

a(jω0)

1− 0.5 − 0.87j

a(jω )
=

a(jω0)

0.5 − 0.87j

1

PM 90o

 
∴ A(jω0) = a(jω0) = 1

f
≅ A0

PM = 90o

A(jω0) =
a(jω0)

1+ e− j90°
=

a(jω0)

1− j1+ e j

 
∴ A(jω0) =

a(jω0)

1.4
= 0.7

f
≅ 0.7A0
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Closed-Loop Response for Various Phase Margins

Text, p. 632
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Frequency Compensation (1)

f fFrequency compensation refers to the means by which the frequency 
response of the loop gain in a feedback amplifier is altered so as to ensure 
adequate phase margin under the expected closed-loop conditions.

Because operational amplifiers must often be compensated for use with a 
variety of feedback networks, compensation is usually accomplished by 
modifying only the forward path of the loop (i.e. the op-amp itself). In 

i l id b d lifi d i th f th f db kspecial purpose wideband amplifier design, the response of the feedback 
network may also be altered.

Several types of frequency compensation are used in practice, e.g.yp q y p p , g

Narrowbanding (lag compensation)

Feedforward (lead compensation)

Pole splitting (Miller compensation, cascode compensation)

Feedback (phantom) zero compensation

B. Murmann EE214 Winter 2010-11 – Chapter 6 14



Narrowbanding (1)

C t d i t l i ( ) t ll ff |T(j )| t f lCreate a dominant pole in a(s) to roll off |T(jω)| at a frequency low 
enough to ensure adequate phase margin

(f=1)

Text, p. 634
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Narrowbanding (2)

N t th t i th l f th i lid ( ith f 1 d PM 45°) thNote that in the example of the previous slide (with f=1, and PM=45°), the 
closed-loop bandwidth is limited to approximately ωp1, the frequency of the 
closest non-dominant pole

Thi b t bl if i ffi i tl l th f thThis can be acceptable if ωp1 is sufficiently large, as the e.g. case for the 
pole introduced by a cascode

Consider e.g. the amplifier below

C i t d d i t l t hi h f i– Cp introduces a non-dominant pole at high frequencies

– CL is adjusted until the circuit achieves the desired phase margin

• Therefore, this type of narrowbanding is called “load compensation”
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Two-Stage Amplifier

But, what if we would like to stabilize an amplifier that has two poles at 
relatively low frequencies?

Consider e.g. the two-stage amplifier shown below, and assume that 
ωp1=1/R1C1 and ωp2=1/R2C2 are comparable

B. Murmann EE214 Winter 2010-11 – Chapter 6 17

Pole Splitting (1)

R1 R2

vo
Cc

C1
vi C2gm1 gm2

Purposely connect an additional capacitor between gate and drain of M2Purposely connect an additional capacitor between gate and drain of M2

(Cc = “compensation capacitor")

Two interesting things happen

Low frequency input capacitance of second stage becomes large– Low frequency input capacitance of second stage becomes large –
exactly what we need for low ωp1

– At high frequencies, Cc turns M2 into a “diode connected device” –
low impedance, i.e. large ωp2 !
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Pole Splitting (2)

F th l CS/CE t l i f Ch t 4From the general CS/CE stage analysis of Chapter 4, we can 
approximate resulting poles and zeros as follows

– See also text, section 9.4.2

1
m2 2 1 C

1
p

g R R C
≅ − m2 C

2
1 2 C 1 2

g C
p

C C C (C C )
≅ −

+ +
m2

C

g
z

C
= +

Increasing Cc reduces ωp1, and increases ωp2

− A very nice “knob” for adjusting the phase margin of the circuit

The zero introduced due to Cc occurs at high frequencies and is not 
always troublesome

In cases where the zero affects stability, several options exists to y p
mitigate the problem

− Nulling resistor, cascode compensation, etc.

− See EE114, EE315A
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Pole Splitting (3)

Text, p. 642

c

cc
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Intuitive Derivation of Pole Split Using Shunt-Shunt Feedback

f(s) sC=m2 2 1g R R
a(s) = ff(s) sC= −

[ ]( ) [ ]( )1 1 c 2 2 c

a(s)
1 sR C C 1 sR C C

= −
+ + + +

( )Mag jω
a(s)

ω

1

f(s)
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Nested Miller Compensation

Text, p. 655

( )Mag jω

, p

Cm1
Cm2 Cm1

gm1, gm2

gm0, gm1, gm2

ω
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ω



Feedforward Compensation

e.g. Thandri, JSSC 2/2003

Parallel path through gm3 dominates 
transfer function at high frequencies 
and returns the circuit behavior back

|a(jω)|

and returns the circuit behavior back 
to first order

The doublet p1, z1 can make it 
difficult to achieve a fast transient

ω|pd| |p1| |z1|

φ(jω) difficult to achieve a fast transient 
response

– See Kamath, JSSC 12/1974 

ω

φ(jω)

– π
– π/2
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Feedback Zero Compensation

Example:Example:

Due to the zero introduced in the 
feedback network T(j ) behaves like a

( )Mag jω

a(s)
feedback network, T(jω) behaves like a 
first order system near unity crossover

Closed-loop bandwidth is approximately 
equal to the frequency of the zero in the

1

f(s)

( )

equal to the frequency of the zero in the 
feedback network

– Can be far beyond second pole
ω
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Introduction to Root Locus Techniques: Three Pole Amplifier

C id f db k t k i ti f f d lifi ith thConsider a feedback network consisting of a forward amplifier with three 
identical poles, and a feedback network with a constant transfer function f

0a
a(s) =

0
3

1 0

a

s
1

p aa(s)
A(s) T a f

⎛ ⎞
−⎜ ⎟

⎝ ⎠= = = =3

1

a(s)
s

1
p

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

0 03
0

3
0

1

1

A(s) T a f
a1 a(s)f s1 a f 1 T

s p1
p

= = = =
+ ⎛ ⎞+ − +⎜ ⎟⎛ ⎞ ⎝ ⎠−⎜ ⎟

⎝ ⎠

The poles of A(s) are therefore the solution to

3

0
1

s
1 T 0

p

⎛ ⎞
− + =⎜ ⎟

⎝ ⎠
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3

0

s
1 T
⎛ ⎞

− = −⎜ ⎟ 0
1

j60 j603 3 3 3

1 T
p

s s s
1 T T or 1 T e or 1 T e° − °

⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

( )

j60 j603 3 3 3
0 0 0 0

1 1 1

3
1 1 0

1 T T     or  1 T e    or  1 T e
p p p

s p 1 T

− = − = − − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= +( )
( )
( )

1 1 0

j603
2 1 0

j603
3 1 0

s p 1 T

s p 1 T e

s p 1 T e

°

− °

+

= −

= −

“root locus”

( )

( )

3 1 0

j603

p

0 1 Re T e °( )j603
0

3
0

0

0 1 Re T e

0 1 T cos(60 )

T 8

= −

= − °

⇒ =
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Root-Locus Method

We can generalize the above example to gain insight into the frequency 
response of any feedback amplifier by examining the “movement” of the closed-
loop poles in the s-plane as a function of the low-frequency loop gain, T0.

Consider a generalized feedback amplifier with both a and f dependent on 
frequency.

– a(s)vi vo
+

–

f(s)

vfb

A(s) �
vo(s)

vi(s)
= a(s)

1+ a(s)f(s)
= a(s)

1+ T(s)
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The poles of A(s) are the roots of 1 + T(s) 0The poles of A(s) are the roots of 1 + T(s) = 0.

In general,

2

 
a(s) = a0

1+ a1s + a2s
2 + ⋅ ⋅ ⋅

1+ b1s + b2s
2 + ⋅ ⋅ ⋅

= a0

Na(s)

Da(s)

andand

 
f(s) = f0

1+ c1s + c2s
2 + ⋅ ⋅ ⋅

1+ d1s + d2s
2 + ⋅ ⋅ ⋅

= f0
Nf (s)

Df (s)

Thus,

A(s) =
a0 Na(s)Df (s)

 
A(s) =

Da(s)Df (s) + T0 Na(s)Nf (s)

where T0 = a0f0 .
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The zeros of A(s) are the zeros of a(s) and the poles of f(s).

Th l f A( ) th t fThe poles of A(s) are the roots of :

 Da(s)Df (s) + T0 Na(s)Nf (s) = 0

As T0 increases from 0 to ∞, the poles of A(s) move in the 
s-plane from the poles of T(s) to the zeros of T(s).

The Root Locus is the paths the roots of 1 + T(s) = 0 trace in 
the s-plane as T0 varies from 0 to ∞.the s plane as T0 varies from 0 to .
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The root-locus construction rules follow from the equation

1+ T(s) = 1+ T0 ⋅
Na(s) ⋅Nf (s)

Da(s) ⋅Df (s)
= 0

or equivalentlyq y

 
T0 ⋅

Na(s) ⋅Nf (s)

Da(s) ⋅Df (s)
= −1

Thus

T0 ⋅
(1− s za1)(1− s za2) ⋅ ⋅ ⋅ (1− s zf1)(1− s zf2) ⋅ ⋅ ⋅
(1− s pa1)(1− s pa2) ⋅ ⋅ ⋅ (1− s pf1)(1− s pf2) ⋅ ⋅ ⋅

= −1
 ( a1)( a2) ( f1)( f2)

where

za1,za2,... = zeros of a(s)
zeros of T(s)

zf1,zf2,... = zeros of f(s)

pa1,pa2,... = poles of a(s)

l f f( )

zeros of T(s)

poles of T(s)
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  pf1,pf2,... = poles of f(s)



The above equation can be rewritten as

T0 ⋅
(−pa1)(−pa2) ⋅ ⋅ ⋅ (−pf1)(−pf2) ⋅ ⋅ ⋅
(−za1)(−za2) ⋅ ⋅ ⋅ (−zf1)(−zf2) ⋅ ⋅ ⋅
⎡

⎣
⎢

⎤

⎦
⎥

  
× (s − za1)(s − za2) ⋅ ⋅ ⋅ (s − zf1)(s − zf2) ⋅ ⋅ ⋅

(s − pa1)(s − pa2) ⋅ ⋅ ⋅ (s − pf1)(s − pf2) ⋅ ⋅ ⋅
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = −1

Expect all poles of T(s) to be in the left half plane (LHP).

If all zeros of T(s) are in the LHP, or if there are an even
number of zeros in the RHP then the first bracketed term innumber of zeros in the RHP, then the first bracketed term in 
the above equation is positive, in which case

T0 ⋅
pa1 pa2 ⋅ ⋅ ⋅ pf1 pf2 ⋅ ⋅ ⋅⎡

⎢
⎤
⎥T0 za1 za2 ⋅ ⋅ ⋅ zf1 zf2 ⋅ ⋅ ⋅⎣

⎢
⎢ ⎦

⎥
⎥

× (s − za1)(s − za2) ⋅ ⋅ ⋅ (s − zf1)(s − zf2) ⋅ ⋅ ⋅
(s − pa1)(s − pa2) ⋅ ⋅ ⋅ (s − pf1)(s − pf2) ⋅ ⋅ ⋅
⎡ 

⎣
⎢ 

⎤ 

⎦
⎥ = −1
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 (s pa1)(s pa2) (s pf1)(s pf2)⎣ ⎦ 

Values of s satisfying the above equation are the poles of A(s)Values of s satisfying the above equation are the poles of A(s). 
These values simultaneously fulfill both a phase condition and 
a magnitude condition, and these conditions define the points 
of the root locus.

Phase Condition

⎡ ⎤∠(s − za1) + ∠(s − za2) + ⋅ ⋅ ⋅ + ∠(s − zf1) + ∠(s − zf2) + ⋅ ⋅ ⋅⎡⎣ ⎤⎦
− ∠(s − pa1) + ∠(s − pa2) + ⋅ ⋅ ⋅ + ∠(s − pf1) + ∠(s − pf2) + ⋅ ⋅ ⋅⎡⎣ ⎤⎦

= (2n − 1)π

Magnitude Condition

 (2n 1)π

T0 ⋅
pa1 pa2 ⋅ ⋅ ⋅ pf1 pf2 ⋅ ⋅ ⋅

za1 za2 ⋅ ⋅ ⋅ zf1 zf2 ⋅ ⋅ ⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅
s − za1 s − za2 ⋅ ⋅ ⋅ s − zf1 s − zf2 ⋅ ⋅ ⋅

s − pa1 s − pa2 ⋅ ⋅ ⋅ s − pf1 s − pf2 ⋅ ⋅ ⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +1
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For the case where there are an odd number of zeros in the RHP, 
the magnitude condition remains the same as above, but the 
phase condition is changed.  Specifically,

 

T0 ⋅
pa1 pa2 ⋅ ⋅ ⋅ pf1 pf2 ⋅ ⋅ ⋅

za1 za2 ⋅ ⋅ ⋅ zf1 zf2 ⋅ ⋅ ⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅
s − za1 s − za2 ⋅ ⋅ ⋅ s − zf1 s − zf2 ⋅ ⋅ ⋅

s − pa1 s − pa2 ⋅ ⋅ ⋅ s − pf1 s − pf2 ⋅ ⋅ ⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +1

and

∠(s z ) + ∠(s z ) + + ∠(s z ) + ∠(s z ) +⎡⎣ ⎤⎦

 

∠(s − za1) + ∠(s − za2) + ⋅ ⋅ ⋅ + ∠(s − zf1) + ∠(s − zf2) + ⋅ ⋅ ⋅⎡⎣ ⎤⎦
− ∠(s − pa1) + ∠(s − pa2) + ⋅ ⋅ ⋅ + ∠(s − pf1) + ∠(s − pf2) + ⋅ ⋅ ⋅⎡⎣ ⎤⎦

= 2nπ
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The rules for constructing the root locus are based on the phaseThe rules for constructing the root locus are based on the phase 
condition.  The magnitude condition determines where, for a 
given T0, the poles of A(s) actually lie on along the locus.

To determine if a point X in the s-plane lies on the root locus, draw 
vectors from the poles and zeros of T(s) to the point X.  The 
angles of these vectors are then used to check the phase 
conditioncondition.

B. Murmann EE214 Winter 2010-11 – Chapter 6 34



Root-Locus Construction Rules

Rule 1:

Branches of the root locus start at the poles of T(s), where 
T0 = 0 and terminate on the zeros of T(s) where T0 = ∞T0  0, and terminate on the zeros of T(s), where T0  .  
If T(s) has more poles than zeros, some branches 
terminate at infinity.

Rule 2:

The root locus is located along the real axis whenever 
there is an odd number of poles and zeros of T(s) between 
that portion of the real axis and the origin of the s-plane.

Rule 3:Rule 3:

All segments of the locus on the real axis between pairs of 
poles, or pairs of zeros, must branch out from the real 
axis
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axis.

Rule 4:

Locus is symmetric with respect to the real axis because 
complex roots occur only in conjugate pairs.

Rule 5:Rule 5:

Branches leaving the real axis do so at right angles to it.

Rule 6:Rule 6:

Branches break away from the real axis at points where 
the vector sum of reciprocals of distances to the poles of 
T(s) equals the vector sum of reciprocals of distances to ( ) q p
the zeros of T(s).

Rule 7:

B h th t t i t t i fi it d t ti ll tBranches that terminate at infinity do so asymptotically to 
straight lines with angles to the real axis of 

(2n –1)π/(Np – Nz), 
where N = # of poles of T(s) and N = # of zeros of T(s)
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where Np = # of poles of T(s) and Nz = # of zeros of T(s).



R l 8Rule 8:

The asymptotes of the branches terminating at infinity all 
intersect the real axis at a single point given by

σa =
Σ poles of T(s)[ ]− Σ zeros of T(s)[ ]

Np − Nz
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2-Pole Example

jω

p2 p1
σ
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3-Pole Example 

Assume

T0

 
T(s) =

T0

(1− s / p1)(1− s / p2)(1− s / p3)

where

p1 = −1×106 sec−1

  

p2 = −2 ×106 sec−1

p3 = −4 ×106 sec−1
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3-Pole Example, cont’d

σa

σi
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Breakaway Point, σi

From Rule 6

1 1 1

Breakaway Point, σi

1
σi + 1

+ 1
σi + 2

+ 1
σi + 4

= 0

3
2

14 14 0 ∴ 3σi + 14σi + 14 = 0

σi = − 7
3

± 7
3

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

2

− 14
3

= − 1
3

7 ± 7( )3 3⎝ ⎠ 3 3

= −3.22 or −1.45

Since lies bet een p and pSince σi lies between p1 and p2, 

σi = −1.45 ×106 sec−1
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Asymptote Intercept, σa

From Rule 8

σ = (−1− 2 − 4) − 0 = 2 33 ×106 sec−1

Asymptote Intercept, σa

  
σa =

3
= −2.33 ×10 sec

To find the loop gain, T0, at which the poles moving from p1 and p2
b l b tit t th b k i t 1 45become complex, substitute the breakaway point, s = σi = –1.45, 
into the magnitude condition and solve for T0.

p1 p2 p3

 
T0

p1 p2 p3

s − p1 s − p2 s − p3

= 1

−1 45 + 1 −1 45 + 2 −1 45 + 3
∴ T0 =

1.45 + 1 1.45 + 2 1.45 + 3

(1)(2)(4)

= (0.45)(0.55)(2.55)

8
= 0.08
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8



The complex poles enter the RHP at approximately the points 
where their asymptotes cross the jω axis.  At these points

s = ± j(2 33) tan(60D) = ±4js = ± j(2.33) tan(60 ) = ±4j

Substituting into the magnitude condition and solving for T0

1 2 3
0

1 2 3

s p s p s p
T

p p p

4j 1 4j 2 4j 4

− − −
=

( )( )( )2 2 2 2 2

4j 1 4j 2 4j 4

(1)(2)(4)

4 1 4 2 4 4 17 20 32

+ + +
=

+ + +( )( )( ) 17 20 32

8 8
(4.1)(4.5)(5.7)

13.2
8

⋅ ⋅= =

= =
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8

Plotting the Root Locus in Matlab

% root locus example% root locus example
s = tf('s');
p1=-1; p2=-2; p3=-4;
a = 1 / [(1-s/p1)*(1-s/p2)*(1-/p3)]
rlocus(a)

8

10
Root Locus

rlocus(a)

2

4

6

A
xi

s
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-2

0

Im
ag

in
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3 Poles and 1 Zero

jω

p2 p1
σ

Introducing a zero in T(s) can be used to stabilize a feedback amplifier.  
The use of zeros in the feedback path is an important aspect of wideband 
amplifier design.
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amplifier design.

Matlab Plot

% root locus example% root locus example
s = tf('s');
z=-5; p1=-1; p2=-2; p3=-4;
a = (1-s/z) / [(1-s/p1)*(1-s/p2)*(1-s/p3)]
rlocus(a)

10

15
Root Locus

ocus(a)
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10

A
xi

s
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0

Im
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A
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Chapter 7
Wideband AmplifiersWideband Amplifiers

B. Murmann

Stanford University

Reading Material: Section 9.5.3, 9.5.4

Overview

How to build amplifiers with large gain and bandwidth?

Options we’ll look at

– Cascade of first order amplifier stages

Multi stage amplifiers with global feedback– Multi-stage amplifiers with global feedback

– Multi-stage amplifiers with local feedback
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Cascade of N First-Order Stages

Consider a cascade of N identical stages, each with the single-
pole response

A

 
A(jω) =

A0

1+ jω ωB
0 BGBW A= ω

If there is no interaction among the stages, then the overall 
transfer function of the cascade is

⎛ ⎞
N

 
AN(jω) =

A0

1+ jω ωB

⎛

⎝⎜
⎞

⎠⎟

N

In this caseIn this case

A0N = A0
N
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Th 3dB b d idth f th d i th f t hi hThe –3dB bandwidth of the cascade is the frequency, ωBN, at which

AN(jωBN) =
A0N

22

Thus,
A0

⎡
⎢

⎤
⎥

N

=
A0

N

1+ (ωBN ωB)2
⎣

⎢
⎢

⎦

⎥
⎥

=
2

2

 1+ (ωBN ωB)
2 = 21 N

1 N2 1 N 1 N NGBW A 2 1 A1 N
BN B 2 1ω = ω ⋅ − N 1 N N

N 0 B 0 BGBW A 2 1 A= ω ⋅ − < ω
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Bandwidth Shrinkage

1

0.8

1

0.4

0.6
2

1
N 1−

0 2 4 6 8 10
0.2

N
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Ideal Lowpass Response

Suppose each stage in the cascade of N identical stages had an ideal 
lowpass response; that is, a magnitude response with an abrupt band 
edge transition between the passband and the stopband:

A0

|A(jω)|

NGBW A

ω

N
N 0 BGBW A⇒ = ω

ωωB

In the design of wideband amplifiers it is therefore often desirable to 
h h h b d d t iti th i bt i d ithhave a much sharper band-edge transition than is obtained with a 
cascade of identical single-pole stages.
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Maximally Flat Magnitude (MFM) Response

An approximation to the ideal lowpass response that is commonly used in 
broadband amplifier design is the Maximally Flat Magnitude (MFM), or 
Butterworth responseButterworth, response.

The MFM response provides a magnitude (gain) that is flat over as much 
of the passband as possible and decreases monotonically with frequency 
(i ki ) It i bt i d b tti d i ti f th(i.e. no peaking).  It is obtained by setting as many derivatives of the 
magnitude with respect to frequency as possible to zero at ω = 0.

For an nth-order MFM response,

dk H(jω)
= 0 for 1 ≤ k ≤ 2n − 1

dωk

ω=0

0 for 1 ≤ k ≤ 2n 1
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Th lti it d iThe resulting magnitude response is

H(jω) = 1

1+ ( B)2n1+ (ω B)2n

where n is the order of the response, B is the bandwidth of the ideal 
lowpass response, and the magnitude has been normalized to unity p p , g y
at ω = 0.

1

|H(jω)|

n=1 n=2

1

n=3

B ω
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There is no peaking in the MFM response, and as n increases the band 
edge transition becomes sharper.  In the limit as n ∞, the MFM response 
approaches the ideal lowpass response.

To determine the location of the poles of H(s), note that

H(jω)
2

= H(jω) ⋅H(− jω)

= H(s) ⋅H(−s)
s= jω

Thus, for an MFM response, p

H(s) ⋅H(−s) = 1

1+ (s jB)2n
= j2n

j2n + (s B)2n

 
= (−1)n

(−1)n + (s B)2n

B. Murmann EE214 Winter 2010-11 – Chapter 7 9

The poles of H(s)×H(–s) are the 2n roots satisfying

s

B

⎛
⎝⎜

⎞
⎠⎟

2n

= −(−1)n = (−1)n+1

Th t li ll d i l i th l t d tThese roots lie equally spaced on a circle in the s-plane centered at 
the origin with radius B.

The LHP roots are taken to be the poles of H(s), while those in the 
RHP d d th l f H( )RHP are regarded as the poles of H(–s).
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MFM Pole Locations

n = 1

 p1 = −B
jω

–B σ

pi = Bej3π 4, Bej5π 4

n = 2

jω

45º

B

σ
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pi = Bej2π 3, Bejπ, Bej4π 3

n = 3

 pi , ,

jω

60º

σ
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MFM Transient Response

A potential disadvantage of the MFM response is that there is an 
overshoot in the step response when n ≥ 2.  This may be an important 
consideration in applications such as pulse amplifiers.

For a step input at t=0

Vo(t) n=3Vo(t)

n=1

3

t

n=2

n = 2 4% overshoot

n = 3 8% overshoot
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Comparison of 2-Pole Responses

Angle of
Poles

–3dB
BW

Overshoot
10-90%

Rise TimePoles BW Rise Time

Coincident
poles

0° 0.64B 0 3.4/B

MFM
(Butterworth)

45° B 4% 2.2/B

Chebyshev
(1-dB ripple)

60° 1.3B 16% 1.6/B

Bessel 30° 0 8B 0 4% 2 7/B

More in 
EE315A

Bessel 30 0.8B 0.4% 2.7/B
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Wideband Amplification Using Multi-Stage Feedback

At most three gain stages can be effectively used within a single feedback 
loop.  Therefore, there are four basic configurations.

+

+

+

–
vo

RE
RF

+

–
vi ~

Series-Shunt Pair AV0 =
vo

vi

≈
RF

RE
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i

+

io

R
RF

ii AI0 =
io
ii

≈
RF

RE

RE
F

Shunt-Series Pair
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+

io

+

+
vi ~

RE2

RF
RE1

–

A0 =
io
vi

≈
RF + RE1 + RE2

RE1 ⋅RE2i E1 E2

Series-Series Triple
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+

+
vo

RF

ii
–

F

A0 =
vo

ii
≈ RF

i

Shunt-Shunt Triple
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Analysis of Shunt-Series Pair

+

R R

Q2

io
RC1 RC2

ZL

R

ii

Q1

ZL

RE

RF

Assume ZL ≈ 0 and RS ≈ ∞
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Application Example: Optical Fiber Links (1)

K. Ohhata et al., “A Wide-Dynamic-Range, High-
Transimpedance Si Bipolar Preamplifier IC for 10-Gb/s 
Optical Fiber Links,” JSSC 1/1999.
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Circuit Implementation

Ohhata, 
JSSC 1/1999
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Small-signal equivalent circuit for evaluating the open-loop 
response of the shunt-series pair:

ioRC1

Q2

i

Q1

i
ifb

iE2

RE

RF
ii ifb

RFRE

fb
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Note that in BJT amplifiers with a series output stage, the feedback 
network does not sample the output, io, directly, but rather the 
emitter current of Q2, iE2.  Thus, a(s) and f(s) are defined as follows:

a(s) �
iE2

ii

  
f(s) �

ifb
iE2

For these definitions

A(s) �
io
i

= −α2

a(s)

1+ a(s)f(s)

⎛
⎝⎜

⎞
⎠⎟  ii

2 1+ a(s)f(s)⎝⎜ ⎠⎟

where α2 is the common-base current gain of Q2
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The feedback response f(s) for the shunt-series pairThe feedback response, f(s), for the shunt-series pair 
(w/o compensation) is simply

f(s) =
ifb = −

RE

To estimate the forward path response, a(s), begin with 

 
f(s)

iE2 RE + RF

p p ( ) g
the following small-signal equivalent circuit:

Cμ1 Cμ2 io

R1 Cπ1 gm1v1

RC1 rπ2 Cπ2 gm2vb

+

–
vb

+

–
v1ii

+

–
v2

iE2 RE
*

 R1 = (RF + RE) || rπ1

RE
* = RE ||RF
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 RE RE ||RF



First consider the transmission from the base to the emitter 
of the second stage

iE2= (v2 − iE2RE
* )(g 2 + Y 2) iE2 (v2 iE2RE)(gm2 + Yπ2)

where

Y 2 � g 2 + sC 2  Yπ2 gπ2 + sCπ2

Thus,

i 1 R* ( Y )⎡ ⎤ ( Y )iE2 1+ RE(gm2 + Yπ2)⎡
⎣

⎤
⎦ = v2(gm2 + Yπ2)

iE2 gm2 + Yπ2∴ E2

v2

=
gm2 π2

1+ RE
* (gm2 + Yπ2)
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gm2 + Yπ2 = gm2 +
gm2

β0

+ sCπ2 ≅ gm2 + sCπ2

C 2
⎛ ⎞ ( )= gm2 1+ s

Cπ2

gm2

⎛

⎝⎜
⎞

⎠⎟
= gm2 1+ sτT2( )

ThereforeTherefore,

iE2

v2

=
gm2(1+ sτT2)

1+ g R* + sR* Cv2 1+ gm2RE + sRECπ2

=
gm2

⎛
⎜

⎞
⎟

1+ sτT2

⎡
⎢
⎢
⎢

⎤
⎥
⎥
⎥=

gm2
⎛
⎜

⎞
⎟

1+ sτT2

⎡
⎢
⎢
⎢

⎤
⎥
⎥
⎥

 

=
1+ gm2RE

*⎝
⎜

⎠
⎟

1+ s
RE

* Cπ2

1+ gm2RE
*

⎛

⎝
⎜

⎞

⎠
⎟

⎣

⎢
⎢
⎢

⎦

⎥
⎥
⎥

=
1+ gm2RE

*⎝
⎜

⎠
⎟

1+ sτT2

gm2RE
*

1+ gm2RE
*

⎛

⎝
⎜

⎞

⎠
⎟

⎣

⎢
⎢
⎢

⎦

⎥
⎥
⎥
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jω
–ωT2

σ

−ωT2

1+ gm2RE
*

R*

⎛

⎝
⎜

⎞

⎠
⎟

Thus, the second stage is very broadband, and the pole-zero 

T2 gm2RE⎝
⎜

⎠
⎟

pair associated with it can usually be neglected.  In that case,

iE2 ≅
gm2 � g

v2

≅
1+ gm2RE

*
� gm2eq

Also, io = − α2iE2 ≅ − iE2
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, o 2 E2 E2

The main influence of the series feedback stage on a(s) is the 
loading on Q1.  We can model the loading using the following 
approximation for the input impedance of the series feedback stage:

rπ2eq Cπ2eqCμ2

+
v2 rπ2eq Cπ2eqCμ2
–

2

where

rπ2eq = rπ2(1+ gm2RE
* ) ≅ rπ2gm2RE

* = β02RE
*

 

Cπ2eq =
Cπ2

1+ gm2RE
*

≅
Cπ2

gm2

1

RE
*

⎛

⎝
⎜

⎞

⎠
⎟ =

τT2

RE
*
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Thus, the equivalent circuit for determining the open-loop response 
v2(s)/ii(s) is simply:

R1 Cπ1

Cμ1

gm1v1 RL1

+
v1ii

+
v2CL1

– –

where

R1 = rπ1 || (RF + RE)

R R || R || β R*RL1 = RC1 || rπ2eq ≅ RC1 || β02RE

CL1 = Ccs1 + Cμ2 + Cπ2eq ≅ Ccs1 + Cμ2 +
τT2

RE
*
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 E

Since
a(s) �

iE2 =
iE2

⎛
⎜

⎞
⎟

v2
⎛
⎜

⎞
⎟

 
a(s)

ii v2⎝⎜ ⎠⎟ ii⎝⎜ ⎠⎟

and
iE2 ≅ g 2 =

gm2 ≅ 1

 
v2

≅ gm2eq 1+ gm2RE
*

≅
RE

*

⎛ ⎞⎡ ⎤ ( )⎡ ⎤
we find

a(s) = − gm1R1

RL1

RE
*

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1− s z1( )
1+ b1s + b2s

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Where (see Chapter 4)

1 1 1 1 L1 L1 1 m1 1 L1 1b R (C C ) R (C C ) g R R Cπ μ μ μ= + + + +

z1 = +
gm1

C

b2 = R1RL1(Cπ1CL1 + Cπ1Cμ1 + CL1Cμ1)
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If a dominant pole condition exists, with |p1| << |p2|, then

p1 ≅ − 1

b

 

b1

= − 1

R1Cπ1 + RL1CL1 + gm1R1RL1Cμ1

and

1 R C + R C + g R R C
p2 = 1

b2p1

≅ −
R1Cπ1 + RL1CL1 + gm1R1RL1Cμ1

R1Cπ1RL1CL1

= − 1 + 1 +
gm1Cμ1

⎛
⎜

⎞
⎟

 

=
R1Cπ1

+
RL1CL1

+
Cπ1CL1⎝

⎜
⎠
⎟
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In the s-plane
jω

p2 p1
σ

Unfortunately, non-dominant poles (and RHP zeros) of T(s) 
tend to push the poles of A(s) toward the RHP
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Feedback (Phantom) Zeros

The flat bandwidth and loop gain achievable in a shunt-series pair 
can be increased significantly by introducing a feedback (phantom) 

Thi i li h d b i l di it C i h t ithzero.  This is accomplished by including a capacitor, CF, in shunt with 
RF; the feedback network then becomes:

CF

ifb

RE
RF iE2
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Neglecting the loading of CF at the input and the emitter of Q2 in theNeglecting the loading of CF at the input and the emitter of Q2 in the 
forward path (since it appears in shunt with RE), a(s) remains the 
same as w/o CF.  However,

 
f(s) = −

RE

RE + RF

⎛

⎝⎜
⎞

⎠⎟
1− s zF

1− s pF

⎛

⎝⎜
⎞

⎠⎟

where

zF = − 1

RFCF

1 RF + RE

where

 
pF = − 1

(RF ||RE)CF

= −
RF + RE

RFRECF

Since A ≅ (R + R ) R Since A0 ≅ (RF + RE) RE

pF = A0 zF
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Since CF is chosen so that |zF| is on the order of the bandwidth of 
A(s), pF can be ignored unless the low-frequency closed loop gain, 
A0, is small.  Thus,

f(s) ≅ −
RE

⎛

⎝⎜
⎞

⎠⎟
(1− sRFCF)( )

RE + RF⎝⎜ ⎠⎟
( F F)

CF is chosen so as to obtain the desired closed-loop pole 
positions.  For example, for an MFM response:p p , p

jω

p2 σzF

σi

p2

p1

σzF
45º
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If zF is reasonably remote from p1 and p2, then

σi =
p1 + p2

2 2

The root locus is a circle of radius |zF – σi| centered at zF. For each 
branch of the locus there are two intersections with the two lines at 
45° to the negative real axis that correspond to an MFM response45 to the negative real axis that correspond to an MFM response. 

If |zF| >> |σi|, then for an MFM response 

 B = 2 zF

and the closed-loop pole positions, s1 and s2, arep p p , 1 2,

 
s1,s2 ≅ zF (−1± j) = B

2
(−1± j)
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The loop gain, T0, needed to place the closed-loop poles at these 
positions is

T0 =
s1 − p1 s2 − p2

p1 p2

= B2

p1 p2

2
2

C C

 

=
2 zF

p1 p2

=
2R1Cπ1RL1CL1

(RFCF)2
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Broadband Amplifier Design with Local Feedback

Rein & Moller, JSSC 8/1996

In a cascade of amplifier stages, the interaction (loading) between adjacent 
stages can be reduced by alternating local series and shunt feedback circuits.
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Advantages & Disadvantages of Local Feedback Cascades

Advantages

N i bili• No instability

• Lower gain sensitivity to component and device parameter 
variations than amplifiers without local feedback

Disadvantages

Hi h i iti it (l l i ) th lti t• Higher gain sensitivity (less loop gain) than multi-stage 
feedback amplifiers (i.e. multi-stage amplifiers with global 
feedback)

• Bandwidth obtainable is typically slightly less than that• Bandwidth obtainable is typically slightly less than that 
possible in multi-stage feedback amplifiers 
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Application Example (1)

Poulton, ISSCC 2003
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Application Example (2)

Poulton, ISSCC 2003
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Application Example (3)

Poulton, ISSCC 2003

BW ~ 6 GHz
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BW ~ 6 GHz



Cherry-Hooper Amplifier

+

RF

RE

Shunt F/B

Series F/B
Stage

Stage

E. Cherry and D. Hooper, Proc. IEE, Feb. 1963
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Analysis

( )o F
F

in E E

v R1
A(0) R

v R R

⎛ ⎞
= ≅ − − =⎜ ⎟

⎝ ⎠

Thus, the low-frequency gain is approximately equal to the ratio of the 
two feedback resistors, and is therefore insensitive to component and , p
device parameter values

While the series feedback stage usually has a large bandwidth, there is 
considerable interaction between the input and output nodes of the p p
shunt feedback stage. However this interaction can be controlled and 
can be used to position the poles to achieve a particular response, such 
as MFM.

To see how the pole positions in a local feedback cascade can be 
controlled, we first consider the local feedback stages individually
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Series Feedback Stage

Small-signal equivalent circuit:

CμRS io

rπ Cπ

μ

gmv1 ZL
vi ~

+

–
v1

 S o

RE

+

–
vE

Include transistor rb in RS

Neglect rμ, ro, re, and rcNeglect rμ, ro, re, and rc

Assume that ZL ≈ 0; then there is no Milller effect and Cμ is just a 
(small) capacitance to ground which often has negligible impact.
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DefineDefine

  
Yπ � 1

rπ

+ sCπ

Then

vi − (v1 + vE)

RS

= v1Yπ
 S

 
v1Yπ + gmv1 =

vE

RE

Substituting for vE in the first of these two equations

vi − v1 1+ (gm + Yπ )RE
⎡⎣ ⎤⎦ = v1YπRS i 1 (gm π ) E⎣ ⎦ 1 π S

∴
v1

vi

= 1

1+ (gm + Yπ )RE + YπRS
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Since io = –gmv1

io gmo

vi

= − m

1+ gmRE + (RS + RE)Yπ

g⎛ ⎞ 1

⎡
⎢
⎢

⎤
⎥
⎥= −

gm

1+ gmRE

⎛

⎝⎜
⎞

⎠⎟
1

1+
RS + RE

1+ gmRE

⎛

⎝⎜
⎞

⎠⎟
1
rπ

+ sCπ

⎛

⎝⎜
⎞

⎠⎟⎣

⎢
⎢
⎢
⎢ ⎦

⎥
⎥
⎥
⎥

= −
gm

1+ gmRE

⎛

⎝⎜
⎞

⎠⎟
1

1
RS + RE

⎛ ⎞ 1⎛ ⎞
C

RS + RE
⎛ ⎞

⎡
⎢
⎢
⎢
⎢

⎤
⎥
⎥
⎥
⎥

gm E⎝ ⎠
1+ S E

rπ⎝⎜ ⎠⎟
1

1+ gmRE⎝⎜ ⎠⎟
+ sCπ

S E

1+ gmRE⎝⎜ ⎠⎟⎣
⎢
⎢ ⎦

⎥
⎥
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UsuallyUsually,

RS + RE

rπ

⎛

⎝⎜
⎞

⎠⎟
1

1+ gmRE

⎛

⎝⎜
⎞

⎠⎟
=

gm(RS + RE)

β0

1

1+ gmRE

⎛

⎝⎜
⎞

⎠⎟
<< 1

 π⎝ ⎠ gm E⎝ ⎠ β0 gm E⎝ ⎠

Then
i 1⎛ ⎞io
vi

≅ −gmeq

1

1− s p1

⎛

⎝⎜
⎞

⎠⎟

wherewhere

 
gmeq =

gm

1+ gmRE

⎛ ⎞ ⎛ ⎞
p1 = −

1+ gmRE

Cπ

⎛

⎝⎜
⎞

⎠⎟
1

RE + RS

⎛

⎝⎜
⎞

⎠⎟
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If gmRE >> 1

 
gmeq ≅ 1

RE

C Cg R R R+⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

and

m E E E
1 T T

E S E S E S

C Cg R R R
p

C R R C R R R R
π μ

π π

+⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
≅ − = −ω ≅ −ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Note that this result corresponds to the dominant time constant 
found via ZVTC analysis in handout 7.

Thus, for RE >> RS, p1 → – ωT.  In some cases, the bandwidth 
may then be actually limited by Cμ (which was neglected in this 
analysis).
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Emitter Peaking

The bandwidth of the series feedback stage can be increased by 
introducing an “emitter peaking” capacitor in shunt with RE.

i

Q1

RS

io

N l b
+

~

RE CE

Not a large bypass 
capacitor–

vi

To analyze this circuit, substitute ZE for RE in the preceding 
analysis whereanalysis, where

 
ZE = 1

YE

=
RE

1+ sRECE
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Then, defining τE � RECE and assuming τT ≅

Cπ

gm

i gio
vi

= −
gm

1+ gmZE + (RS + ZE)(
1
rπ

+ sCπ )

g
= −

gm

1+
RS

rπ

+ sCπRS +
RE

1+ sτE

⎛

⎝⎜
⎞

⎠⎟
gm + 1

rπ

+ sCπ

⎛

⎝⎜
⎞

⎠⎟

� −
gm

1+
RS

rπ

+ sCπRS +
gmRE

1+ sτE

⎛

⎝⎜
⎞

⎠⎟
1+ s

Cπ

gm

⎛

⎝⎜
⎞

⎠⎟

since gm >> 1

rπ

  π E m

B. Murmann EE214 Winter 2010-11 – Chapter 7 51

i g

 

∴
io
vi

≅ −
gm

1+
RS

rπ

+ sCπRS + gmRE

1+ sτT

1+ sτE

⎛

⎝⎜
⎞

⎠⎟

If CE is chosen so that 

τE = τT 

and it is true that

gmRE >>
RS =

gmRS

β 
gm E rπ β0

Then
⎡
⎢

⎤
⎥

io
vi

≅ −
gm

1+ gmRE

⎛

⎝⎜
⎞

⎠⎟
1

1+ sCπ
RS

1+ g R

⎛

⎝⎜
⎞

⎠⎟⎣

⎢
⎢
⎢
⎢
⎢ ⎦

⎥
⎥
⎥
⎥
⎥
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1+ gmRE⎝ ⎠⎣⎢ ⎦⎥



Th lt i i l l ithThe result is a single-pole response with

p1 = −
1+ gmRE

RSCπ

≅ −ωT

RE

RS

⎛

⎝⎜
⎞

⎠⎟ S π S⎝ ⎠

In this case, if RE > RS, then |p1| > ωT (!)
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Note that τE > τT results in a pole-zero separation that can cause 
peaking in the frequency response

jω

p2 p1

j

σz1

|io/vi|

|p1||z1| |p2|
ω
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|p1||z1| |p2|



Shunt Feedback Stage

Small-signal equivalent circuit

CF

RF

rπ Cπ gmv1 RLii
+

–
v1

+

–
voCL

Include transistor Cμ in CF

Neglect R or include it in rNeglect RS or include it in rπ

Neglect rb, rc, re, and rμ

Include ro and Ccs in RL and CL
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D fiDefine

τF � RFCF

τL � RLCLL L L

and

1 1 1
YF = 1

RF

+ sCF = 1

RF

(1+ sCFRF) = 1

RF

(1+ sτF)

YL = 1

R
+ sCL = 1

R
(1+ sτL)

 

L RL
L RL

( L)

Yπ = 1

rπ

+ sCπ
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From the equivalent circuit:From the equivalent circuit:

 ii + (vo − v1)YF = v1Yπ (1)

v Y + g v + (v − v )Y = 0 (2) voYL + gmv1 + (vo − v1)YF = 0 (2)

Then from (2)
Y + Y⎛ ⎞

v1 = −vo

YL + YF

gm − YF

⎛

⎝⎜
⎞

⎠⎟

Substituting in (1)Substituting in (1)

ii + vo YF +
YL + YF

gm − YF

⎛

⎝⎜
⎞

⎠⎟
(Yπ + YF)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0
m F⎣ ⎦

 
∴

vo

ii
= −

gm − YF

(gm − YF)YF + (YL + YF)(Yπ + YF)
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Assuming that  gm >> 1/RF = GF

gm − YF = gm − (GF + sCF) ≅ gm − sCF

ThenThen

vo

ii
≅ −

gm − sCF

(gm − sCF)(GF + sCF) + (GL + GF) + s(CL + CF)⎡⎣ ⎤⎦ (gπ + GF) + s(Cπ + CF)⎡⎣ ⎤⎦ i (gm F)( F F) ( L F) ( L F)⎣ ⎦ (gπ F) ( π F)⎣ ⎦

Thus
C

 

vo

ii
≅ −

gm − sCF

a0 + a1s + a2s
2

where

a0 = gmGF + (GL + GF)(gπ + GF)

a1 = (gm − GF)CF + (GL + GF)(Cπ + CF) + (gπ + GF)(CL + CF)

a C C + C C + C C
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a2 = CLCπ + CLCF + CπCF



Further assuming that gm >> GL, RF >> rπ, Cπ >> CF, and noting g gm L, F π, π F, g
that gm >> gπ

a0 ≅ gm RF

a ≅ g C + (G + G )C + g (C + C )

 

a1 ≅ gmCF + (GL + GF)Cπ + gπ(CL + CF)

a2 ≅ Cπ(CL + CF)

Then

vo

ii
≅ −

RF(1− s z1)

1+ b1s + b2s
2

where

b1 = a1 a0 ≅ RFCF +
RF + RL

RL

⎛

⎝⎜
⎞

⎠⎟
τT +

RF

β0

(CL + CF)

b a a ≅ R (C + C )τ b2 = a2 a1 ≅ RF(CL + CF)τT

z1 = + gm CF
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Often b1 ≅ RFCF

z is a feedforward zero that is located in the RHPz1 is a feedforward zero that is located in the RHP.

Since it was assumed that Cπ >> CF

gm

 
z1 >>

gm

Cπ

≅ ωT

In these circumstances the feedforward zero can usually beIn these circumstances the feedforward zero can usually be 
neglected, and the shunt feedback stage has an approximate 
2-pole response.

o Fv R

( )( )
o F

i 1 2i 1 s p 1 s p
= −

− −

The poles p and p may be complexThe poles p1 and p2 may be complex.  

CF can be used to alter the positions of the poles.
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For example, CF can be chosen to provide a 2-pole MFM 
response:

jω

p1

σ

45º

–B

p2

 

b2 = 1

p1p2

= 1

p1
2

= 1

B2
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1 1

Thus,

3dB
2 F F L T

1 1

b R (C C )
−ω = =

+ τ

If CF << CL

3dB
F L T

1

R C
−ω ≅

τ

Further insight can be gained from this result by considering the input
capacitance of the overall Cherry-Hooper amplifier, which is 

i t l C /( R ) If th t C k C /( R ) k /Rapproximately Cπ/(gmRE). If we assume that CL ≅ k·Cπ/(gmRE) = k·τT/RE

E E TR R1 1 1⎛ ⎞ ⎛ ⎞ ω
⎜ ⎟ ⎜ ⎟E E T

3dB T
F T Fk R k R k A(0)

−ω ≅ = ω =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟τ ⋅⎝ ⎠ ⎝ ⎠
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Since the overall low-frequency gain, A02, of the cascade is

A =
RF

 
A02 =

RE

the per-stage gain-bandwidth product, GB2, isp g g p 2

1/2
2 02 3dBGB (A ) −= ⋅ ω

⎛ ⎞ ⎛ ⎞
F E T

T
E F

R R1

R k R k

⎛ ⎞ ⎛ ⎞ ω= ⋅ ω =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Thus, the amplifier approaches the ideal gain-bandwidth product 
limit for a cascade of identical stages (k=1); there is no 
bandwidth shrinkage.
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The value of CF that provides a 2-pole MFM response can be found 
as follows.  Realize that

 
b1 = − 1

p1

+ 1

p2

⎛

⎝⎜
⎞

⎠⎟
= −

p1 + p2

p1p2

p1 and p2 are complex conjugates at 45° for an MFM response

p1 = σ1 + jω1

p2 = σ1 − jω1

wherewhere

 
−σ1 = ω1 = B

2
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ThThus

b1 ≅ RFCF =
2 B 2( )

B2
= 2

B1 F F B2 B

From the earlier analysis, for CF << CL

2 F L T

1 1
B

b R C
= ≅

τ

Therefore

⎛ ⎞ F L T L
F T

F F F

2R C 2C1 2
C

R B R R

⎛ ⎞ τ
= = = ⋅ τ⎜ ⎟

⎝ ⎠
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Chapter 8

Noise Analysisy

B. Murmann

Stanford University

Reading Material: Sections 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.9

Types of Noise

"Man made noise” or interference noise

– Signal coupling

– Substrate coupling

– Finite power supply rejection

– Solutions

• Fully differential circuits

• Layout techniques

"Electronic noise" or "device noise" (focus of this discussion)Electronic noise  or device noise  (focus of this discussion)

– Fundamental

• E.g. "thermal noise" caused by random motion of carriers

– Technology relatedTechnology related

• "Flicker noise" caused by material defects and "roughness"
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Significance of Electronic Noise (1)

Signal-to-Noise Ratio

2
signal signal

2
i

P V
SNR

P V
= ∝

g

noise noiseP V
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Significance of Electronic Noise (2)

Th "fid lit " f l t i t i ft d t i d b th i SNRThe "fidelity" of electronic systems is often determined by their SNR

– Examples
• Audio systems

• Imagers cameras• Imagers, cameras

• Wireless and wireline transceivers

Electronic noise directly trades with power dissipation and speed

Noise has become increasingly important in modern technologies with 
reduced supply voltages

– SNR ~ Vsignal
2/Vnoise

2 ~ (αVDD)2/Vnoise
2

Topics

− How to model noise of circuit componentsHow to model noise of circuit components

− How to calculate/simulate the noise performance of a complete circuit

• In which circuits and applications does thermal noise matter?
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Ideal Resistor

i(t)( )

1V/1kΩ

Constant current, independent of time

Non-physical

– In a physical resistor, carriers "randomly" collide with lattice atoms, 
giving rise to small current variations over time
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Physical Resistor

i(t)

1V/1kΩ1V/1kΩ

"Thermal Noise" or "Johnson Noise"

– J.B. Johnson, "Thermal Agitation of Electricity in Conductors," Phys. , g y , y
Rev., pp. 97-109, July 1928

Can model random current component using a noise current source in(t)
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Properties of Thermal Noise

Present in any conductor

Independent of DC current flowp

Instantaneous noise value is unpredictable since it is a result of a large 
number of random, superimposed collisions with relaxation time 
constants of τ ≅ 0.17psp

– Consequences:

• Gaussian amplitude distribution

• Knowing in(t) does not help predict in(t+Δt), unless Δt is on the g n( ) p p n( ),
order of 0.17ps (cannot sample signals this fast)

• The power generated by thermal noise is spread up to very high 
frequencies (1/τ ≅ 6,000Grad/s)

The only predictable property of thermal noise is its average power!  
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Average Power

F d t i i ti t i l ith i d T th iFor a deterministic current signal with period T, the average power is

( )
T/2

2
av

1
P i t R dt

T
= ⋅ ⋅∫

T/2
T −
∫

This definition can be extended to random signals

( )
T/2

2
n n

T

1
P lim i t R dt

T→
= ⋅ ⋅∫

Assuming a real, stationary and ergodic random process, we can write

T
T/2

T→∞
−
∫

For notational convenience, we typically drop R in the above expression 
and work with "mean square" currents (or voltages)

( )
T/2

2 2
n n

T
T/2

1
i lim i t dt

T→∞
−

= ⋅∫

and work with mean square  currents (or voltages)
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Thermal Noise Spectrum

Th ll d t l d it (PSD) h h hThe so-called power spectral density (PSD) shows how much power a 
signal caries at a particular frequency

In the case of thermal noise, the power is spread uniformly up to very 
hi h f i ( b t 10% d t 2 000GH )high frequencies (about 10% drop at 2,000GHz)  

PSD(f)

f

n0

f

The total average noise power Pn in a particular frequency band is found 
by integrating the PSD

( )
2

1

f

n
f

P PSD f df= ⋅∫
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Thermal Noise Power

Nyquist showed that the noise PSD of a resistor is

( ) 0PSD f n 4 kT= = ⋅

k is the Boltzmann constant and T is the absolute temperaturek is the Boltzmann constant and T is the absolute temperature

4kT = 1.66·10-20 Joules at room temperature

The total average noise power of a resistor in a certain frequency band 

( )
2f

n 2 1P 4kT df 4kT f f 4kT f= ⋅ = ⋅ − = ⋅ Δ∫

is therefore 

( )
1

n 2 1
f
∫
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Equivalent Noise Generators

We can model the noise using either an equivalent voltage or current 
generator

2 n
n

P 1
i 4kT f

R R
= = ⋅ ⋅ Δ2

n nv P R 4kT R f= ⋅ = ⋅ ⋅ Δ

2 2
18n

For R 1kΩ:

v V
16 10−

=

=
2 2

24n

For R 1kΩ:

i A
16 10−

=

2
n

16 10
f Hz

v
4nV / Hz

f

= ⋅
Δ

=
Δ

24n

2
n

16 10
f Hz

i
4pA / Hz

= ⋅
Δ

=

2
n

f

f 1MHz v 4 V

Δ

Δ = ⇒ = μ 2
n

4pA / Hz
f

f 1MHz i 4nA

Δ

Δ = ⇒ =
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Two Resistors in Series

( )22 2 2
n n1 n2 n1 n2 n1 n2v v v v v 2 v v= − = + − ⋅ ⋅

Since vn1(t) and vn2(t) are statistically independent, we have

( )2 2 2
n n1 n2 1 2v v v 4 kT R R f= + = ⋅ ⋅ + ⋅ Δ

Al b t dd i d d t i iAlways remember to add independent noise sources using mean 
squared quantities

– Never add RMS values!
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MOSFET Thermal Noise (1)

The noise of a MOSFET operating in the triode region is approximately 
equal to that of a resistor

In the saturation region, the thermal noise of a MOSFET can be g ,
modeled using a drain current source with spectral density

2
d mi 4kT g f= ⋅ γ ⋅ ⋅ Δd mi 4kT g fγ Δ

For an idealized long channel MOSFET, it can be shown that  γ=2/3

For the past 10-15 years, researchers have been debating the value of γ
in short channels

Preliminary (wrong) results had suggested that in short channels γ canPreliminary (wrong) results had suggested that in short channels γ can 
be as high as 5 due to “hot carrier” effects
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MOSFET Thermal Noise (2)

[Scholten]

At moderate gate bias in strong inversion, short-channel MOSFETS 
have γ ≅ 1γ
– A. J. Scholten et al., "Noise modeling for RF CMOS circuit simulation," IEEE 

Trans. Electron Devices, pp. 618-632, Mar. 2003.
– R. P. Jindal, "Compact Noise Models for MOSFETs," IEEE Trans. Electron 

Devices, pp. 2051-2061, Sep. 2006.
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Thermal Noise in EE214 MOSFET Devices

γ ≅ 0.85

γ ≅ 0.7

Parameter γ depends on biasing conditions, but is roughly constant within 
a reasonable range of gm/ID used for analog design

The EE214 HSpice models become inaccurate for sub-threshold operation
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Spice Simulation (1)

* EE214 MOS device noise simulation

d dd 0 0 9vd      dd  0  0.9

vm      dd  d  0 

vg      g   0  dc 0.7 ac 1

mn1     d   g  0  0  nmos214  L=0.18u W=10u

h1 c 0 ccvs vm 1h1      c   0  ccvs  vm  1

.op

.ac dec 100 10k 1gig

.noise v(c) vg.noise v(c) vg

.options post brief

.inc './ee214_hspice.sp'

.end
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Spice Simulation (2)

(gm=3.14mS)
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1/f Noise

Also called "flicker noise" or "pink noise"Also called "flicker noise" or "pink noise"
– Caused by traps near Si/SiO2 interface that randomly capture and 

release carriers
– Occurs in virtually any device, but is most pronounced in MOSFETSy y , p

Several (empirical) expressions exist to model flicker noise
– The following expression is used in the EE214 HSpice models

2
2 f m
1/ f

ox

K g f
i

C W L f

Δ=
⋅

For other models, see HSpice manual or
– D. Xie et al., "SPICE Models for Flicker Noise in n-MOSFETs from 

Subthreshold to Strong Inversion," IEEE Trans. CAD, Nov. 2000

Kf is strongly dependent on technology; numbers for EE214:
– Kf,NMOS = 0.5·10-25 V2F
– Kf,PMOS = 0.25·10-25 V2F
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1/f Noise Corner Frequency 

B d fi iti th f t hi h th fli k i d it l thBy definition, the frequency at which the flicker noise density equals the 
thermal noise density

2
f m

m
K g f

4kT g f
C W L f

Δ = γ ⋅ ⋅ Δm
ox co

g
C W L f

γ
⋅

f m f m D
co

ox ox D

K g K g I1 1 1
f

4kT C W L 4kT C L I W

⎛ ⎞⎛ ⎞⇒ = = ⎜ ⎟⎜ ⎟γ ⋅ γ ⎝ ⎠⎝ ⎠ox ox D4kT C W L 4kT C L I Wγ γ ⎝ ⎠⎝ ⎠

For a given gm/ID (e.g. based on linearity considerations), the only way to 
achieve lower fco is to use longer channel devicesachieve lower fco is to use longer channel devices

− In the above expression, both 1/L and ID/W are reduced for 
increasing L

ExampleExample

– EE214 NMOS, L = 0.18μm, gm/ID = 12 S/A , ⇒ID/W = 20 A/m
⇒fco = 560 kHz

I t h l i f b th d f 10 MH
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In newer technologies, fco can be on the order of 10 MHz

1/f Noise Contribution (1)

J t ith hit i th t t l 1/f i t ib ti i f d bJust as with white noise, the total 1/f noise contribution is found by 
integrating its power spectral density

2f 2K g fΔ2

1

2 f m
1/ f,tot

oxf

2 2

K g f
i

C W L f

K g f K g f

Δ=
⋅

⎛ ⎞ ⎛ ⎞

∫

f m 2 f m 2

ox 1 ox 1

K g f K g f
ln 2.3log

C W L f C W L f

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠

The integrated flicker noise depends on the number of frequencyThe integrated flicker noise depends on the number of frequency 
decades

– The frequency range from 1Hz …10Hz contains the same amount 
of flicker noise as 1GHz …10GHz

– Note that this is very different from thermal noise

So, does flicker noise matter?
– Let’s look at the total noise integral (flicker and thermal noise)
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1/f Noise Contribution (2)

In the example shown 
on the left, the noise 
spectr m is integratedspectrum is integrated 
from 100Hz to 10GHz

The contribution of 
the flicker noise isthe flicker noise is 
relatively small, even 
though its PSD 
dominates at low 
frequencies

For circuits with very 
large bandwidth, 
flicker noise is often 
insignificant
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Lower Integration Limit

Does the flicker noise PSD go to infinity for f → 0?
– See e.g. E. Milotti, "1/f noise: a pedagogical review," available at 

http://arxiv org/abs/physics/0204033http://arxiv.org/abs/physics/0204033

Even if the PSD goes to infinity, do we care?
– Say we are sensing a signal for a very long time (down to a very low 

frequency), e.g. 1 year ≅ 32 Msec, 1/year ≅ 0.03 μHzfrequency), e.g. 1 year ≅ 32 Msec, 1/year ≅ 0.03 μHz
– Number of frequency decades in 1/year to 100Hz ≅ 10
– For the example on the previous slide, this means that the integration 

band changes from 8 to 8+10=18 decades
– sqrt(18/8) = 1.5 → Only 50% more flicker noise!
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MOS Model with Noise Generator

Noiseless!
(merely a modeling 
resistor that lets us 
account for finiteaccount for finite 

dID/dVDS)2 2
d f m

m
ox

i K g 1
4kT g

f C W L f
= ⋅ γ ⋅ ⋅ +

Δ ⋅
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Other MOSFET Noise Sources

G t iGate noise

– "Shot noise" from gate leakage current

– Noise due to finite resistance of the gate material

N i d t d l h i t ti l/ it b t th– Noise due to randomly changing potential/capacitance between the 
channel and bulk

• Relevant only at very high frequencies

• See EE314• See EE314

Bulk noise

Source barrier noise in very short channels

– Shot noise from carriers injected across source barrier

– R. Navid, C. Jungemann, T. H. Lee and R. W. Dutton, “High-
frequency noise in nanoscale metal oxide semiconductor field effect 
transistors,” Journal of Applied Physics, Vol. 101(12) , pp. 101-108, 
June 15, 2007
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Shot Noise in a PN Junction

Shot noise is generally associated with the flow of a DC current

In a forward biased diode, shot noise occurs due to randomness in the 
carrier transitions across the PN junction (energy barrier)j ( gy )

The power spectral density of this noise is white up to very high 
frequencies  

The noise can be included in the small signal model as shown belowThe noise can be included in the small-signal model as shown below

2
Di 2qI f= ⋅ Δ

Constant 
(“white”) 

PSD

B. Murmann EE214 Winter 2010-11 – Chapter 8 25

Shot Noise in a Bipolar Transistor

In a bipolar transistor, the flow of DC current into the base and collector 
causes shot noise

The noise can be modeled via equivalent current generatorsq g

2
Ci 2qI f 2kTg f= Δ = Δc C m

2 m
b B

i 2qI f 2kTg f

g 1
i 2qI f 2kT f 2kT f

rπ

Δ Δ

= Δ = Δ = Δ
β ib

2

ic
2

The base and collector noise currents are statistically independent as y p
they arise from separate physical mechanisms

– This will be important in the context of circuit noise calculations
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BJT Small Signal Model with Noise Generators

Thermal noise due to physical r :Thermal noise due to physical rb:

Collector shot noise:

Base noise components:

Typically negligible

Base noise components:
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Noise in Circuits (1)

Most circuits have more than one relevant noise source

In order to quantify the net effect of all noise sources, we must refer the 
noise sources to a single "interesting" port of the circuit

– Usually the output or input

In the following discussion, we will first consider only circuits with a 
perfect voltage drive, i.e. no source resistance RS

– Inclusion of finite RS will be discussed later
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Noise in Circuits (2)

Output referred noise Input referred noise
– Refer noise to output via 

individual noise transfer 
functions

– Physical concept, exactly

– Represent total noise via a 
fictitious input source that 
captures all circuit-internal 
noise sourcesPhysical concept, exactly 

what one would measure in 
the lab

– Useful for direct comparisons 
with input signal, or “general 
purpose” components in which 
the output noise depends on
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the output noise depends on 
how the component is used

Circuit Example

For simplicity, let’s neglect

– Source impedance

All it– All capacitances

– Burst and flicker noise

– ro, rb, and rμ
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Output Referred Noise PSD 

2 21
v 4kT f 2qI f R

⎛ ⎞= Δ + Δ ⋅⎜ ⎟

( )
out C

2
m

v 4kT f 2qI f R
R

2kT f 2R g R

= Δ + Δ ⋅⎜ ⎟
⎝ ⎠

= Δ +

2
m

m

2
2kTg f R 1

g R

⎛ ⎞
= Δ ⋅ +⎜ ⎟

⎝ ⎠

Shot noise due to base current is absorbed by the input source and doesShot noise due to base current is absorbed by the input source and does 
not contribute to noise at the output

For large gain (gmR), the collector shot noise dominates
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Input Referred Noise PSD

From the previous calculation, we know that

2 2
out m

m

2
v 2kTg f R 1

g R

⎛ ⎞
= Δ ⋅ +⎜ ⎟

⎝ ⎠mg R⎝ ⎠
Since

out v inv A v=

2 2 2
out v in v mv A v where A g R= =

We can write

( )

2
m

m2
in 2

m m

2
2kTg f R 1

g R 1 2
v 2kT f 1

g g Rg R

⎛ ⎞
Δ ⋅ +⎜ ⎟ ⎛ ⎞⎝ ⎠= = Δ +⎜ ⎟

⎝ ⎠( ) m mm
g gg R ⎝ ⎠

Larger gm translates into lower input 
referred voltage noise
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referred voltage noise



Spice Simulation

*** EE214 BJT noise example

*** biasing

ib vcc vb 100u gm=3.67mS, R=10k, Av=36.7
q1 vb vb 0  npn214

c1 vb 0      1

*** main circuit

v1 vcc 0      2.5

vi vi vb ac 1 

rl vcc vo 10k

q2 vo vi  0  npn214

.op

.ac dec 100 100 10e9

.noise v(vo) vi

.options post brief

.inc ‘ee214_hspice.sp'

d
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.end

Output Referred Noise PSD with Load Capacitance 

2
2
out C

1 1
v 4kT f 2qI f R ||

R j C
⎛ ⎞= Δ + Δ ⋅⎜ ⎟ ω⎝ ⎠

2
2

C

R j C

1 1
4kT f 2qI f R

R 1 j RC

⎜ ⎟ ω⎝ ⎠

⎛ ⎞= Δ + Δ ⋅⎜ ⎟ + ω⎝ ⎠

2
2

m
m

R 1 j RC

2 1
2kTg f R 1

g R 1 j RC

+ ω⎝ ⎠

⎛ ⎞
= Δ ⋅ + ⋅⎜ ⎟ + ω⎝ ⎠

Same calculation as before except that now the noise current drops into

mg j⎝ ⎠

Same calculation as before, except that now the noise current drops into 
parallel combination of R and C

Output PSD is shaped by squared magnitude of first order response
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Input Referred Noise PSD with Load Capacitance 

S l l ti b f t th t th lt i iSame calculation as before, except that the voltage gain is now 
frequency dependent

( ) 22
2v 1ω( ) ( )

( )
( ) ( )2out2

in v v2
v

2

v 1
v where A j A 0

1 j RCA j

2 1

ω
ω = ω =

+ ωω

⎛ ⎞

( )

2
m

m
2

2
v

2 1
2kTg f R 1

g R 1 j RC

1
A 0

⎛ ⎞
Δ ⋅ + ⋅⎜ ⎟ + ω⎝ ⎠=

( )vA 0
1 j RC+ ω

Input referred noise is frequency independent, because the output noise 
and gain have the same frequency roll off

2
in

m m

1 2
v 2kT f 1

g g R

⎛ ⎞
∴ = Δ +⎜ ⎟

⎝ ⎠

and gain have the same frequency roll-off
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m mg g⎝ ⎠

Spice Simulation

*** EE214 BJT i l*** EE214 BJT noise example

*** biasing

ib vcc vb     100u 

q1 vb  vb  0  npn214
gm=3.67mS, R=10k, Av=36.7, C=10pF

c1 vb  0      1

*** main circuit

v1 vcc 0 2 5v1 vcc 0      2.5

vi vi  vb     ac 1 

rl vcc vo     10k

Cl vo  0      10p

q2 vo  vi  0  npn214

.op

.ac dec 100 100 10e9.ac dec 100 100 10e9

.noise v(vo) vi

.options post brief

.inc 'ee214_hspice.sp'
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.end



Signal-to-Noise Ratio

21
v̂

Assuming a sinusoidal signal, we can compute the SNR at the output of 
the circuit using

2

outsignal
f 2noise out

vP 2SNR
P v

df
f

= =

⋅
Δ∫

Over which bandwidth should we integrate the noise?

Two interesting cases

1f
fΔ

Two interesting cases

– The output is measured or observed by a system with finite 
bandwidth (e.g. human ear, or another circuit with finite bandwidth)

• Use frequency range of that system as integration limitsq y g y g

• Applies on a case by case basis

– Total integrated noise

• Integrate noise from zero to “infinite” frequency
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g q y

A Closer Look at The Circuit’s Noise Integral

The noise integral converges 
for upper integration limits that 
lie beyond the circuit’s pole 
ffrequency

The total integrated noise (from 
“0” to “infinity”) is a reasonable 

t i tmetric to use

– For convenience in 
comparing circuits without 
making bandwidthmaking bandwidth 
assumptions

– In a circuit where the output 
is observed without any 
significant band limiting

• E.g. in a sampling circuit

• See EE315A,B
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Total Integrated Noise Calculation

2
2 1∞

∫

Let us first consider the noise from the resistor

2
out,tot

0

1

1
v 4kTR df

1 j2 f RC

df du
4kTR t

∞
−

= ⋅
+ π ⋅∫

∫ ∫( )
1

2 2
0

4kTR ; tan u
1 u1 2 fRC

1
4kTR

= =
++ π

= ⋅

∫ ∫

4kTR
4RC

kT

C
=

Interesting result

– The total integrated noise at the output depends only on C (even 
though R is generating the noise)
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g g g )

Effect of Varying R

Increasing R increases 
the noise power spectralthe noise power spectral 
density, but also 
decreases the 
bandwidth

– R drops out in the 
end result

For C=1pF (example to p ( p
the right), the total 
integrated noise is 
approximately 64μVrms
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Alternative Derivation

The equipartition theorem of statistical mechanics says that each degree 
of freedom (or energy state) of a system in thermal equilibrium holds an 
average energy of kT/2average energy of kT/2

– See e.g. EE248 for a derivation

In our circuit, the quadratic degree of freedom is the energy stored on 
th itthe capacitor

2
out

1 1
Cv kT

2 2
=

2
out

2 2

kT
v

C
=
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Equivalent Noise Bandwidth

2
out,tot

kT
v

C
⎫= ⎪
⎪

2
out,tot ENBW ENBW 3dB

C

v 4kTR f f f
2

1

−

⎪
⎪ π⋅ Δ Δ =⎬
⎪
⎪

3dB
1

f
2 RC−

⎪
= ⎪π ⎭

The equivalent noise bandwidth is generally defined as the bandwidth of 
a brick-wall filter which results in the same total noise power as the filter 
in questionin question

For a simple RC filter, the equivalent noise bandwidth is approximately 
1.57 times its 3-dB corner frequency
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Total Integrated Noise Calculation for the Complete Circuit

( )
2

2 2
out,tot m

0

1
v 4kTR 2kTg R df

1 j2 f RC

∞
= + ⋅

+ π ⋅∫
0

j

Was 4kTR in previous analysis

2
2 m
out,tot

4kTR 2kTg RkT
v

C 4kTR

+= ⋅

⎛ ⎞
m

kT 1
1 g R

C 2
⎛ ⎞= +⎜ ⎟
⎝ ⎠

Taking the BJT’s collector shot noise into account, the total integrated 
noise becomes a multiple of kT/C
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Example SNR Calculation

Assumptions

– Output carries a sinusoid with 1V peak amplitude

– We observe the output without significant band limiting and thus use 
th t t l i t t d i i th SNR ithe total integrated noise in the SNR expression

2
2 2outsignal 6

1
v̂P 0.5V 0.5V2SNR 8 59 10

( )
signal 6

2
noise

m

0.5V 0.5V2SNR 8.59 10
kT 1 kT 1P 763 V1 g R 1 3.67mS 10k
C 2 10pF 2

= = = = = ⋅
⎛ ⎞ ⎛ ⎞ μ+ + ⋅ Ω⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[ ] ( )6SNR dB 10log 8.59 10 69.3dB= ⋅ =

Typical system requirementsTypical system requirements

– Audio: SNR ≅ 100dB

– Video: SNR ≅ 60dB

Gigabit Ethernet Transceiver: SNR 35dB
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– Gigabit Ethernet Transceiver: SNR ≅ 35dB



Noise/Power Tradeoff

Assuming that we're already using the maximum available signal swing, 
improving the SNR by 6dB means

– Increase C by 4x

– Decrease R by 4x to maintain bandwidth

– Increase gm by 4x to preserve gain

– Increase collector current by 4x

Bottom line

– Improving the SNR in a noise limited circuit by 6dB ("1bit") 
QUADRUPLES power dissipation !
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MDS and DR

Minimum detectable signal (MDS)

– Quantifies the signal level in a circuit that yields SNR=1, i.e. noiseQuantifies the signal level in a circuit that yields SNR 1, i.e. noise 
power = signal power

Dynamic range (DR) is defined as

signal,maxP
DR

MDS
=

If the noise level in the circuit is independent of the signal level (which is 
often, but not always the case), it follows that the DR is equal to the 
" k SNR " i th SNR ith th i i l li d"peak SNR," i.e. the SNR with the maximum signal applied
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Does Thermal Noise Always Matter?

Let’s look at the SNR of an RC circuit with a 1-V sinusoid applied, 
considering the total integrated noise (kT/C)

SNR [dB] C [pF]SNR [dB] C [pF]
20 0.00000083
40 0.000083
60 0.0083
80 0 83

Hard to make such small capacitors…

Designer will be concerned about thermal 
i t i ft t b SNR80 0.83

100 83
120 8300
140 830000

noise; component sizes often set by SNR

A difficult battle with thermal noise …

Rules of thumb
– Up to SNR ~ 30-40dB, integrated circuits are usually not limited by 

thermal noise
– Achieving SNR >100dB is extremely difficult

• Must usually rely on external components, or reduce bandwidth 
and remove noise by a succeeding filter
S li ADC i EE315B
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• See e.g. oversampling ADCs in EE315B

More on Input Referred Noise

Suppose you wanted to sell this amplifier as a 
“general purpose” building block

How would you communicate information 
about its noise performance to the customer?

None of the metrics that we have used so far

R

None of the metrics that we have used so far 
will work to describe the circuit independent of 
the target application

– The computed input and output referred 
voltage noise assumed that the circuit is 
driven by an ideal voltage source
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Two-Port Representation Using Equivalent Voltage and 
Current Noise Generators 

Short circuit both inputs and equate output noiseShort-circuit both inputs and equate output noise

– This yields vi
2

Open-circuit both inputs and equate output noise
2– This yields ii2

This representation is valid for “any” source impedance

Sometimes need to consider correlation between equivalent voltage andSometimes need to consider correlation between equivalent voltage and 
current generator, but often times only one of the two generators matters 
in the target application

If both generators matter (and they are correlated), it is usually best 
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to avoid working with input referred noise representations

Datasheet Example
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Examples

Single BJT device

Single MOS deviceg

CE stage

CB stage
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BJT Input Voltage Noise (1)

To find input referred voltage generator short the input of both circuitTo find input referred voltage generator, short the input of both circuit 
models and equate output noise

Neglecting Cμ, rc and re for simplicity

( )2 2 2 2 2 2i i g i r v+ +

Text, p. 757

( )2 2 2 2 2 2
o1 c m b b bi i g i r v≅ + ⋅ +

2 2 2
o2 m ii g v≅

2
2 2 2 2 2 2c
o1 o2 i b b b2

i
i i v v i r= ⇒ ≅ + + ⋅
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o1 o2 i b b b2
m

i i v v i r
g

⇒ ≅ + +



BJT Input Voltage Noise (2)

The PSD of the BJT input voltage noise generator is therefore 

22
2Ci

b B b2
m

2 2

2qIv
4kTr 2qI r

f g

2qI g r

≅ + +
Δ

⎡ ⎤2 2
C m b

b 2
m

C

2qI g r
4kTr 1

g

2qI
4kT

⎡ ⎤
≅ + +⎢ ⎥

β⎢ ⎥⎣ ⎦

C
b 2

m

b

q
4kTr

g

1
4kT r

≅ +

⎛ ⎞
≅ +⎜ ⎟b

m

4kT r
2g

≅ +⎜ ⎟
⎝ ⎠
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BJT Input Current Noise (1)

To find input referred current generator, open circuit the input of both 
circuit models and equate output noise

22 2 2 2
o1 c m bi i g i zπ= + ⋅ ⋅

Text, p. 757

22 2 2
o2 m ii g i zπ= ⋅ ⋅

2
2 2 2 2 c
o1 o2 i b 22

m

i
i i i i

g zπ

= ⇒ = +
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mg π



BJT Input Current Noise (2)

1
( )2

Ci
B 22

mm

1
r

j2qI j C ri
2qI where  z

1f 1 j r C gg z r
j C

π
π π

π
π ππ π

π

⋅
β ωω

= + = = =
Δ + ω+

ω

( )
C

B 2

2qI
2qI

j

π

= +
β ω

2

T
B

1
1

2qI 1 where 
C

β
β

⎛ ⎞⎛ ⎞ω⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜ ⎟ω ω⎝ ⎠⎜ ⎟= + ω = ≅ −
β β⎜ ⎟

B
0 0r Cβ

π πβ β⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

The term due to I is negligible at low frequencies but becomesThe term due to IC is negligible at low frequencies, but becomes 
comparable to the base current contribution at

T
b 0β

ωω = ω β ≅
β
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b 0
0

β β
β

Plot of BJT Input Noise Current PSD

Text, p. 760

N l t (f BJT)Neglect (for BJT)
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MOS Input Voltage Noise

2 2
o1 ci i=

Text, p. 762

2 2 2
o2 m ii g v=

2 2i v K1 12 c i f
i 2

m oxm

i v K1 1
v 4kT

f g WLC fg
= = γ +

Δ
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MOS Input Current Noise

2
2 2 2 2 2 2 T
o1 c m g c g2 2

1
i i g i i i

C

ω⎛ ⎞= + ⋅ ⋅ ≅ + ⋅ ⎜ ⎟
⎝ ⎠

o1 c m g c g2 2
gsC

⎜ ⎟ωω ⎝ ⎠

2
2 2 T
o2 ii i

ω⎛ ⎞≅ ⋅ ⎜ ⎟ω⎝ ⎠

2 22 2⎛ ⎞ ⎛ ⎞ ⎛ ⎞
2 22 2

2 2 2 i f m
i g c G m

oxT T

i K gf 1
i i i 2qI 4kT g

f WLC ff

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ω= + ≅ + γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δω⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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BJT versus MOS (1)

Noiseless 
Transistor

Consider low source impedance voltage noise will dominate

2
i

b
v 1

4kT r
f 2g

⎡ ⎤ ⎛ ⎞
⎢ ⎥ ≅ +⎜ ⎟Δ⎢ ⎥ ⎝ ⎠

2
i fv K1 1

4kT
f g WLC f

⎡ ⎤
⎢ ⎥ ≅ γ +

Δ⎢ ⎥

BJT is usually superior

m
BJT

f 2gΔ⎢ ⎥ ⎝ ⎠⎣ ⎦ m ox
MOS

f g WLC fΔ⎢ ⎥⎣ ⎦

y p

– Need less gm for approximately same noise

– gm/I is higher, making it easier to achieve low noise at a given current 
budget
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BJT versus MOS (2)

Consider high source impedance current noise will dominate

22 2
i f m

G m
T ox

MOS

i K gf 1
2qI 4kT g

f f WLC f

⎡ ⎤ ⎛ ⎞⎛ ⎞
⎢ ⎥ ≅ + γ +⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦( )

2
Ci

B 2

BJT

Ii
2q I

f j

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥ ≅ +
⎜ ⎟Δ⎢ ⎥ β ω⎣ ⎦ ⎝ ⎠

MOS is usually superior

MOS⎣ ⎦( )BJT⎣ ⎦ ⎝ ⎠

MOS is usually superior

– Gate leakage current (IG) is typically much smaller than BJT base 
current

• Unless the gate oxide becomes very thin as e g in a 45-nmUnless the gate oxide becomes very thin, as e.g. in a 45 nm 
CMOS process that does not use high-k gate dielectrics

B. Murmann EE214 Winter 2010-11 – Chapter 8 60



Example Revisited (With finite RS)

1⎛ ⎞

( ) ( )

2
Ci

B 2 2

1
4kTIi R2q I

f j j

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟Δ β ω β ω⎝ ⎠

2
i

b 2
m m

v 1 1
4kT r

f 2g g R

⎛ ⎞
≅ + +⎜ ⎟⎜ ⎟Δ ⎝ ⎠
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Calculation of Equivalent Source Noise

2 2 2 2 2
s Rs i s iv v v R i

1

= + +

⎡ ⎤⎛ ⎞

( ) ( )

2
2s C

S b s B2 2 2
m m

1
4kTv I1 1 R4kTR 4kT r R 2q I

f 2g g R j j

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟= + + + + + +⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟Δ β ω β ω⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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Alternative Method

Draw complete circuit with all noise sources

Compute transfer function from each noise source to the output

Refer to output using squared transfer function

Sum all output referred noise components

Divided obtained sum by squared transfer function from input source toDivided obtained sum by squared transfer function from input source to 
the output 
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Output Referred Noise PSD 

outv z
H(s) g R π= = − m

s s

m

m s

H(s) g R
v z R

g R
g R

π
= = −

+

= −

( )
m sg R

1
j

+
β ω

2
2* 2out

S C
v 1

4kTR H(s) 4kT 2qI R
f R

⎛ ⎞= + + ⋅⎜ ⎟Δ ⎝ ⎠
(neglecting base shot noise for simplicity)

2
2out2 C

*s
S2 2

1v 4kT 2qI R
v Rf 4kTR

f H(s) H(s)

⎛ ⎞+ ⋅⎜ ⎟
⎝ ⎠Δ= = +

Δ
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Source Referred Noise PSD 

( )

2
2 m s

C2
*s
S 2

g R1
4kT 2qI R 1

R jv
4kTR

⎛ ⎞+ ⋅ +⎜ ⎟ β ω⎝ ⎠
= +

( )S 2
m

2

m s
S b

4kTR
f g R

g R1 1
4kTR 4kT r 1

+
Δ

⎛ ⎞⎡ ⎤⎜ ⎟= + + + ⋅ +⎢ ⎥⎜ ⎟

This result does not match what we would expect from the analysis with

( )S b 2
m m

4kTR 4kT r 1
2g jg R

⎜ ⎟= + + + ⋅ +⎢ ⎥⎜ ⎟β ω⎢ ⎥⎣ ⎦⎝ ⎠

This result does not match what we would expect from the analysis with 
BJT input referred generators:

1
4kT

⎡ ⎤
⎛ ⎞

( ) ( )

2
2s C

S b s2 2 2
m m

4kTv 2qI1 1 R4kTR 4kT r R
f 2g g R j j

⎡ ⎤
⎛ ⎞ ⎢ ⎥

= + + + + +⎜ ⎟ ⎢ ⎥⎜ ⎟Δ β ω β ω⎢ ⎥⎝ ⎠
⎣ ⎦
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Reason for Discrepancy

It t t th t th lt bt i d i th BJT i t f dIt turns out that the result obtained using the BJT input referred 
generators is not quite correct

From vi
2 From ii2

2
2s C

S b s2 2 2

1
4kTv 2qI1 1 R4kTR 4kT r R

f 2

⎡ ⎤
⎛ ⎞ ⎢ ⎥

= + + + + +⎜ ⎟ ⎢ ⎥⎜ ⎟Δ ( ) ( )
S b s2 2 2

m mf 2g g R j j
⎜ ⎟ ⎢ ⎥⎜ ⎟Δ β ω β ω⎢ ⎥⎝ ⎠

⎣ ⎦

Due to R Due to rDue to RS Due to rb Collector
shot noise

Collector
shot noise

Due to RDue to R

In this expression we are adding the powers of correlated noise currentsIn this expression, we are adding the powers of correlated noise currents 
without taking the correlation into account!

This leads to an expression that overestimates the noise
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Conclusion on Input Referred Noise Generators

W ki ith i t f d i t ti d k llWorking with input referred noise generators saves time and works well 
if the input source can be modeled close to a an ideal voltage source (RS

is small) or an ideal current source (RS is large)

– In this case either the input referred noise voltage or current willIn this case, either the input referred noise voltage or current will 
clearly dominate and only one of the two generators must be 
considered

– Note that for RS=0, the two expression on slide 65 match perfectly

For any scenario in-between, working with input referred generators can 
still work as long as the input referred current and voltage generators are 
statistically independent, i.e. they are due physically distinct noise 
mechanisms

– This is not the case for the expressions of slide 65

When all of these conditions fail, it is a must to analyze the circuit from y
first principles, i.e. consider all noise sources at their root and refer them 
to the point(s) of interest via their individual transfer functions
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Noise Performance of Feedback Circuits: Ideal Feedback

Consider an amplifier with input referred noise sources placed into an 
f f ( ff )ideal series-shunt feedback configuration (no loading effects)

We can identify the equivalent input noise generators for the overall 
circuit in the same way we have done this previously

– Short-circuit the input, find input noise voltage generator that yields 
the same output noise in both circuits

– Open-circuit the input, find input noise current generator that yields 
the same output noise in both circuits
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the same output noise in both circuits



Input Shorted

Equal output noise in both circuits is obtained for 

2 2v v=i iav v=
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Input Open

Equal output noise in both circuits is obtained for 

2 2i i=i iai i=
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Observation

For the idealized example studied on the previous slides, we see that 
the equivalent input noise generators of the amplifier can be moved 

h d t id th f db k lunchanged outside the feedback loop

– Applying feedback has no effect on the circuit’s noise performance

– Note that this is very different from the effect of feedback on 
distortion performancedistortion performance

This results holds for all four possible (ideal) feedback configurations

– Prove this as an exercise

In practical feedback configurations, the input referred generators must 
be computed while taking loading effects into account

– Loading makes the calculations more complicated, and generally 
th i fworsens the noise performance

– In the best possible design outcomes, the noise performance can 
approach (but not surpass) that of an idealized configuration
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Including Loading and Noise from the Feedback Network

Th t l f i l di l di d i f th f db kThe most general way of including loading and noise from the feedback 
network is to apply the same procedure as before

– Short-circuit the input, find input noise voltage generator that yields 
the same output noise in both circuitsthe same output noise in both circuits

– Open-circuit the input, find input noise current generator that yields 
the same output noise in both circuits

A more convenient way to include loading and noise from the feedbackA more convenient way to include loading and noise from the feedback 
network is to use the same two-port approximations we have already 
utilized for transfer function analysis

ProcedureProcedure

– Absorb loading effects into the basic amplifier and work with ideal 
feedback network

– Re-compute the input referred noise generators of the basic amplifierRe compute the input referred noise generators of the basic amplifier 
in presence of loading

– Using the previous result, the re-computed noise generators of the 
basic amplifier can now be moved outside the feedback loop
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Example: Practical Series-Shunt Circuit
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Basic Amplifier with Loading

Step 1

– Redraw the basic amplifier with loading included
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Input Referred Noise Current (Open-Circuited Input)

Step 2

– Compute input referred current noise

– The result corresponds to the desired ii

2 22 2
i iai i=
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Input Referred Noise Voltage (Short-Circuited Input)

Step 3

– Compute input referred voltage noise

– The result corresponds to the desired vi

iia
2via

2

RE||RF

( ) ( )22 2 2
i ia ia E F E Fv v i R || R 4kT R || R f= + ⋅ + Δ

4kT(RE||RF)
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Example: Practical Shunt-Shunt Circuit

2 2
i iav v=

2
2 2 ia
i ia 2

FF

v 1
i i 4kT f

RR
= + + Δ

B. Murmann EE214 Winter 2010-11 – Chapter 8 77

(assuming iia and via are uncorrelated)

High Frequency Issue

At l f i it i t i ll t h d t i i i th i t iAt low frequencies, it is typically not hard to minimize the input noise 
current contribution due to via

However, at high frequencies, any shunt capacitance at the input tends 
t k th t ib ti i ifi tto make the via contribution more significant

Means that via must be minimized in high speed circuits, typically by 
increasing gm of the input device higher power dissipation

2
2 2 2
i ia ia i

1 1
i i v j C 4kT f

R R
= + + ω + Δ (assuming iia and via are uncorrelated)
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Local Feedback Circuit Examples

o m
i

i m

i g R
A

i 1 g R
= =

+
o m

m
i m

i g
G

v 1 g R
= =

+
o m

v
i m

v g R
A

v 1 g R
= =

+

Neglecting finite ro, backgate effect and flicker noise for simplicity
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Source Follower

Th i f b l d b t ti th i itThe noise performance can be analyzed by treating the circuit as a 
series feedback stage (see text, sections 8.6.2 and 11.7.2)

– We will do a direct analysis instead

( )
2

2 2
2 2 2 2d r
o d r v2

i i1
v i i A

1 g

⎛ ⎞
⎜ ⎟ +

= + ⋅ = ⋅⎜ ⎟
⎜ ⎟

( )
mm

2 2
2 d r

gg
R

i i 1 1
v 4kT f

⎜ ⎟+
⎝ ⎠

⎛ ⎞
= + = Δ γ +⎜ ⎟

Often negligible

i 2 2
m mm m

v 4kT f
g g Rg g

= + = Δ γ +⎜ ⎟
⎝ ⎠

The noise in a resistively loaded source follower is typically dominatedThe noise in a resistively loaded source follower is typically dominated 
by the contribution from the transistor

The input referred noise voltage can be approximated by the drain 
current noise reflected through the device’s transconductance
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current noise reflected through the device s transconductance



Degenerated Common Source Stage

( ) m
o d r d

m

g
i i i i

1
g

R

= + −
+

m
r d

m m

g R 1
i i

1 g R 1 g R
= +

+ +

m
r m d

m

G
i G R i

g
= +

2 2
2 2 2 2 2 2 2d d
o r m i r2 2

mm m

i i 1
i i R G v i R 4kT f 4kTR f

gg g

⎛ ⎞
⎜ ⎟= + ⋅ = + = γ Δ + Δ
⎜ ⎟
⎝ ⎠

The input referred voltage noise consists of drain current noise, reflected 
through gm, plus the resistor’s voltage noise
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Common Gate Stage

m
o r d

m m

g R 1
i i i

1 g R 1 g R
= +

+ +m m

i
r i d

m

1 g R 1 g R

A
i A i

g R

+ +

= +

2 2
2 2 2 2 2d di i 1⎛ ⎞ ⎛ ⎞γ⎜ ⎟

Often negligible

Th i t f d t i f th t i t i ft li ibl ( t

2 2 2 2 2d d
o r i i r2 2 2 2

mm m

i i 1
i i A i i 4kT f 1

R g Rg R g R

⎛ ⎞γ⎜ ⎟= + ⋅ = + = Δ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

The input referred current noise from the transistor is often negligible (at 
low frequencies)

The noise tends to be dominated by the devices providing the source 
d d i bi t ( i t t )
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and drain bias currents (resistors or current sources) 



Common Gate Stage at High Frequencies

22

2
i m 2

m

1
j C

1 R
i 4kT f 4kT g f

R g

+ ω
= Δ + γ Δ

2

m
m

1 C
4kT f 4kT g f

R g

⎛ ⎞ω≅ Δ + γ Δ ⎜ ⎟
⎝ ⎠⎝ ⎠

The input referred current noise from the transistor can be significant at 
high frequencies (near the cutoff frequency of the current transfer)
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Summary – Noise in Feedback Circuits

Applying ideal feedback around an amplifier does not alter its input 
referred noise performance

In practical circuits, loading and noise from the feedback network tend to 
deteriorate the circuit’s overall noise performance

– This is especially true at high frequencies, where parasitic 
it i th i t f f th tcapacitances can increase the noise transfer from sources that are 

typically negligible at low frequencies 

Loading effects can be considered by applying the same two-port 
i ti th d d i th t f f ti l i f ti lapproximation methods used in the transfer function analysis of practical 

feedback amplifiers

– Absorb loading and feedback network noise sources into forward 
amplifier and work with idealized feedback resultamplifier and work with idealized feedback result
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Additional Topics in Noise Analysis

Covered in EE314

– RF-centric metrics

• Noise figure

• Receiver sensitivity

– Phase noise in oscillators

Covered in EE315A,B

– Noise in filters and switched capacitor circuits

OtherOther

– Cyclostationary noise

• Noise in circuits that are driven by a periodic waveform that 
modulates the power spectral densitiesmodulates the power spectral densities

• E.g. mixers 
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Chapter 9

Distortion Analysisy

B. Murmann

Stanford University

Reading Material: Sections 1.4.1, 5.3.2

Overview

Low frequency distortion analysis

Effect of feedback on distortion

High frequency distortion analysis
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Introduction

All l t i i it hibit l l f li b h iAll electronic circuits exhibit some level of nonlinear behavior

– The resulting waveform distortion is not captured in small-signal 
models

In the first section of this chapter, we will begin by looking at the basic 
tools needed to analyze “memoryless” nonlinearities, i.e. nonlinearities 
that can be represented by a frequency independent model

Such models are valid in a frequency range where all capacitances– Such models are valid in a frequency range where all capacitances 
and inductances in the circuit of interest can be ignored

As a driving example, we will analyze the nonlinearity in the V-I 
transduction of BJTs and MOSFETstransduction of BJTs and MOSFETs

The general approach taken is to model the nonlinearities via a power 
series that links the input and output of the circuit

This approach is useful and accurate for the case of “small distortion”– This approach is useful and accurate for the case of small distortion  
and cannot be used to predict the effect of gross distortion, e.g. due 
to signal clipping
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Small-Signal AC Model

Io = IOQ + io io

+
Vi = VIQ + vi

- odI
g

+
vi

-

gm⋅vi

-

Io = f(Vi)

i IQ

o
m

i V V

IQ

g
dV

f '(V )

=
=

= io

vi

gm gm

V
Vi

i

B. Murmann EE214 Winter 2010-11 – Chapter 9 4

VIQ



Taylor Series Model

(3)
2 3IQ IQ IQ

i IQ i IQ i IQ i IQ
f '(V ) f ''(V ) f (V )

f(V ) f(V ) (V V ) (V V ) (V V ) ...
1! 2! 3!

= + − + − + − +

f3(Vi)

f2(Vi)

f(Vi)

f3(Vi)

f2(Vi)

VIQ

Vi
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f3(Vi)

Relationship Between Incremental Variables

Using andi i IQv V V= − o o OQ i IQi I I f(V ) f(V )= − = −

we obtain 2 3
o 1 i 2 i 3 ii a v a v a v ...= + + +

(m)
Qf (V )

where

Note that

IQ
m

f (V )
a

m!
=

1a g≡ '
2

1
a g≡ ''

3
1

a g≡Note that

In practice, it is often sufficient to work with a truncated nth order power 

1 ma g≡ 2 ma g
2

≡ 3 ma g
6

≡

series
2 n

o 1 i 2 i n ii a v a v ... a v≅ + + +
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Graphical Illustration
io

n=2

vi

n→∞

A model that relates the incremental signal components (vi, io) though a 

n=3

nonlinear expression is sometimes called “large-signal AC model”

The accuracy of a truncated power series model depends on the signal 
range and the curvature of the actual transfer function

– Using a higher order series generally helps, but also makes the 
analysis more complex

– As we will see, using a third order series is often sufficient to model 
th l t di t ti ff t i ti l kl li i it
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the relevant distortion effects in practical, weakly nonlinear circuits

Harmonic Distortion Analysis

Apply a sinusoidal signal and collect harmonic terms in the output signal

( )i iˆv v cos t= ⋅ ω

( ) ( ) ( ) ( ) ( )2 31 1
cos cos 2 1 cos cos 3 3cos⎡ ⎤ ⎡ ⎤α = α + α = α + α⎣ ⎦ ⎣ ⎦

( ) ( ) ( )2 3
o 1 i 2 i 3 iˆ ˆ ˆi a v cos t a v cos t a v cos t ...⎡ ⎤ ⎡ ⎤= ω + ω + ω +⎣ ⎦ ⎣ ⎦

21 ˆi a v
⎡ ⎤∴ ⎢ ⎥

( ) ( ) ( ) ( ) ( )cos cos 2 1 cos cos 3 3cos
2 4
⎡ ⎤ ⎡ ⎤α = α + α = α + α⎣ ⎦ ⎣ ⎦

DC shift

( )

o 2 i

3
1 i 3 i

i a v
2

3ˆ ˆ     a v a v cos t
4

∴ = ⎢ ⎥⎣ ⎦

⎡ ⎤+ + ω⎢ ⎥⎣ ⎦

DC shift

Fundamental

( ) ( )2 3
2 i 3 i

4

1 1ˆ ˆ     a v cos 2 t a v cos 3 t ...
2 4

⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ω + ω +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Harmonics
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Observations

Th d ti t ( ) i i t d i d d h i tThe quadratic term (a2) give rises to an undesired second harmonic tone 
and a DC shift

The cubic term (a3) give rises to an undesired third harmonic tone and it 
l difi th lit d f th f d t lalso modifies the amplitude of the fundamental

– a3 < 0 “gain compression”

– a3 > 0 “gain expansion”

y

x 0 3x3

x + 0.3x3

x

x

x - 0.3x3
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Waveforms with Gain Expansion

( )x cos 2 t= π 1a 1= 3a 0.3=
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Waveforms with Gain Compression

( )x cos 2 t= π 1a 1= 3a 0.3= −
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Higher Order Terms

( ) ( ) ( )mm j m km j j jk
m m

k 0

m1 1
cos e e e e

k2 2

− − αα − α α

=

⎛ ⎞
α = + = ⎜ ⎟

⎝ ⎠
∑

( ) ( ) ( )4 1
cos cos 4 4cos 2 3

8
⎡ ⎤α = α + α +⎣ ⎦

( ) ( ) ( ) ( )5 1
cos cos 5 5cos 3 10cos

16
⎡ ⎤α = α + α + α⎣ ⎦

Can show that

– Terms raised to even powers of m affect the DC shift and even 
harmonics up to mharmonics up to m

– Terms raised to odd powers of m affect the fundamental and odd 
harmonics up to m
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Inspection of 4th and 5th Order Contributions

As long as2 4
o 2 i 4 i

1 3ˆ ˆi a v a v
2 8
⎡ ⎤∴ = +⎢ ⎥⎣ ⎦

4 2 5 3

( )3 5
1 i 3 i 5 i

3 5ˆ ˆ ˆ     a v a v a v cos t
4 16

1 1

⎡ ⎤+ + + ω⎢ ⎥⎣ ⎦

⎡ ⎤

4 2 5 3
4 i 2 i 5 i 3 iˆ ˆ ˆ ˆa v a v and a v a v<< <<

or equivalently

( )

( )

2 4
2 i 4 i

3 5

1 1ˆ ˆ     a v a v cos 2 t
2 2

1 5ˆ ˆa v a v cos 3 t

⎡ ⎤+ + ω⎢ ⎥⎣ ⎦

⎡ ⎤+ + ω⎢ ⎥

32
i i

4 5

aa
ˆ ˆv and v

a a
<< <<

( )

( )

3 i 5 i

4
4 i

     a v a v cos 3 t
4 16

1 ˆ     a v cos 4 t
8

+ + ω⎢ ⎥⎣ ⎦

⎡ ⎤+ ω⎢ ⎥⎣ ⎦

the 4th and 5th order terms can 
be neglected

( )5
5 i

8

1 ˆ     a v cos 5 t
16

⎣ ⎦

⎡ ⎤+ ω⎢ ⎥⎣ ⎦

This condition is usually met in 
practical, weakly nonlinear 
circuits
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Fractional Harmonic Distortion Metrics

2
amplitude of second harmonic distortion signal

HD
amplitude of fundamental

amplit de of third harmonic distortion signal

=

I l di l t ib ti f t t 3 d d th titi

3
amplitude of third harmonic distortion signal

HD
amplitude of fundamental

=

Including only contributions from terms up to 3rd order, these quantities 
become

2
2 i

2

1 ˆa v a12 ˆHD v≅ ≅2 i
3 1

1 i 3 i

3

HD v
3 2 aˆ ˆa v a v
4

1 ˆ

≅ ≅
+

3
3 i

23
3 i

3 1
1 i 3 i

1 ˆa v a14 ˆHD v
3 4 aˆ ˆa v a v
4

≅ ≅
+
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Total Harmonic Distortion

total power of distortion signals
THD

power of fundamental
=

THD i ft d i t d b th HD d/ HD t

2 2 2
2 3 4HD HD HD ...= + + +

THD is often dominated by the HD2 and/or HD3 term

Typical application requirements

– Telephone audio: THD < ~10%

– Video: THD < ~1%

– RF low noise amplifiers: THD < ~0.1%

– High quality audio: THD < ~0.01%
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Intermodulation Distortion (1)

Consider applying two tones to the nonlinear device

( ) ( )i i1 1 i2 2ˆ ˆv v cos t v cos t= ⋅ ω + ⋅ ω

( ) ( )

( ) ( )

o 1 i1 1 i2 2

2
2 i1 1 i2 2

ˆ ˆi a v cos t v cos t

ˆ ˆa v cos t v cos t

⎡ ⎤= ⋅ ω + ⋅ ω⎣ ⎦

⎡ ⎤+ ⋅ ω + ⋅ ω⎣ ⎦( ) ( )

( ) ( )

2 i1 1 i2 2

3
3 i1 1 i2 2ˆ ˆa v cos t v cos t ...

⎣ ⎦

⎡ ⎤+ ⋅ ω + ⋅ ω +⎣ ⎦

Inspect second-order term

( ) ( ) ( )2 2
2 i1 1 i2 2 2 i1 1ˆ ˆ ˆa v cos t v cos t a v cos t⎡ ⎤ ⎡ ⎤⋅ ω + ⋅ ω = ⋅ ω⎣ ⎦ ⎣ ⎦

C HD

( )

( ) ( )

2
2 i2 2

2 i1 i2 1 2

ˆa v cos t

ˆ ˆ2a v v cos t cos t

⎡ ⎤+ ⋅ ω⎣ ⎦

⎡ ⎤+ ⋅ ω ω⎣ ⎦

Causes HD

New
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( ) ( )2 i1 i2 1 22a v v cos t cos t⎡ ⎤+ ω ω⎣ ⎦ New



Second-Order Intermodulation

( ) ( ) { }( ) { }( )2 i1 i2 1 2 2 i1 i2 1 2 1 2ˆ ˆ ˆ ˆ2a v v cos t cos t a v v cos t cos t⎡ ⎤⎡ ⎤⋅ ω ω = ω + ω + ω − ω⎣ ⎦ ⎣ ⎦

The output will contain tones at the sums and differences of the applied 
frequencies

We define the fractional second-order intermodulation as 

ˆ ˆ ˆamplitude of second order IM components (for v v v )i1 i2 i
2

2
2 i 2

amplitude of second-order IM components (for v v v )
IM

amplitude of fundamentals

ˆa v a
v̂

= ==

2 i 2
i

1 i 1

2

v
ˆa v a

2HD

= =

=
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Third-Order Intermodulation (1)

( ) ( ) ( )

( )

3 3
3 i1 1 i2 2 3 i1 1

3

ˆ ˆ ˆa v cos t v cos t a v cos t

ˆa v cos t

⎡ ⎤ ⎡ ⎤⋅ ω + ⋅ ω = ⋅ ω⎣ ⎦ ⎣ ⎦

⎡ ⎤+ ω⎣ ⎦

Causes HD

( )

( ) ( )

3 i2 2

2 2
3 i1 i2 1 2

a v cos t

ˆ ˆ3a v v cos t cos t

⎡ ⎤+ ⋅ ω⎣ ⎦

⎡ ⎤+ ⋅ ω ω⎣ ⎦
New

( ) ( )2 2
3 i1 i2 1 2ˆ ˆ3a v v cos t cos t⎡ ⎤+ ⋅ ω ω⎣ ⎦

( ) ( )2 2ˆ ˆ3 t t⎡ ⎤( ) ( )

( ) { }( ) { }( )

2 2
3 i1 i2 1 2

2
3 i1 i2 1 2 1 2 1

3a v v cos t cos t

3 ˆ ˆa v v 2cos t cos 2 t cos 2 t
4

⎡ ⎤⋅ ω ω⎣ ⎦

⎡ ⎤= ω + ω − ω + ω + ω⎣ ⎦4

“Gain desensitization term”
For a3<0, large vi2 reduces 

fundamental tone due to vi1

Third-order 
Intermodulation 

Products
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Third-Order Intermodulation (2)

Third-order intermodulation products appear at (2ω2 ± ω1) and (2ω1 ± ω2)

We define the fractional third-order intermodulation as 

i1 i2 i
3

3

ˆ ˆ ˆamplitude of third-order IM components (for v v v )
IM

amplitude of fundamentals

= ==

3
23 3i
i 3

1 i 1

ˆa av3 3
v̂ 3HD

ˆ4 a v 4 a
= = =

Note that for ω2 ≅ ω1, the third-order 
intermodulation products are close to the 
original frequencies and cannot be 
filtered outfiltered out

– This is a significant issue in 
narrowband systems
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Distortion in a CE Stage (1)

beV beV
kTbe

TV
c sI I e=

be

T

be BEQ
be BEQ

Vc s
1

be TV V
V V

dI I
a e

dV V=
=

= =T
kT

V
q

=

CQ
m

T

2

I
g

V

Id I1 1

= ≡

be BEQ

2
CQc

2 2 2
be TV V

Id I1 1
a

2 2dV V

I1

=

= =

CQ
m m

T

I1
a

m! V
=
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Distortion in a CE Stage (2)

2
2be 3 be2

2 be 3 be
1 1T T

ˆ ˆv a va1 1 1 1ˆ ˆHD v HD v
2 a 4 4 a 24V V

⎛ ⎞
≅ = ≅ = ⎜ ⎟⎜ ⎟

⎝ ⎠

Low distortion in the collector current quires the B-E voltage excursion to 
be much smaller than VT ≅ 26mV

Checking for the valid range of a third order model yieldsChecking for the valid range of a third order model yields

32
be T be T

4 5

aa
ˆ ˆv 12V and v 20V

a a
<< = << =

4 5a a

For a B-E voltage swing of VT, we have 

2 3HD 25% HD 4.17%≅ ≅

Note that a typical application will demand much lower distortion
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Distortion in a CS Stage (1)

1 W dI W( )2
d ox gs t

1 W
I C V V

2 L
= μ − ( )

gs GSQgs GSQ

d
1 ox gs t

gs V VV V

dI W
a C V V

dV L

2IW

==

= = μ −

DQ
ox OV m

OV

2
DQd

2IW
C V g

L V

Id I1 1 W

= μ = ≡

gs GSQ

DQd
2 ox2 2

gs OVV V

3

Id I1 1 W
a C

2 2 LdV V

a 0

=

= = μ =

=3a 0=
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Distortion in a CS Stage (2)

gs2
2 gs 3

1 OV

v̂a1 1ˆHD v HD 0
2 a 4 V

≅ = =

Small second harmonic distortion in the drain current requires the G-S 
voltage excursion to be much smaller than the quiescent point gate 

d i (V V V )overdrive (VOV=VGS-Vt)

An idealized square-law device does not introduce high order distortion 

– However, this is not true for a real short-channel MOSFET

Relevant effects

– Velocity saturation, mobility reduction due to vertical field

– Biasing in moderate or weak inversiong

– Nonlinearity in the device’s output conductance

– …
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Distortion in Modern MOSFETS

Distortion in modern MOSFET devices is generally hard to model 
accurately

A basic approach for devices operating in strong inversion is to includeA basic approach for devices operating in strong inversion is to include 
short channel effects via basic extensions to the square law model

– E.g. model velocity saturation as resistive source degeneration

– See e g Terrovitis & Meyer JSCC 10/2000See e.g. Terrovitis & Meyer, JSCC 10/2000 

Another approach is to extract the coefficients from “known-to-be-
accurate” Spice models

– Find coefficients a by simulating the derivatives of I-V curves– Find coefficients am by simulating the derivatives of I-V curves

– See e.g. Blaakmeer et al., JSSC 6/2008

Unfortunately, generating accurate Spice models for MOSFET distortion 
is a very difficult taskis a very difficult task

– See e.g. R. van Langevelde et al., IEDM 2000

Never trust a Spice model blindly!
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Distortion of EE214 NMOS Device
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Distortion in a BJT Differential Pair (1)

id
cd c1 c2 EE

T

V
I I I I tanh

2V

⎛ ⎞
= − = α ⎜ ⎟

⎝ ⎠

c1 c2

T2V⎝ ⎠

( ) 3 51 2
tanh x x x x ...

3 15
= − + − +

id
EE EE EE

1 m 3 53 5
T T T

I I I
a G a a

2V 24V 240V

α α α= ≡ = − =

Third-order model is accurate for

EE

T T

3
id T

5

a
v̂ 10V

a
<< =
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Distortion in a BJT Differential Pair (2)

A differential pair with perfectly matched transistors does not generate 
any even-order distortion products

Any mismatch (e.g. in Is) will cause non-zero even-order terms

– The resulting even order distortion products are typically smaller than 
the inherent odd-order distortion

The HD3 performance of a BJT differential pair is better than that of a 
single BJT transistor

2 2
23 id be

3 BJTdiff id 3 BJT
ˆ ˆa v v1 1 1ˆHD v HD

⎛ ⎞ ⎛ ⎞
≅ = ≅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟3,BJTdiff id 3,BJT

1 T T

HD v HD
4 a 48 24V V

≅ ≅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Distortion in a MOS Differential Pair

2
id id

od d1 d2 SS
OV OV

V V
I I I I 1

V 2V

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

d1 d2

OV OV⎝ ⎠ ⎝ ⎠

2
3 5x 1 1

x 1 x x x ...
2 8 128

⎛ ⎞− = − − +⎜ ⎟
⎝ ⎠

id
SS SS SS

1 m 3 53 5
OV OV OV

I I I
a G a a

V 8V 128V
= ≡ = − =

2 8 128⎝ ⎠

Third-order model is accurate for

SS

O OV OV

3
id OV

5

a
v̂ 4V

a
<< =
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Feedback and Distortion

Low-frequency distortion is a result of variations in the slope of an 
amplifier’s transfer characteristic. Feedback reduces the relative 
variation, and thus the distortion, to the same extent that it reduces 
fractional changes in gainfractional changes in gain.

Vout

Vin

Note that feedback reduces distortion without reducing the outputNote that feedback reduces distortion without reducing the output 
voltage range. The gain is also reduced, but additional gain can be 
provided with a preamplifer the operates with smaller signal swings, and 
therefore less distortion. 
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Power Series Analysis (1)

+ S
– a

f

Si So

Sfb

+

–

Sε

f

  

So = a1Sε + a2Sε
2 + a3Sε

3 +K

Sε = Si − f ⋅So

S (S f S ) (S f S )2 (S f S )3 K  ∴ So = a1(Si − f ⋅So) + a2(Si − f ⋅So)2 + a3(Si − f ⋅So)3 +K
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Power Series Analysis (2)

Expressing So as a power series expansion in Si

So = b1Si + b2Si
2 + b3Si

3 +Ko 1 i 2 i 3 i

Substitute this expression for So into the result on the previous page and 
compare coefficients to find bi

 b1Si = a1(Si − f ⋅b1Si)

b1 =
a1

1+ a1f

Thus, the feedback reduces the coefficient of the fundamental term in 
the forward amplifier by 1 + af
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Power Series Analysis (3)

Second-order terms

b2Si
2 = −a1f ⋅b2Si

2 + a2(Si − f ⋅b1Si)
2

2 i 1 2 i 2( i 1 i)

b2 =
a2(1− b1f)

2

1+ a1f
=

a2

(1+ a1f)
3

Third-order terms

b3Si
3 = −a1f ⋅b3Si

3 − 2a2Si
3f ⋅b2(1− f ⋅b1) + a3(Si − f ⋅b1Si)

3

a (1− b f)3 − 2a f ⋅b (1− f ⋅b ) a (1+ a f) − 2a2 ⋅ f

 

b3 =
a3(1− b1f) − 2a2f ⋅b2(1− f ⋅b1)

1+ a1f
=

a3(1+ a1f) − 2a2 ⋅ f

(1+ a1f)
5
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Comments

Large loop gain (a1f) leads to small nonlinearity

b3 contains a term due to a23 2

– This is due to signal interaction with the second-order term fed back 
to the input

It is possible to obtain b3 = 0 without large loop gainIt is possible to obtain b3  0 without large loop gain
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An Interesting Example

VVCC

IC = ICQ+ iC
So = iC = a1Sε + a2Sε

2 + a3Sε
3 +L

Sε = vBE = vi − f ⋅ iC

~vi

Vi

Q

RE

ε BE i C

f = RE a1 = gm a2 = 1

2

IC
VT

2
a3 = 1

6

IC
VT

3
T T

b
a1 gm b

1 IC 1

 

b1 = 1

1+ a1f
=

gm

1+ gmRE

b2 = 1

2
C

VT
2

1

(1+ gmRE)3

1 IC (1+ g R )
1 IC g R

 

b3 =
6

C

VT
3

(1+ gmRE) −
2

C

VT
3

gmRE

(1+ gmRE)5  
gmRE = 1

2
⇒ b3 = 0 ⇒ HD3 = 0
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High Frequency Distortion Analysis

The power series approach studied previously ignores any frequency 
dependence introduced by reactive elements

– Sufficient for 90% of typical circuits, including some operating at RF

Assuming weakly nonlinear behavior, the frequency dependence can be 
included using a Volterra Series model

– Vito Volterra, 1887

The purpose of this handout is to provide a few basic examples that will 
allow you to understand the general framework

Examples

– Memoryless nonlinearity followed by a filter

– Memoryless nonlinearity preceded and followed by a filterMemoryless nonlinearity preceded and followed by a filter

– RC circuit with nonlinear capacitance

– RC circuit with nonlinear resistance
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Example 1

R

i

2 3
c 1 i 2 i 3 ii a v a v a v ...= + + +

C

vo
ic

CQ CQ
1 m 2 32 3

T T

I I1 1
a g a a

2 6V V
= = =

C
vi

VI

o

c

v R
K(j )

i 1 j RC

−ω = =
+ ω

Ignoring device capacitances and finite output resistance for simplicity
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Single-Tone Input

Ignoring DC offset and gain expansion, we have

( )i iˆv v cos t= ω

( ) ( ) ( )2 3
c 1 i 2 i 3 i

1 1ˆ ˆ ˆi a v cos t a v cos 2 t a v cos 3 t ...
2 4

= ω + ω + ω +

The output voltage consists of the same tones, with their magnitude and 
phase altered by the linear filter K(jω) 

( ) ( )

( ) ( )

o 1 i

2
2 i 2

ˆv  K j a v cos t

1 ˆK 2j a v cos 2 t

ω

ω

= ω ⋅ ω + φ

+ ω ⋅ ω + φ ( )m K m jωφ = ∠ ⋅ ω( ) ( )

( ) ( )

2 i 2

3
3 i 3

K 2j a v cos 2 t
2

1 ˆK 3j a v cos 3 t ...
4

ω

ω

+ ω ω + φ

+ ω ⋅ ω + φ +

( )m jωφ
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Two-Tone Input

( ) ( )i 1 1 2 2ˆ ˆv v cos t v cos t= ω + ω

Substituting this input into the power series and using the identitiesSubstituting this input into the power series, and using the identities 
shown below, the complete expression for the collector current is most 
elegantly expressed as shown on the next slide

( ) ( ) ( ) ( )1
cos cos cos cos

2

1

⎡ ⎤α β = α + β + α − β⎣ ⎦

( ) ( ) ( ) ( ) ( )

( ) ( )

1
cos cos cos cos cos

4

cos cos

⎡α β γ = α + β + γ + α + β − γ⎣

⎤+ α − β + γ + α − β − γ ⎦
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( ) ( )ˆ ˆi a v cos t v cos t⎡ ⎤= ω + ω⎣ ⎦ ω ω

Frequency
Components

( ) ( )

[ ]( ) [ ]( )

c 1 1 1 2 2

2 22
1 1 1 2 2 2

i a v cos t v cos t

a
ˆ ˆv cos t v cos t

2

⎡ ⎤= ω + ω⎣ ⎦

⎡+ ω ± ω + ω ± ω⎣

ω1, ω2

0, 2ω1, 2ω2

[ ]( )

[ ]( ) [ ]( )

1 2 1 2

3 33

ˆ ˆ2v v cos t

a
ˆ ˆt t

⎤+ ω ± ω ⎦

⎡ ± ± ± ±

ω1-ω2, ω1+ω2

3 3[ ]( ) [ ]( )

[ ]( )

3 33
1 1 1 1 2 2 2 2

2
1 2 1 2 2

v cos t v cos t
4

ˆ ˆ3v v cos t

⎡+ ω ± ω ± ω + ω ± ω ± ω⎣

+ ω ± ω ± ω

ω1, ω2, 3ω1, 3ω2

ω1, 2ω1-ω2, 2ω1+ω2

[ ]( )2
1 2 1 1 2ˆ ˆ3v v cos t ...⎤+ ω ± ω ± ω +⎦ ω2, 2ω2-ω1, 2ω2+ω1

B. Murmann EE214 Winter 2010-11 – Chapter 9 39

Filtered Output

( ) ( ) ( ) ( )1 2o 1 1 1 1 2 2 2ˆ ˆv a v K j cos t v K j cos tω ω
⎡ ⎤= ω ω + φ + ω ω + φ⎣ ⎦( ) ( )

( ) ( ) ( )

1 2

1

2 22
1 1 1 2 1

a
ˆ ˆK 2j v cos 2 t v K 0

2 ω

⎣ ⎦

⎡+ ω ⋅ ω + φ +⎣

( ) ( ) ( )

[ ]( ) [ ]( )
2

1 2

2 2
2 2 2 2 2

1 2 1 2 1 2

ˆ ˆK 2j v cos 2 t v K 0

ˆ ˆK j 2v v cos t

ω

ω −ω

+ ω ⋅ ω + φ +

+ ω − ω ⋅ ω − ω + φ( ) ( )
[ ]( ) [ ]( )

1 2

1 21 2 1 2 1 2ˆ ˆK j 2v v cos t

a

ω +ω
⎤+ ω + ω ⋅ ω + ω + φ ⎦

[ ]3a
...

4
+
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Short Hand Notation

( ) ( ) ( )
( )1 a 2 a b 3 a b c

2 3
o 1 a i 2 a b i 3 a b c i

H ( j ) H ( j j ) H j j j

v a K j v a K j j v a K j j j v ...

ω ω + ω ω + ω + ω

= ω + ω + ω + ω + ω + ω +D D D��	�
 ���	��
 �����	����


Operator “◦” means

– Multiply each frequency component in vi
m by 

and shift phase by

( )m a bH j , j ,...ω ω

( )H j j∠

The arguments ωa, ωb, ωc, … are auxiliary variables taking on all 
permutations of ω ±ω ±ω

( )m a bH j , j ,...∠ ω ω

permutations of ω1, ±ω2, … ±ωm
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General Frequency Domain Volterra Series

( ) ( ) ( )2 3
o 1 a i 2 a b i 3 a b c iv H j v H j , j v H j , j , j v ...= ω + ω ω + ω ω ω +D D D

For the circuit example discussed previously, the coefficients are given 
as follows

1
1 a

a

a R
H (j )

1 j RC

−ω =
+ ω

( )
2

2 a b
a b

a R
H (j , j )

1 j j RC

a R

−ω ω =
+ ω + ω

( )
3

3 a b c
a b c

a R
H (j , j , j )

1 j j j RC

−
ω ω ω =

+ ω + ω + ω
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Distortion Metrics

Taylor Series Volterra Series

( )2 1 1H j , j1
v̂

ω ω2a1
v̂HD2

HD

( ) i
1 1

v
2 H jω

( )3 1 1 1 2
i

H j , j , j1
v̂

ω ω ω

i
1

v
2 a

23
i

a1
v̂HD3

IM3

( ) i
1 1

v
4 H jω

( )
( )

3 1 1 2 2
i

H j , j , j3
v̂

ω ω − ω

i
1

v
4 a

23
i

a3
v̂

Volterra series model

IM3 ( ) i
1 14 H jωi

14 a

– Second and third order distortion still vary with square and cube of input 
amplitude, respectively

– But, there is no fixed relationship between HD2 and IM2, and HD3 and IM3
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Distortion Metrics for Example 1

( )2 2 2

1
H j , j 1 j RC1 2j RCa a1 1 1ˆ ˆ ˆ

ω ω + ω+ ω( )
( )

2 2 2
2 i i i

1 11

j , j 1 j RC1 2j RCa a1 1 1ˆ ˆ ˆHD v v v
2 2 a 2 a 1 2j RCH j 1

1 j RC

+ ω+ ω
= = =

+ ωω
+ ω

( )
( )

3 2 23
3 i i

11

H j , j , j 1 j RCa1 1ˆ ˆHD v v
4 4 a 1 3j RCH j

ω ω ω + ω
= =

+ ωω

( )3 1 1 2 2 23
H j , j , j 1 j RCa3 1ˆ ˆ

ω ω − ω + ω( )
( ) ( )

3 1 1 2 2 23
3 i i

11 1 1 2

j , j , j 1 j RCa3 1ˆ ˆIM v v
4 4 aH j 1 j 2 RC

+ ω
= =

ω + ω − ω
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HD2 and HD3 Distortion Plots for Example 1

T
CQ i

V
ˆI 1mA v

5
= =
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IM3 Distortion Plot for Example 1

CQ

T
i1 i2

I 1mA

V
ˆ ˆv v

=

= =i1 i2v v
5

For ω2 → ω1, the IM3 distortion product is close to the fundamental tone 
ω1, and therefore IM3 becomes nearly frequency independent  
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Example 2

2 3
c 1 be 2 be 3 bei a v a v a v ...= + + +

ov R
K(j )

−o

c

K( j )
i 1 j RC

ω = =
+ ω

be
in

v 1
K (j )ω = =in

i in in

K ( j )
v 1 j R C

ω
+ ω

Similar to example 1, but now including an additional filter at the input
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Two-Tone Input

The two input tones are now processed by a linear filter before being

( ) ( )i 1 1 2 2ˆ ˆv v cos t v cos t= ω + ω

The two input tones are now processed by a linear filter before being 
sent through the nonlinearity

At the base of the BJT, we have

( ) ( ) ( ) ( )1 2be in 1 1 1 in 2 2 2ˆ ˆv K j v cos t K j v cos tω ω= ω ⋅ ω + ψ + ω ⋅ ω + ψ

( )m inK m jωψ = ∠ ⋅ ω

In short hand notation, this can be written asIn short hand notation, this can be written as

( )be in a iv K j v= ω D
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( ) ( ) ( )2 3
o 1 a be 2 a b be 3 a b c bev a K j v a K j j v a K j j j v ...= ω + ω + ω + ω + ω + ω +D D D

( ) ( )

( ) ( )

o 1 a in a i

2
2 a b in a i

v a K j K j v

 a K j j K j v

⎡ ⎤= ω ω⎣ ⎦

⎡ ⎤+ ω + ω ω⎣ ⎦

D D

D D

( ) ( ) 3
3 a b c in a i a K j j j K j v⎡ ⎤+ ω + ω + ω ω⎣ ⎦D D

First order term

⎡ ⎤( ) ( ) ( ) ( )1 a in a i 1 a in a ia K j K j v a K j K j v⎡ ⎤ω ω = ω ω⎣ ⎦D D D
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Second order term

( ) ( ) 2
2 a b in a ia K j j K j v ?⎡ ⎤ω + ω ω =⎣ ⎦D D

Second order term

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

22
in a i in a 1 1 2 2

2

ˆ ˆK j v K j v cos t v cos t

ˆ ˆK j v cos t K j v cos t

⎡ ⎤⎡ ⎤ω = ω ω + ω⎣ ⎦ ⎣ ⎦

⎡ ⎤+ + +

D D

( ) ( ) ( ) ( )
( ) { }( )

1 2

1 1

in 1 1 1 in 2 2 2

2 2
in 1 1 1 1

K j v cos t K j v cos t

ˆK j v cos t

ω ω

ω ω

⎡ ⎤= ω ⋅ ω + ψ + ω ⋅ ω + ψ⎣ ⎦

= ω ⋅ ω ± ω + ψ ± ψ

( ) { }( )
( ) ( ) { }( )

2 2

2 2
in 2 2 2 2

i 1 i 2 1 2 1 2

ˆ K j v cos t

ˆ ˆK j K j v v cos t

ω ω+ ω ⋅ ω ± ω + ψ ± ψ

+ ω ω ⋅ ω ± ω + ψ ± ψ( ) ( ) { }( )
( )

1 2in 1 in 2 1 2 1 2

in a

K j K j v v cos t

K j K

ω ω+ ω ω ⋅ ω ± ω + ψ ± ψ

= ω ( ) 2
in b ij vω D
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Coefficients

a R1 1
1 a

a a

2
2 b

a R1
H (j )

1 j RC 1 j RC

a R1 1
H (j j )

−ω =
+ ω + ω

−ω ω = ( )

( )

2 a b
a b a b

3
3 a b c

H ( j , j )
1 j RC 1 j RC 1 j j RC

a R1 1 1
H (j , j , j )

1 j RC 1 j RC 1 j RC 1 j j j RC

ω ω =
+ ω + ω + ω + ω

−
ω ω ω =

+ ω + ω + ω + ω + ω + ω( )a b c a b c1 j RC 1 j RC 1 j RC 1 j j j RC+ ω + ω + ω + ω + ω + ω
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Example 3

i

ij

[Chun & Murmann, JSSC 10/2006][ , ]

Cj models the nonlinear capacitance of an electrostatic discharge (ESD) 
protection device (e.g. a basic diode structure as shown to the right)
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Junction Capacitance Model

C Cj0 j0
j M M M

OQ o 0 OQ 0 OQ o

0 0 0 OQ

C C 1
C

V v V V v
1

V

= =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ψ + ψ + ++⎜ ⎟ ⎜ ⎟ ⎜ ⎟ψ ψ ψ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Using

Q⎝ ⎠ ⎝ ⎠ ⎝ ⎠

j0
jQ M

C
C

V
=
⎛ ⎞ ( )

( )2 2
M

1 1
1 Mx M M x ...

21 x
= − + + +

+OQ

0

V
1
⎛ ⎞

+⎜ ⎟ψ⎝ ⎠

2M M M
b b

+V V= + ψ

( ) 21 x+

jQ 2C
⎡ ⎤

1 2
R R

b b
V 2V

= − =

we can write

R OQ 0V V= + ψ

jQ 2
j jQ 1 o 2 oM

o

R

C
C C 1 b v b v ...

v
1

V

⎡ ⎤= = + + +⎣ ⎦⎛ ⎞
+⎜ ⎟

⎝ ⎠
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Circuit Analysis

2 3
2o o o o o

j j jQ 1 o 2 o jQ 1 3
dv dv dv dv dv1 1

i C C 1 b v b v ... C b b
dt dt dt 2 dt 3 dt

⎡ ⎤
⎡ ⎤= = + + + = + +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

( )
2 3

o o o
jQ I jQ 1 3

dv dv dv1 1
i C C C b b

dt 2 dt 3 dt

⎡ ⎤
= + + +⎢ ⎥

⎢ ⎥⎣ ⎦

2 3⎡ ⎤( )
2 3

o o o
i o o jQ I jQ 1 3

dv dv dv1 1
v v i R v R C C RC b b

dt 2 dt 3 dt

⎡ ⎤
= + ⋅ = + + + +⎢ ⎥

⎢ ⎥⎣ ⎦

2 3
i o 0 o 1 o 2 o

d d d
v v RC v RC v RC v

dt dt dt
= + + +

( )2
jQjQ1 1

0 jQ I 1 jQ 2 jQ 2
R R

M M CMCb b
C C C C C C C

2 2V 3 6V

+
= + = = − = = −
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Volterra Series

W l ki f V lt i t ti f th fWe are looking for a Volterra series representation of the form

( ) ( ) ( )2 3
o 1 a i 2 a b i 3 a b c iv H j v H j , j v H j , j , j v ...= ω + ω ω + ω ω ω +D D D

The coefficients H1, H2 and H3 can be found by inserting the above 
series into the nonlinear differential equation shown on the previous 
slide and subsequently comparing the coefficients on the LHS and RHS 
of the equation 

( ) ( ) ( )2 3
i 1 a i 2 a b i 3 a b c iv H j v H j , j v H j , j , j v= ω + ω ω + ω ω ωD D D

( ) ( ) ( )

( ) ( ) ( )

2 3
0 1 a i 2 a b i 3 a b c i

22 3

d
     RC H j v H j , j v H j , j , j v

dt

d
RC H j H j j H j j j

⎡ ⎤+ ω + ω ω + ω ω ω⎣ ⎦

⎡ ⎤

D D D

( ) ( ) ( )

( ) ( )

2 3
1 1 a i 2 a b i 3 a b c i

2
2 1 a i 2 a b i 3 a b

d
     RC H j v H j , j v H j , j , j v

dt

d
     RC H j v H j , j v H j , j

dt

⎡ ⎤+ ω + ω ω + ω ω ω⎣ ⎦

+ ω + ω ω + ω ω

D D D

D D ( )
33

c i, j v⎡ ⎤ω⎣ ⎦D
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dt ⎣ ⎦

Coefficient Comparison (1)

First order

( )i 0 1 a i
d

1 v 1 RC H j v
dt

⎡ ⎤= + ω⎢ ⎥⎣ ⎦
D D( )

( ) ( )
a

0 a

0 1 a 0 1 a

dt

d
1 1 RC H j 1 RC j H j

dt ω

⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= + ω = + ω⎢ ⎥ ⎣ ⎦⎣ ⎦

( )1 a
0 a

1
H j

1 RC j
∴ ω =

+ ω0 a1 RC j+ ω

This is just the linear transfer function as expected
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Coefficient Comparison (2)

Second order

( ) ( )
22 2

i 0 2 a b i 1 1 a i
d d

0 v 1 RC H j , j v RC H j v
dt dt

⎡ ⎤ ⎡ ⎤= + ω ω + ω⎢ ⎥ ⎣ ⎦⎣ ⎦
D D D

dt dt⎣ ⎦

Simplify using the following rules

( ) ( ) ( )2 a b a b 2 a b
d

H j , j j j H j , j
dt

ω ω = ω + ω ω ω

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
1 a i 1 a 1 b iH j v H j H j v

d
H j H j j j H j H j

⎡ ⎤ω = ω ω⎣ ⎦

⎡ ⎤ω ω = ω + ω ω ω⎣ ⎦

D D

( ) ( ) ( ) ( ) ( )1 a 1 b a b 1 a 1 bH j H j j j H j H j
dt
⎡ ⎤ω ω = ω + ω ω ω⎣ ⎦
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Coefficient Comparison (3)

( ) ( ) ( ) ( ) ( )0 a b 2 a b 1 a b 1 a 1 b0 1 RC j j H j , j RC j j H j H j⎡ ⎤= + ω + ω ω ω + ω + ω ω ω⎣ ⎦

( ) ( ) ( ) ( )
( )

1 a b 1 a 1 b
2 a b

0 a b

RC j j H j H j
H j , j

1 RC j j

− ω + ω ω ω
ω ω =

+ ω + ω( )0 a b1 RC j j+ ω + ω

( ) ( ) ( ) ( ) ( )2 a b 1 a b 1 a 1 b 1 a bH j , j RC j j H j H j H j j∴ ω ω = − ω + ω ω ω ω + ω

fH2 becomes zero for ω→0; this makes intuitive sense
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Coefficient Comparison (4)

Third order

( )3 3
i 0 3 a b c i

d
0 v 1 RC H j , j , j v

dt
⎡ ⎤= + ω ω ω⎢ ⎥⎣ ⎦

D D

( )( ) ( )( )2
1 1 a i 2 a b i

dt

d
           RC 2 H j v H j , j v

dt

⎢ ⎥⎣ ⎦

⎡ ⎤+ ω ω ω
⎣ ⎦

D D Second-order 
Interaction Term

( )
3

2 1 a i
d

           RC H j v     
dt
⎡ ⎤+ ω⎣ ⎦D

Simplifying and neglecting the second-order interaction term yields

( ) ( ) ( ) ( ) ( )H j j j RC j j j H j H j H j∴ ω ω ω = ω + ω + ω ω ω ω( ) ( ) ( ) ( ) ( )

( )
3 a b c 2 a b c 1 a 1 b 1 c

1 a b c

H j , j , j RC j j j H j H j H j

                                   H j j j

∴ ω ω ω = − ω + ω + ω ω ω ω

⋅ ω + ω + ω
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Harmonic Distortion Expressions (1)

( )
( )

( ) ( ) ( )
( ) ( ) ( )

2
1 1 12

2 i i 1 1 1 i
1 1

RC 2j H j H 2jH j , j1 1ˆ ˆ ˆHD v v RC H j H 2j v
2 2H j H j

⎡ ⎤ω ω ω⎣ ⎦ω ω
= = = ω ω ω

ω ω

( ) ( ) i
2 jQ 1 1

R

v̂1
HD M RC H j H 2j

2 V

⎛ ⎞
∴ = ω ω ω ⎜ ⎟⎜ ⎟

⎝ ⎠

HD2 improves for

– Lower swing (vi/VR)Lower swing (vi/VR)

– Lower frequency

– Lower drive resistance (R)

– Smaller capacitive nonlinearity (M→0) and smaller CjQSmaller capacitive nonlinearity (M→0) and smaller CjQ

Adding extra linear capacitance (CI) will lower the corner frequency of H1

– Assuming that we cannot tolerate much signal attenuation, this won’t  
help reduce the distortion all that much in the useable frequency range
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Harmonic Distortion Expressions (2)

( )
( )

( ) ( )( ) ( )
( )

3
2 1 13 2 2

3 i i
1 1

RC 3j H j H 3jH j , j , j1 1ˆ ˆHD v v
4 4H j H j

ω ω ωω ω ω
= =

ω ω

( ) ( )2 2
2 1 1 i

3 ˆRC H j H 3j v
4

= ω ω ω

( ) ( ) ( )
2

2 i
3 jQ 1 1

R

v̂1
HD M M RC H j H 3j

8 V

⎛ ⎞
∴ = + ω ω ω ⎜ ⎟⎜ ⎟

⎝ ⎠

HD3 behaves similar to HD2

– The distortion depends on similar quantities and cannot be improved 
by adding additional linear capacitance (CI)

HD3 is often more critical than HD2, since the latter can be improved 
significantly by employing a differential circuit topology
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Plot

v̂ 0 5V=i

I

v 0.5V

R 25

C 0

=

= Ω

=I

jQ

C 0

C 1pF

M 0 3

=

=

R OQ 0

M 0.3

V V 2.2V= + ψ =
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Example 4

A RC i it ith li it b t li i tAn RC circuit with a linear capacitor, but nonlinear resistor

The circuit below implements a track-and-hold circuit used in switched 
capacitor circuits (filters, A/D converters, etc.)

– More in EE315A,B

The MOSFET is used as a switch and operates in the triode region, 
exhibiting nonlinear resistive behavior

[W. Yu, IEEE TCAS II, 2/1999]

( ) 2
D GS t DS DS

K
I K V V V V

2
≅ − −
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Analysis (1)

2K( )

( )( ) ( )

2
D GS t DS DS

2o
o t i o i o

K
I K V V V V

2

dV K
C K V V V V V V

dt 2

≅ − −

= ϕ − − − − −

Solving for the coefficients of the Volterra series linking vo and vi, and 
evaluating HD2 and HD3 yields

( )( ) ( )o t i o i odt 2

i
2

GS t

v̂1
HD RC

2 V V

⎛ ⎞
= ω ⎜ ⎟−⎝ ⎠

2
i

3
GS t

v̂1
HD RC

4 V V

⎛ ⎞
= ω ⎜ ⎟−⎝ ⎠

where VGS is the quiescent point gate-source voltage and R is the 
quiescent point resistance of the MOSFET, i.e. K[VGS-Vt]-1
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Analysis (2)

For low distortionFor low distortion

– Make signal amplitude much smaller than VGS-Vt

• Low swing, which is usually undesired

Make 1/RC much larger than 2π·f– Make 1/RC much larger than 2π·fin
• Small C or big MOSFET, which is usually undesired

Example HD3 calculation

1 1

10 RC

ˆ 0 2V

⎫ω = ⎪
⎪
⎪

i

2
DD

OQ IQ 3

v 0.2V

V 1 1 0.2
V V 0.9V HD 46dB

2 4 10 0.45

⎪=
⎪
⎪⎪ ⎛ ⎞= = = = = −⎬ ⎜ ⎟

⎝ ⎠⎪

GS t DD OQ tV V V V V

1.8V 0.9V 0.4V 0.45V

⎪
⎪− = − − ⎪
⎪

= − − = ⎪
⎪⎭
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⎪⎭

Example 5

[Terrovitis & Meyer, JSSC 10/2000]
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Additional Topics in Distortion Analysis

Covered in EE314

– RF-centric metrics

• Intercept points

• 1-dB gain compression point

Other

– Nonlinearities in passive components

– Distortion cancelation techniques

– Cascading nonlinearitiesCascading nonlinearities

– Series reversion

– Distortion in clipped or amplitude limiting waveforms

• E.g. in oscillatorsE.g. in oscillators
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Ch t 10Chapter 10

Operational Amplifiers and Output Stages

B. Murmann

Stanford University

Reading Material: Sections 5.2, 5.5, 6.8, 7.4, 9.4.5

http://www nxp com/documents/data sheet/NE5234 SA5234 pdf
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Architecture

Provides differential 
input with large 

d

Provides 
additional 

lt i

Provides high 
current drive 

bilitcommon mode 
range

Provides some 
voltage gain, 

voltage gain capability

Output can 
(approximately) 
swing rail-to-railg g ,

approximately 
independent of 
common mode

g
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Basic PNP Differential Pair Input Stage

Circuit works for input common mode 
down to VEE (0V), as long as 

BE CE(sat) R1V V V

V V V 0 8V 0 2V 0 6V

> +

< ≅ =R1 BE CE(sat)V V V 0.8V 0.2V 0.6V< − ≅ − =

This limits the gain we can extract from 
this stage

BIAS R1
m1 1 1

I V 600mV
g R R 23

2V V 26 V
= = = =m1 1 1

T T

g
2V V 26mV

Text, p. 449
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PNP Folded Cascode Input Stage

Circuit still works for input 
common mode down to VEEEE

(0V), as before

But, the low frequency voltage 
gain is much largerg g

od 3
m1 o

v R
g R

1v
=

( ) ( )

id
3

m

o o6 m6 6 o3 m3 3

1v R
g

R r 1 g R r 1 g R

+

≅ + +
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NE5234 Input Stage

XX

~0.9V

Provides rail-to rail common-mode input range by combining the 
currents from a PNP and NPN pair

The NPN pair “steals” current from the PNP pair at node X whenever the 
input common mode is greater than |VBE|
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– Total Gm is approximately constant

Second Stage

0.5V 0.5V

0.5V

~0.9V

+ 0.4V - 0.4V 
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Common Mode Operating Point of Stage 1 Output
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Basic Emitter Follower (“Class-A”) Output Stage

Issues

– Output voltage cannot go p g g
higher than VCC – VBE

– Need large quiescent current 
IQ to provide good current 
sinking capability

– IQ flows even if no signal is 
present, i.e. Io=0
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Output Stage Nomenclature

Cl AClass-A

– Output devices conduct for entire cycle of output sine wave

Class-B

– Output devices conduct for ≅50% of sine wave cycle

Class-AB

– Output devices conduct for >50%, but <100% of cyclep , y

Class-A Class-B Class-AB
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Class-AB Emitter Follower Output Stage

Small quiescent current, but 
large drive capability 

Remaining issue

– Output voltage swing is 
severely limited
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Class-AB Common Emitter Output Stage

Q1 and Q2 are largeQ1 and Q2 are large 
devices

Want to set the quiescent 
point such that IC1 and IC2point such that IC1 and IC2

are small when no signal is 
applied
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Analysis

Assuming IC3 = IC4 = IREF by symmetry, we can write

BE6 BE8 BE4 BE2

C2REF REF REF

V V V V

II I I

+ = +

=
s6 s8 s4 s2

s2 s4
C2 REF

I I I I

I I
I I

I I
=

Quiescent current is set by IREF and emitter area ratios (Is ∝ AE)

s6 s8I I

y REF ( s E)

The same principle applies to CMOS implementations

– Original paper by Monticelli, JSSC 12/1986 
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CMOS Version

[Hogervorst, JSSC 12/1994]
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Simulated Currents (Vo=0)

Output transistorsOutput transistors 
never turn off

Quiescent current set 
by transistor ratiosI by transistor ratios

Large drive capability 

ID(M25)

ID(M26)Iout

C
ur

re
nt

 [
A

]

Iin1=Iin2 [A]
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NE 5234 Output Stage

Feedback through Q39-40 ensures that both transistors remain on at 
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extreme output swings

Simplified AC Schematic of Complete OpAmp

Nested Miller
Compensation
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Compensation Issue (1)

The designer of a general purpose OpAmp knows nothing about the 
feedback network that the user will connect around the amplifier

Therefore, general purpose OpAmps are typically compensated for the 
"worst case", i.e. unity feedback configuration

This tends to be wasteful, since much less compensation may be p y
needed for other feedback configurations 

– To overcome this issue, some general purpose OpAmps provide an 
external pin to let the user decide on the required compensation 

itcapacitor 
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Compensation Issue (2)

Wasted BW Wasted BW 
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Slewing

P i l h b d ith th ll i l b h iPrevious analyses have been concerned with the small-signal behavior 
of feedback amplifiers at high frequencies

Sometimes the behavior with large input signals (either step inputs or 
i id l i l ) i l f i t tsinusoidal signals) is also of interest

– See e.g. switched capacitor circuits in EE315A

Example using NE5234
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Output Response – Expected versus Actual
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Investigation
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General Analysis

Slew Rate
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“Internal” Amplifiers (1)

Most amplifiers used in large 
systems-on-chip (SoC) are not as 
complex as a typical generalcomplex as a typical general 
purpose OpAmps

– Typically, no output stage is 
needed, since the loads are 
either small and/or purely 
capacitive

Operational Transconductance 
Amplifier (OTA) = OpAmp minus
Output Stage

More in EE315A (see also text, 
section 6.1.7, and chapter 12) Mehta et al., "A 1.9GHz Single-Chip 

CMOS PHS Cellphone," ISSCC 2006.
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“Internal” Amplifiers (2)

B. Murmann EE214 Winter 2010-11 – Chapter 10 26


