
09/19/2006 07:06 PMCreating an EPROM Program

Page 1 of 5file:///Users/yanluo/yluo/testsite/src/documentation/content/xdocs/Teaching/MicroprocessorII/resources/eprom.html

Creating an EPROM Program
Ali Zahedi

Introduction
Cost, flexibility and performance are key issues when considering system design. Cost is minimized and
flexibility is maximized when using dynamic RAM for main memory. However, better performance and
greater reliability is achieved when ROM is used. Depending on the specific application, the optimum
memory complement is a compromise between RAM and ROM. Within real time systems (embedded
applications), as both performance and reliability are of great importance, usually flexibility is sacrificed
and systems are developed mainly on ROM.

The method by which most programs are transferred to ROM (PROM, EPROM, EEPROM) is via a specific
ROM programmer. The code that is down loaded into a ROM is usually known as "firmware". The major
differences between a firmware coded application and a commonly encountered .com or .exe application
are the lack of code relocatability and the difficulty of changing parts of the firmware code once it has been
transferred to the ROM. As a result, embedded programs are usually written so that they do not require any
changes to the code once burned into ROM. It should be mentioned that most embedded programs today use
a combination of DRAM for data and volatile storage and ROM for program and constant storage. A
common and classic example of this type of system is a Laserjet Printer where the program running the
Printer resides in ROM and the bit map of the page to print is loaded and processed in DRAM.

The purpose of this document is specifically to explain how to create an Assembly Language (or TurboC)
program that can work in the 8088 environment. Specific issues addressed by this document include:

· how to create the RESTART jump code
· how to initialize segment registers
· how to access RAM and use variables in RAM, and
· how to burn an EPROM for use in an embedded system.

Initial Assumptions
The first step in structuring a program for burning into a ROM is to determine the ROM size, the memory
addressing space and the restart address of the processor. In the following example a 2732 EPROM is used.
This EPROM has 32 Kbits(4KX8) of memory. We will make the following assumptions (8086-88
Microprocessor):

· The startup address of the 8086/88 is FFFF0H
· The EPROM has an address range of 000-FFFh
· The EPROM must be mapped to the address range FF000-FFFFFh so that it is in the restart

09/19/2006 07:06 PMCreating an EPROM Program

Page 2 of 5file:///Users/yanluo/yluo/testsite/src/documentation/content/xdocs/Teaching/MicroprocessorII/resources/eprom.html

address space of the 8086/88.

Assembly language programming
The most direct approach when using assembly language is to create an .EXE file with correct restart
addressing. Unfortunately, an EXE program has header and trailer bits that specify how the program is
loaded into memory under control of the DOS operating system. This additional code is useful, for example,
when someone interrupts a program by hitting Ctrl-C and control is returned to the operating system. When
we want to program an EPROM there is no need for these operating system or loader links because there is
no operating system. Thus the control bits must be removed. This is done by simply converting an EXE file
to a Binary file (.BIN).

DOS has a utility program named EXE2BIN.EXE which is used to convert fname.EXE files to binary
format fname.BIN files. The command line prompt is as follows:

EXE2BIN [drivel:] [path1] inputfile [[drive2:] [path2] outputfile)

where:

inputfile Specifies the EXE file to be converted.

output-file Specifies the binary file to create(the same name with a bin extension is used if not specified)

Burning An EPROM
Once your assembly language program is in a binary format, it can be loaded into an EPROM. For
programming an EPROM the following steps are required:

. 1 Write your program in assembly language. Make sure you include a hook (Jump Command) to
intercept the restart address of the microprocessor so that your program starts up correctly.

. 2 Assemble and link the file to generate an EXE program(use TLINK.EXE).

. 3 Use EXE2BIN.EXE to convert the program to a binary format.

. 4 Use an EPROM programmer to download the binary file into the EPROM.

. 5 There are many options for creating a program. These include using a compiler for high level
languages like C or Pascal, or using low assembly language and an assembler. C compilers are more
common and. some compilers from Microsoft(QuickC, MS C/C++) and Borland(TurboC, Borland C)
are readily available and easy to use. If one wants to use assembly language, Microsoft MASM and
Borland TASM are common.

Sample ASM Program
Below is a simple ASM program. This program illustrates how to initialize segment registers, how to hook
into the 8086/88 restart vector, and how to access both RAM (assumed to be in low memory) and ROM
(assumed to be the last 4Kbytes in high memory).

09/19/2006 07:06 PMCreating an EPROM Program

Page 3 of 5file:///Users/yanluo/yluo/testsite/src/documentation/content/xdocs/Teaching/MicroprocessorII/resources/eprom.html

;ASM Example
;assume that the EPROM is mapped starting at FF000h
;and is 4Kbytes wide.(2732 type of device)
;
;assume that there is SRAM at 00000-OOOFFh (256 bytes)
;
;
;--*
; Packaging Program *
;This program is designed for bottle packaging in a *
;factory. The bottles pass across a sensor and for *
;each bottle the sensor sends a signal to one of the *
;input ports of the microprocessor (8Ox88). The *
;microprocessor checks to see if number of bottles has *
;reached 16. If so, the program sends another signal *
;to the packaging machine. *
;--*

.Model small ;64K Max. size

;---
;Declare some useful constants.

inport equ 3F8h ;Input port address
outport equ 2F8h ;Output port address
MaxBot equ 10h ;set maximum number
 ;of bottles to 16

;---
; DO NOT use a data segment. All fixed data that you
; want in ROM can be put in the code segment using the
; same compiler directives you used in the data segment
;---
.CODE
 ORG 0100h ;put permanent data here.
 ;start,of fixed data(rather arbitrary,
 ;only must not be at the high end of
 ;EPROM). The ORG statement MUST FOLLOW
 ;the segment declaration.

tblstrt: db 0FFh ;Just defining some useless data.
 db 0EEh
 db 0DDh
tblend: db 0A5h ;End of useless data

;---
;This is where the code "really" starts!

 ORG 0200h ;keep data and code areas separate

init: nop
 mov ax,0FF10h ;init DS register, for ease data request
 ;to start at FF100h absolute

 mov dx,ax
 mov ax,0000h ;init SS register (start of SRAM)

09/19/2006 07:06 PMCreating an EPROM Program

Page 4 of 5file:///Users/yanluo/yluo/testsite/src/documentation/content/xdocs/Teaching/MicroprocessorII/resources/eprom.html

 mov ss,ax
 mov sp,00FFh ;init SP register (TOP of SRAM)

 mov ax,0 ;initialize bottle flag
 mov cx,MaxBot ;initialize number of passed bottle

start: nop ;
 mov dx,inport ;set address for input command
 in ax,dx ;read from input port
 cmp ax,0 ;if no bottle arrived
 je start ;wait for one
 ;if bottle arrived increment bottle number
 ;if number of bottles < 16
 loop start ;wait for another one
 mov dx,outport ;if number of bottles = 16
 mov ax,0FFh ;command to packer
 out dx,ax ;then issue the command for packaging
 mov cx,MaxBot ;initializing number of passed bottle
 jmp start ;START again

;**
;**
;EPROM goes from XX000-XXFFFh. But, because of memory mapping,
;the XX is actually Ffh address. The jump must bea ;near jump (2 byte,
;relative address) so that the jump is relocatable. Otherwise
;a 4byte absolute address is put in.
;
org 0FF0h ;restart address

startep: nop
 cli ;make sure interrupts are OFF!
 jmp init ;jump to start of program
 end

Detailed Assembler MAP

1 0000 .model small
2
3 0000 .data
4 org 0100h ;MUST FOLLOW the
 ;.data declaration
5 =03F8 inport equ 3f8h
6 =02F8 outport equ 2f8h
7 =0010 MaxBot equ 10h
8
9
10 0100 .code
11 org 0200h ;MUST FOLLOW the
 ;.code declaration
12 0200 90 init: nop
13 0201 B8 FF10 mov ax,0ff10h
14 0204 8B D0 mov dx,ax
15 0206 B8 0000 mov ax,0h
16 0209 8E D0 mov ss,ax

09/19/2006 07:06 PMCreating an EPROM Program

Page 5 of 5file:///Users/yanluo/yluo/testsite/src/documentation/content/xdocs/Teaching/MicroprocessorII/resources/eprom.html

17 020B BC 00FF mov sp,00ffh
18
19 020E B8 0000 mov ax,0
20 0211 B9 0010 mov cx,MaxBot
21
22 0214 90 start: nop
23 0215 BA 03F8 mov dx,inport
24 0218 ED in ax,dx
25 0219 3D 0000 cmp ax,0
26 021C 74 F6 je start
27
28 021E E2 F4 loop start
29 0220 BA 02F8 mov dx,outport
30 0223 B8 00FF mov ax, 0ffh
31 0226 EF out dx,ax
32 0227 B9 0010 mov cx,MaxBot
33 022A EB E8 jmp start
34
35
36
37 org 0ff0h
38 0FF0 90 startep:nop
39 0FF1 FA cli
40 0FF2 E9 F20B jmp init
41
42 end

