delial) | Al
JUBAIL INDUSTRIAL COLLEGE

JUBAIL INDUSTRIAL COLLEGE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

,"/"’t'/..-/’/"wﬂ" (LA a { L2 -

(5 :;“;‘/L‘w*;w«l

EEE 422 ADVANCED PLC

EEE 422: ADVANCED PLC

TABLE OF CONTENTS

PART 1: PROGRAMMABLE LOGIC CONTROLLERS
PART 2: PLC HARDWARE COMPONENTS
PART 3: NUMBER SYSTEMANDCODES
PART 4: BASICS OF PLC PROGRAMMING
PART 5: PROGRAMMING TIMERS

PART 6: TIMERS APPLICATIONS

PART 7: PROGRAMMING COUNTERSI
PART 8: PROGRAMMING COUNTERSII...................
PART 9: PROGRAM CONTROL INSTRUCTIONS

PART 10: FORCING EXTERNAL IO ADDRESSES
PART 11: SHIFT AND ROTATE INSTRUCTIONS

PART 12: MATH. INSTRUCTIONS

132-141
142-154
155-179

172-180
181-197

198-214

Rashad Alkakkali EEE422 ADVANCED PLC

Page 2

PART ONE

PROGRAMMABLE LOGIC CONTROLLERS
AN OVERVIEW

Rashad Alkakkali EEE422 ADVANCED PLC Page 3

PROGRAMMABLE LOGIC CONTROLLERS
(PLC's)

The Need for PLC’s

e Hardwired panels were very time consuming to wire, debug and change.
e GM identified the following requirements for computer controllers to
replace hardwired panels.

— Solid-state not mechanical

— Easy to modify input and output devices

— Easily programmed and maintained by plant electricians
— Be able to function in an industrial environment

The First Programmable Logic Controllers (PLC’s)

e Introduced in the late 1960's

e Developed to offer the same functionality as the existing relay logic
systems

e Programmable, reusable and reliable

— Could withstand a harsh industrial environment -They had no
hard drive, they had battery backup

— Could start in seconds

— Used Ladder Logic for programming

Programmable Logic Controller

e A programmable logic controller (PLC) is a specialized computer used to
control machines and process.

e It uses a programmable memory to store instructions and specific
functions that include ON/Off control, timing, counting, sequencing,
arithmetic, and data handling

Rashad Alkakkali EEE422 ADVANCED PLC Page 4

Advantages of PLC Control Systems

e Flexible

e Faster response time

e Less and simpler wiring

e Solid-state -no moving parts

e Modular design-easy to repair and expand

e Handles much more complicated systems

e Sophisticated instruction sets available

¢ Allows for diagnostics "easy to troubleshoot"
e Less expensive

Advantages of a PLC Control System

Eliminates much of the hard wiring, which was associated with conventional relay
control circuits.

o Al F2
L1 o | Q iy
20L ¥
(5@ e R 2oL T3 () Squirrel cage
o _LB_— F1 prc)fl;g;l,on
= 1[2[3[4
ac (s))
';1 S :; ammeter FC
120V t j({
= M -
D A A C SGR 2y F
HIQ H2 +3 OH4 _,_@@__I
W @ e
L 1
START =FC L N FC =
STOP FC SCPR Overlvads
1. & J_ a dc shunt
(i i e de
M}_Q_ITIR FRX , ammeter
Q
FC 0
"‘—*MR M M FC FR
= HE e
Fo sensen. TR
T e ™o
FRX | : - (L
T.0.
I + = dc supply — —

Rashad Alkakkali EEE422 ADVANCED PLC Page 5

The program takes the place of much of the external wiring that would be
required for control of a process.
Increased Reliability:

Once a program has been written and tested it can be downloaded to other
PLC’s.

Since all the logic is contained in the PLC’s memory, there is no chance of
making a logic wiring error.

Input
L1 1124.0 Tl
"LElr S_OFFDT
o-LS1 |} 5 0
S5TH58 TV Bl (...
.. R BCD ...
0124.0 Qutputs
. L2
Tl "M1" oL
1 { — M _O_/r_l
Ql124.1 /OL
T] SRl
| | {— M2 —O—
/1
Q124.3
Tl oo ~ /’
/1 { — 6 — : F——1
Fa ~
Ql24.4 ~ -
o1 (R ——+
| | o |
11 W 1 / \

More Flexibility:

Original equipment manufacturers
(OEMs) can provide system updates

for a process by simply sending out a
new program.

It is easier to create and change a
program in a PLC than to wire and
rewire a circuit. End-users can modify

the program in the field. i Programmable
Pulses controller

Wood

Rashad Alkakkali EEE422 ADVANCED PLC Page 6

Lower Costs:

Originally PLC’s were designed to replace relay control logic. The cost savings
using PLC’s have been so significant that relay control is becoming obsolete,
except for power applications.

Fixed contacts

— l\ / Movable contact

X N\/Armature

= — Generally, if an application
[<«— spring 'equires more than about 6
control relays, it will usually be
less expensive to install a PLC.

Q

Coil

Communications Capability:

A PLC can communicate with other controllers or computer equipment.

They can be networked to perform
such functions as: supervisory control,
data gathering, monitoring devices and
process parameters, and downloading
and uploading of programs.

Rashad Alkakkali EEE422 ADVANCED PLC Page 7

Faster Response Time:

PLC’s operate in real-time which means that an event taking place in the field will
result in an operation or output taking place.

Machines that process
thousands of items per
second and objects that
spend only a fraction of a
second in front of a sensor
require the PLC's quick
response capability.

Counting the number
of tea bags

Easier To Troubleshoot:

PLC’s have resident diagnostic and override functions allowing users to easily
trace and correct software and hardware problems.

The control program can be watched in real-time as it executes to find and fix
problems.

True
P _‘ _/\/_ e ’ -()__ 9. mréglloou(put l
I De-energized — off 2. Output device.
I
: Qutput module
' status Oi:@calo« \ Output module Possible problem
: R _E=g=k= e
- = i e (] | Weing 1o output
: i
-

1 VAC
: ouT 0 ; z Output device.
1 OuUT 1
' i /
Lo S OouT3 Output device)’

OuT 4 condition /s

ouT s =

OouT &

ouT7

AC COM) L-2

Rashad Alkakkali EEE422 ADVANCED PLC Page 8

PLC Architecture:

PROGRAM
FlEAL WORLD
MEMORY INPUT/OUTPUT

ADDRESS

CENTRAL PROCESSOR UNIT

The structure of a PLC is based on the same
principles as those employed in computer

architecture.

PLC System:
Power supply []
] i = prg:::sail:lg | o
Input —Q | o+ o : 1 u o Output
sensing N 4 J." unit (CPU) ‘-+ t d[= load
devices _020“ 5 u : Memory E P ?_O_ devices
1 {1 i u o ooN
am &
Qe O~ t ~ E progr: data i ot ‘_ﬂ_
Optical / t \Optical
Isolation — [i Isolation

Programming device

Rashad Alkakkali EEE422 ADVANCED PLC Page 9

PLC Architecture:

e An open architecture design allows the system to be connected
easily to devices and programs made by other manufacturers.

e A closed architecture or proprietary system, is one whose design makes it
more difficult to connect devices and programs made by other
manufacturers.

NOTE: When working with PLC systems that are proprietary in nature you
must be sure that any generic hardware or software you use is compatible
with your particular PLC.

1/0 Configurations:
Common Power Bus

Fixed 1/O .

Is typical of small PLC’s h 0 Io

o Comes in one package with no

: LA
separate removable units Inputs
Interface
o The processor and I/O are Processor PLC
packaged together.
Outputs
e Lower in cost — but lacks Interface

flexibility.

Rashad Alkakkali EEE422 ADVANCED PLC Page 10

Modular 1/0 Modules:
Modular 1/O .

Processor
module

Is divided by compartments into which

\ /5\ /O\ separate modules can be plugged.

B B This feature greatly increases your
Power options and the unit's flexibility. You can
supply choose from all the modules available
and mix them In any way you desire.
o] o]

Input moduie Output module

) %)
o g N\
Modular 1/O . X
"
N
When a module slides into the | \
. . ——— N
rack, it makes an electrical \\
connection with a series of \\ EEEE
contacts -called the backplane. The N
backplane is located at the rear of
the rack. Module slides
into the rack

Rashad Alkakkali EEE422 ADVANCED PLC Page 11

Power Supply:

e Supplies DC power to other modules
that plug into the rack.

o In large PLC systems, this power
supply does not normally supply power
to the field devices.

o In small and micro PLC systems, the
power supply is also used to power field
devices.

Processor (CPU):

e Is the "brain" of the PLC

e Consists of a microprocessor for
Implementing the logic, and supply
controlling the communications
among the modules.

e Designed so the desired circuit can
be entered in relay ladder logic form.

e The processor accepts input data
from various sensing devices,
executes the stored user program,
and sends appropriate output
commands to control devices.

Power
supply

Power
supply

[<]]

Processor
Module

Rashad Alkakkali EEE422 ADVANCED PLC Page 12

1/0 Sections:

o
Consists of: Power
supply
o Input modules supply
o Output modules.
M
w
)
"3
b
i+
ulﬁ
Input Module . '
Input field devices
o Fe
. 7 5 e Forms the interface Power
Common | . | by which input field
Power I n devices are connected to
Bus p
O— the controller.
%\ u
[- t
J‘D%\ e The terms “field” and the
m “real world” are sued to
Fioiay coniAcls 0 distinguish actual external
User Pushbuttons H a sting _
power supply | [imit switches " devices that _eX|st _and
Analog sensors _ H | must be physically wired
Selector switchesH e into the system.
Common Return Bus

Rashad Alkakkali EEE422 ADVANCED PLC Page 13

Output Module

¢ Forms the interface by which
output field devices are
connected to the controller.

e PLC’s employ an optical isolator
which uses light to electrically
isolate the internal components
from the input and output
terminals.

Programming Device:

Output field devices

¥ o 2

(0]
u
P
2 F P Common
! QM/ Return
, Bus
rc? — Relays
d []_Motor starters User
u [—1 Solenoid valves power supply
| 1 Indicator lights
e LED displays
[) Software
— =] 1

¢ A personal computer (PC) is the most commonly used programming device.

e The software allows users to create, edit, document, store and troubleshoot

programs.

e The personal computer communicates with the PLC processor via a serial or
parallel data communications link

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 14

Programming Device:

e Hand-held programming
devices are sometimes used

Ha nd -held un it to program small PLC'’s
With d |3play e They are compact,

iInexpensive, and easy to
use, but are not able to
display as much logic on
screen as a computer
monitor

e Hand-held units are often
used on the factory floor for
troubleshooting, modifying

programs, and transferring programs to multiple machines.

PLC Mixer Process Control Problem:

Mixer motor is to automatically stir
the liquid in the vat when the
temperature and pressure reach
preset values.

-<«— Process vat

Alternate manual pushbutton is
provided to control the motor.

vl L
Pressure TemperatuAre
The temperature and pressure and sensor sensor switch
switch

pressure sensor switches close their
respective contacts when conditions
reach their preset values.

@

Manual pushbutton station

Rashad Alkakkali EEE422 ADVANCED PLC Page 15

Process Control Relay
Ladder Diagram:

L1

<

switch

120 V ac

Pressure = Temperature

switch

?——OIG

-

#———o Oo—
Manual
pushbutton

(DNt

Motor starter coils is energized when both the pressure and temperature

switches are closed or when the manual pushbutton is pressed.

The temperature and

PLC Input Module
Connections:

e The same input field
devices are used.

e These devices are wired to
the input module
according to the
manufacturer’s labeling
scheme.

L1

e 120\ 8C =]

3

Rashad Alkakkali

L1
Pressure
E ‘
Temperature
r TS
O O 3
Manual
pushbutton
4
L2

L2

EEE42Z ADVANCED PLU

Neutral return

rage 16

PLC Output Module Connections:

L1

A

Same output field device is used and

wired output module.
L1
oL
1
Motor
starter
2 coil
3
TTTTTTTTTT
I 4
——— L1

Triac switches motor ON and
OFF in accordance with the

control from
processor

load
inside output module

L

L2

PLC Ladder Logic Program:

e The format used is similar to that of the hard-wired relay circuit.

Q1.0
"Motor-3-
Coil"

T]
oS |

I0.1
"Tenp-
gwitch"

10.0
"pressure-—
switch"
| | | |
10 I
I0.2

"Manual
FE"

120 Vac ————————¥

L2

control signal from the processor.

Rashad Alkakkali EEE422 ADVANCED PLC

Page 17

10.0 10.1 1.0
'pressure- "Temp- "Motor-5-—
switch" switch" Coil"

-
s @ R
. . .
. L] *
s » o*
. L *
10.2 “ & 4*
Manual Py : .‘
PB" . » o*
“ ng 0.
»
I I A ™ S
P L] ’0
‘ - ¥ @
“. . § .2
* L]
L] .‘

{,::.-.-,::
e, e, Trens,.,
l- AT T T

- ., Tea, ThEEa,,, -
" -
. W L Poviuy
. .
0-., O T
a0 10.1 ql.0o
ressure- "
pswitch" Temp- "Motor-5-
gwitch" Coil"
.
.
v 10.2
"Manual
ER"

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 18

PLC ladder logic Program:

0.0 0.1 1.0
"pressure- "Temp- "Motor-53-
switch" switech" Coil"
| | | | £ |
11 [L |
0.2
"Manual
FE"
| |
11

e |/O address format will differ, depending on the PLC manufacturer. You
give each input and output device an address. This lets the PLC know
where they are physically connected

Entering and Running the PLC Program:

CPU314C-2DP

OsF

O BF
Upc 5v
COFRCE
CJRUN
[OsTop

RUN
STOP \
MRES

/

V2.6.6
X1 MPI X2 DP

g
Ll
// -;

4 N
‘power supply connector

of CPU 31xC (removable)

To enter the program into the PLC, place
the processor in the STOP mode and
enter the instructions one-by-one using
the programming device

To operate the program, the controller
is placed in the RUN mode, or operating
cycle

Rashad Alkakkali

EEE422 ADVANCED PLC Page 19

PLC Operating Cycle:

During each operating cycle, the controller examines the status of input devices,
executes the user program, and changes outputs accordingly.

1/O scan
/

The completion of one cycle of this
sequence is called a scan. The scan
time, the required for one full cycle,
provides measure of the speed of
response of the PLC.

~— Program scan

0.0 0.1 1.0
"pressure- "Temp- "Motor-3-
switch" switech" Coil"
| | | | £ |
11 [L |
0.2
"Manual
FE"
| |
11

Each ~| }— can be though of as a set of normally open contacts

The —(>— can be considered to represent a coil that, when energized,
wil closed a set of contacts.

Coil O/l is energized when contacts I/1 and I/2 are closed or when contact 1/3 is
closed. Either of these conditions provides a continuous path from left to right
across the rung that includes the coil.

Rashad Alkakkali EEE422 ADVANCED PLC Page 20

Modifying a PLC Program:

L1 L2
< 120 V ac 4
Pressure Temperature
switch switch O
O
? Motor
starter
coil
¢ ©c © Relay ladder diagram for modified
Manual process
pushbutton |

e The change requires that the manual pushbutton control should be
permitted to operate at any pressure but not unless the specified
temperature setting has been reached.

e If a relay system were used, it would require some rewiring of the system,
as shown, to achieve the desired change.

L1 L2
< 120 V ac 2
Pressure Temperature
switch switch S
T
? Motor
starter
coil
? Moamgl Relay ladder diagram for modified
pushbutton process

e |f a PLC is used, no rewiring is necessary! The inputs and outputs are still
the same. All that is required is to change the PLC program.

Rashad Alkakkali EEE422 ADVANCED PLC Page 21

PLC’s Versus Personal Computers:

PLCs Versus Personal Computers

PLC

- Operates in the industrial
environment

- |s programmed in relay
ladder logic

- Has no keyboard, CD drive,
monitor, or disk drive

- Has communications ports,
and terminals for input and
output devices

PC Based Control Systems:
Advantages:

— Lower initial cost

— Less proprietary hardware and

software required

— Straightforward data exchange

with other systems

— Speedy information processing

— Easy customization

Same basic
architecture

—
T —
K -
—_—
——
P —
P——
et
-
.

PC

- Capable of executing several
programs simultaneously, in
any order

- Some manufacturers have
software and interface cards

available so that a PC can do
the work of a PLC

Rashad Alkakkali

EEE422 ADVANCED PLC Page 22

PLC Size Classification:

Criteria
— Number of inputs and outputs (I/O count)
— Cost
— Physical size

NANO PLC

- Smallest sized PLC
- Handles up to 16 I/O points

Micro PLC
- Handles up to 32 I/O points

PLC Size Classification

Allen-Bradley SLC-500 Family
- Handles up to 960 |/O points

Allen-Bradley PLC-5 Family
- Handles several thousand /O
points

Rashad Alkakkali EEE422 ADVANCED PLC Page 23

PLC Instruction Set:

The instruction set for a particular PLC type lists the different types of instructions

supported.
B Mew network

Bit logic;

(] Comparator
[ag] Converter
Counter

DE call

(5] Jumps

(+1] Integer Function
Floating-point Fct,
Move

Program control
ShiftfRotate
Status bits

(@] Timers

(29 wWord logic

) I O o [O O O o O O o A

An instruction is a command that will cause a PLC to perform a certain

predetermined operation.

Typical PLC Instructions:

-] [-- NO contact
-] [-- NC contact
--()-- output coil
--(S)-- output set
--(R)-- output reset

Examine a bit for an ON condition
Examine a bit for an OFF condition
Turn ON a bit

Set a bit

Reset a bit

Rashad Alkakkali

EEE422 ADVANCED PLC Page 24

PART TWO

PLC HARDWARE COMPONENTS
&
SIMATIC S7 SOFTWARE

Rashad Alkakkali EEE422 ADVANCED PLC Page 25

SIMATIC OVERVIEW

SIMATIC® Overview

SIMATIC® PG
SIMATIC® PC

SIMATIC® HMI

|

—a

& EEEEEERE 4
— EEEEEEEE O

SIMATIC® NET

AR

295 EaBES

|
=1 SIMATIC®
Controlier

e)| £
1 ;—rrl—ui FRCFIBUS-DF
1

SIMATIC*DP §

A

Introduction

In the past, control tasks were solved with individual isolated Programmable
Logic Controls (PLCs) controlling a machine or process. Today in order for
companies to remain competitive, it is not enough to automate only individual
processing stations or machines in isolation. The demand for more flexibility with
higher productivity can then be fulfilled when the individual machines are
integrated in the entire system.

Totally Integrated

Totally Integrated Automation (TIA) provides a common software environment
Automation that integrates all components, in spite of the diversification of
applied technology, into one uniform system. This brings together everything you
need to program, configure, operate, handle data, communicate, and maintain
your control solutions.

Step 7 SIMATIC Manager, running on Siemens PGs or PCs, provides an
integrated set of tools for all system components that allows easy creation,
testing, start-up, operation and maintenance of your control solutions. While you
are configuring and programming, the Siemens software puts all of your data in a
central database to which all of the tools have access.

Central Database A common database of all components of Totally Integrated
Automation means that data only have to be entered once and are then available
for the entire project. The total integration of the entire automation environment is
made possible with the help of:

» One common software environment (Step 7 SIMATIC Manager) that integrates
all components and tasks into one uniform easy to use system.

« Common data management

« Standard open busses such as Ethernet, PROFIBUS, MPI, AS-interface
connect all components to each other, from the management level to the

Rashad Alkakkali EEE422 ADVANCED PLC Page 26

Hardware and software needed
PC, operating system Windows 2000 Professional starting with SP4 /XP
Professional starting with SP1/Server 2003 with 600 MHz and 512 RAM,
Free hard disk memory approx. 650 to 900 MB, MS Internet Explorer 6.0
2 Software: STEP7 V 5.4
MPI interface for the PC (e.g. PC adapter for USB)
4 SIMATIC S7-300 PLC with the CPU 314C-2DP
Configuration example:
- Power supply unit: PS 307 2A
- CPU: CPU 314-2DP

w

e Eron

2 STEP7

4 S7-300 with
CPU 314C-2DP

Rashad Alkakkali EEE422 ADVANCED PLC Page 27

NOTES ON THE USE OF THE CPU 314C-2DP

The CPU 314C-2DP is shipped with an integrated PROFIBUS DP interface and
integrated inputs/outputs.
The following PROFIBUS protocol profiles are available for the CPU 314C-2DP:

- DP interface as master according to EN 50170.

- DP interface as slave according to EN 50170.
PROFIBUS-DP (decentralized peripherals) is the protocol profile for connecting
decentralized peripherals/field units with very fast reaction times.

The addresses of the input and output modules of this CPU can be
parameterized.

Due to the following performance data, this CPU is especially suitable for training
purposes:

- 48 kByte RAM, load memory in the form of a plug-in MicroMemoryCard (MMC),
64 kByte to 4 MByte

- 8192 bytes DI/DO, including 992 bytes central

- 512 bytes AI/AQ, including 248 bytes central

- 0.1 ms /1 K commands

- 256 counters

- 256 timers

- 256 clock memory bytes

- 24 Dls, including 16 which can be used for integrated functions; all can be used
as alarm inputs as well

- 16 DOs, integrated; 4 of which are fast outputs

- 4 Als for current/voltage, 1 Al resistor integrated

- 2 AOs for current/voltage, integrated

- 4 pulse outputs (2.5 kHz)

- 4-channel counting and measuring with 24 V (60 kHz) incremental encoders

- Integrated positioning function

Rashad Alkakkali EEE422 ADVANCED PLC Page 28

OPERATING THE CPUS 31XC

Operator control and display elements

The following illustration shows the operator control and display elements of a
CPU 31xC.

The arrangement and number of elements in some CPUs differ from this
illustration.

04 ®

— — 1L — 1
é — — | The figures show the following
MMC - — 4 il CPU elements:
5 il (1) Status and error displays

_ (2) Slot for the Micro Memory Card
s il (MMC), incl. the ejector

| (3) Connections of the integrated
I/O.
(4) Power supply connection
(5) 1% interface X2 (PtP or DP)

@

e
/
=
@

The following illustration shows the digital and analog inputs/outputs integrated
on the CPU.

X11 X12
=
- 0n (B Al The figure shows the
ocs HE (I Al following
o il 1l integrated 1/Os:
L : - H| (1) Analog I/Os
- (17 (2) B (2) 1 (2) each with 8 digital inputs
e E i ‘: H| (3) each with 8 digital outputs
| B [= O (AN Frant connactare (frant
(1) o 12]
E |
u
"
L]
g
i
u
n
"
—1 [1T—
@ @

Rashad Alkakkali EEE422 ADVANCED PLC Page 29

Status and fault/error displays
The CPU has the following LED displays:

LED designation Color [Meaning

5F red Hardwars or software error

BF (for CPUs with DF | red Bus error

interface only)

DCaY green | 5-V power for CPU and S7-300 bus is OK
FRCE yvaellow | Force job is active

RN green | CPUIn RUM

The LED flashes during STARTUF at a rate of 2 Hz, and in HOLD
state at 0.5 Hz.

STOP vellow [CPUIn STOP and HOLD or STARTUR

The LED flashes at 0.5 Hz when the CPU requests a memaory raset,
and during the reset at 2 Hz.

Slot for the SIMATIC Micro Memory Card (MMC)

A SIMATIC Micro Memory Card (MMC) is used as a memory module for the
CPU 31xC. The MMC can be used as a load memory and as a transportable
data carrier. The MMC must be plugged in before the CPU can be operated
because the CPUs 31xC do not have an integrated load memory.

Mode selector
The mode selector can be used to choose the current operating mode of the
CPU. The mode selector is designed as a toggle switch with 3 positions.

Positions of the mode selector
The positions of the mode selector are explained in the same sequence as they
occur on the CPU:

Position | Description | Comments

RUN RUN mode | The CPU is processing the user program

STOP STOP mode | The CPU is not processing a user program

MRES Memory Button position of the operating mode switch
Reset for a memory reset of the CPU. A CPU

memory reset requires a specific operating
seqguence (refer to the Installation Manual,
Chapter Commissioning)

Rashad Alkakkali EEE422 ADVANCED PLC Page 30

MEMORY AREAS OF THE CPU 31XC

Introduction
The memory of the CPU 31xC can be divided into three areas:

Memory of the CPU

|
Loading memaory ML
{located on the MMC)

System memory

Warking memory

Note
Only with the MMC plugged in is it possible to load user programs and
therefore operate the CPU 31xC

Load memory

The load memory is located on a SIMATIC Micro Memory Card (MMC). Its size is
exactly the same as that of the MMC. It is used for storing code blocks and data blocks as
well as system data (configuration, connections, module parameters, etc.).

Blocks that are marked as not being relevant to program execution are
exclusively stored in the load memory. In addition, the complete planning data for
a project can be stored on the MMC.

RAM

The RAM is integrated on the CPU and cannot be expanded. It is used for
processing the code and processing the data of the user program. The program
is executed exclusively in the RAM and the system memory. Once the MMC has
been plugged in, the RAM of the CPU is retentive.

System memory
The system memory is integrated on the CPU and cannot be expanded. It
contains

- the operands area for clock memories, timers and counters

- the process images of the inputs and outputs

- the local data

Rashad Alkakkali EEE422 ADVANCED PLC Page 31

Retentivity

Your CPU 31xC has retentive memory. Retentivity is implemented on the MMC
and on the CPU. Due to this retentivity, the contents of the retentive memory are
retained even after the mains supply has been switched off and the CPU has
been restarted (warm restart).

Load memory

You program in the load memory (MMC) is always retentive. During loading, it is
stored on the MMC, is powerfail-proof and cannot be cleared.

Work memory (RAM)
Your data in the work memory are backed up on the MMC in the event that the
mains supply is switched off. The contents of data blocks are therefore always

retained.
System memory

With regard to clock memories, timers and counters, you configure (properties of
the CPU, Retentivity tab) which parts are to be retentive and which are to be
initialized with "0" when the system is restarted (warm restart).
The diagnostic buffer, MPI address (and baud rate) as well as the runtime meter
are generally stored in the retentive memory area on the CPU. The retentive area
for the MPI address and the baud rate ensure that your CPU is still able to
communicate after a power failure, a complete memory reset or loss of the
communication parameters (because the MMC was removed, or the
communication parameters were deleted).

Retention of the memory objects
The following table shows which memory objects are retained when transitions
between operating modes occur.

Memory Object Operating Mode Transition
PowerOn/Off | STOP - RUN | Memory Reset

User Program/User Data (load X X X
memory)

Actual values of the DBs X X -

Flags, timers and counters X X -
configured as retentive

Diagnostic buffer, hours run meter X X X

MPI address, baud rate X X X

X = retentive; - = not retentive
Rashad Alkakkali EEE422 ADVANCED PLC Page 32

S7-300 Modules

Features
* Modular small control system for the lower performance range
» Performance-graded range of CPUs
* Extensive selection of modules
* Expandable design with up to 32 modules
» Backplane bus integrated in the modules
* Can be networked with - Multipoint interface (MPI),
- PROFIBUS or
- Industrial Ethernet.
* Central PG/PC connection with access to all modules
* No slot restrictions
 Configuration and parameter setting with the help of the "HWConfig" tool.

§7-300™: Modules

B g % : E : E g ; :
:\} %: % : E % : ::
PS cPU] SM: SM: SM: 5M: FM: CF:
[opticnal) {optignal) DI oo Al AQ - Counting - Point-to-Point
- Positioning - PROFIBUS

- Closed-loop - Industria’ Ethernet
conire

Signal Modules
(SM) * Digital input modules: 24 VDC, 120/230 VAC
* Digital output modules: 24 VDC, Relay
* Analog input modules: Voltage, current, resistance, and
thermocouple
* Analog output modules: Voltage, current

Interface Modules The IM360/IM361 and IM365 make multi-tier configurations
possible.
(IM) the interface modules loop the bus from one tier to the next.

Dummy Modules The DM 370 dummy module reserves a slot for a signal module
(DM) whose parameters have not yet been assigned. A dummy
module can also be used, for example, to reserve a slot for
Installation of an interface module at a later date.

Function Modules Perform "special functions":
(FM) - Counting
- Positioning
- Closed-loop control.

Rashad Alkakkali EEE422 ADVANCED PLC Page 33

Communication Provide the following networking facilities:

Processors (CP)

- Point-to-Point connections
- PROFIBUS
- Industrial Ethernet.

Accessories Bus connectors and front connectors

Mode Selector MRES
STOP
RUN
RUN-P

Status Indicators SF
(LED’s)
BATF
DC5V
FRCE
RUN
STOP

Memory Card

Battery Compartment

MPI Connection

DP Interface

Rashad Alkakkali

§7-300™: CPU Design

= Memory reset function (Module Reset)

= Stop mode, the program is not executed.

= Program execution, read-only access possible from PG.
= Program execution, read/write access possible from PG.

= Group error; internal CPU fault or fault in module with diagnostics
capability.

= Battery fault; battery empty or non-existent.

= Internal 5 VDC voltage indicator.

= FORCE; indicates that at least one input or output is forced.

= Flashes when the CPU is starting up, then a steady light in Run mode.

= Shows a steady light in Stop mode.

Flashes slowly for a memory reset request,

Flashes quickly when a memory reset is being carried out,

Flashes slowly when a memory reset is necessary because a memory card

has been inserted.

A slot is provided for a memory card. The memory card saves the program
contents in the event of a power outage without the need for a battery.
There is a receptacle for a lithium battery under the cover. The battery
provides backup power to save the contents of the RAM in the event of a
power outage.

Connection for a programming device or other device with an MPI interface.

Interface for direct connection of distributed 1/Os to the CPU.

EEE422 ADVANCED PLC Page 34

Addressing 8$7-300™ Modules

Slot Mo, —» 1 4 R G T 8 g 10 11
: EEElEEEE
! d|=H=H=H=R=H =k é:
HEHEHEHEHEHEHEE

Modules — BE CPU Sk SM a1 | SN SN SM SM 58

Address 0.0
— Address 0.7

Address 1.0
Address 1.7

F i

AL LT

Ol0DDDD0D DOODODDDDD
F 1

Slot Numbers The slot numbers in the rack of an S7-300™ simplify addressing in the
S7-300™ environment. The position of the module in the rack determine the
First address on a module.

Slot 1 Power supply. This is the first slot by default.
A power supply module is not absolutely essential. An S7-300™ can also be
supplied with 24V directly.

Slot 2 Slot for the CPU.

Slot 3 Logically reserved for an interface module (IM) for multi-tier configurations
using expansion racks. Even if no IM is installed, it must be included for
addressing purposes.

You can physically reserve the slot (such as for installing an IM at a later date) if
you insert a DM370 dummy module.

Slots 4-11 Slot 4 is the first slot that can be used for /O modules, communications
processors (CP) or function modules (FM).

Addressing examples:
* A DI module in slot 4 begins with the byte address O .
* The top LED of a DO module in slot 6 is called Q8.0 .

Note Four byte addresses are reserved for each slot. When 16-channel DI/DO
modules are used, two byte addresses are lost in every slot!

Rashad Alkakkali EEE422 ADVANCED PLC Page 35

DIDO Addressing in Multi-Tier Configurations

= Rack 5 e 980 | 1000 (1040 |108.0 | 1120 [116.0 |1200 | 1240 f|
5 [Fiecelve) to to o o o io to o
o 887 | 1037 (1077 [111.7 | 1167 [1187 (1237 |127.7 pf
PS M 640 (es0 |720 |760 200 |s340 |[ms0 |o2o
Rack (RECEe] 3] io o 3] i 1o to i
= 677 (707 |757 |707 |83a7 |877 |(m7 |o57 D
P3S M |320 | 360 | 00 | 440 |480 |520 |s60 |eoo i
Haﬁ" Recaive) to o b o | fo to o
=) 357 | 307 | 437 | 477 |517 |557 |(s07 |ea7 P
= PE | cpu | ™ 00 | 40 | 80 | 120 | 160 | 200 | 240 | 280 [
Rack (Send) to to to to to o 1o
= 0 3.7 77 | M7 | 157 | 107 | 237 | 277 | ;.7)
Slot 2 3 4 5 8 7 2 g 10 11
Multi-Tier The slots also have fixed addresses in a multi-tier configuration.

Configurations

Rashad Alkakkali

Examples:

* Q7.7 is the last bit of a 32-channel DO module plugged into slot 5 of rack 0.
+ IB105 is the second byte of a DI module in slot 6 of rack 3.
* QW60 is the first two bytes of a DO module in slot 11 of rack 1.

+ ID80 is all four bytes of a 32-channel DI module in slot 8 in rack 2.

EEE422 ADVANCED PLC

Page 36

Types of Program Blocks

Operating System DB DR
Cycle Y l .
— —— -
: OB — —
L = | FC &~—__| FB f—_|SFC
Cirganizaticn
Process Blocks —
| | o
Emror ———_| FB]" -] FC =——__|SFB
Legend: Maximum nesting desth;
ZB = Organization Block SF-300: B {16 for CPU 318)
FB = Functon Block
Fi& = Functon FB SF-400; 24
SF8 = System Function Block
SFC = System Function FB with (2 o 4 addzional leve's for Emor OBs,
DB =DCata Block instance OB for each prionty class)

Blocks

The programmable logic controller provides various types of blocks in which the user program
and the related data can be stored. Depending on the requirements of the process, the program
can be structured in different blocks.

Organization

Organization blocks (OBs) form the interface between the operating system and Block the user
program. The entire program can be stored in OB1 that is cyclically OB called by the operating
system (linear program) or the program can be divided and stored in several blocks (structured
program).

Function

A function (FC) contains a partial functionality of the program. It is possible to FC, SFC program
functions so that they can be assigned parameters. As a result, functions are also suited for
programming recurring, complex partial functionalities such as calculations.

System functions (SFC) are parameter-assignable functions integrated in the CPU's operating
system. Both their number and their functionality are fixed. More information can be found in the
Online Help.

Function Block

Basically, function blocks offer the same possibilities as functions. In addition, FB, SFB function
blocks have their own memory area in the form of instance data blocks. As a result, function
blocks are suited for programming frequently recurring, complex functionalities such as closed-
loop control tasks.

System function blocks (SFB) are parameter-assignable functions integrated in the CPU's
operating system. Both their number and their functionality are fixed. More information can be
found in the Online Help.

Rashad Alkakkali EEE422 ADVANCED PLC Page 37

Data Blocks
Data blocks (DB) are data areas of the user program in which user data are DB managed in a
structured manner.

Permissible Operations
You can use the entire operation set in all blocks (FB, FC and OB).

Program Structure

Limear Program Program Partitioned Inte Arags Structurad Frogram

o Rmcips &

-

= = = MilEEr
- -~ Cntiet

051 OB 1 ——— Recips 5 0B 1

UL

Cub=q

All insTuctons are The Insructions for the Indl- Rewsable functions are loaded

found In one olock vigual funcikans are found In Inio indiekdual DIDCEs.

iw=sualy Im Organizatdon Individual plocks. OB 1 calls the &8 1 {or other blocks) cal

Bilock OB 1) Indlviduzl Blecks ane Ffter the these blocks and pass on the
olhar. perinent data

Linear Program

The entire program is found in one continuous program block. This model
resembles a hard-wired relay control that was replaced by a programmable logic
controller. The CPU processes the individual instructions one after the other.

Partitioned Program

The program is divided into blocks, whereby every block only contains the
program for solving a partial task. Further partitioning through networks is
possible within a block. You can generate network templates for networks of the
same type. The OB 1 organization block contains instructions that call the other
blocks in a defined sequence.

Structured Program

A structured program is divided into blocks. The code in OBl is kept to a
minimum with calls to other blocks containing code. The blocks are parameter
assignable. These blocks can be written to pass parameters so they can be used
universally. When a parameter assignable block is called, the programming
editor lists the local variable names of the blocks. Parameter values are assigned
in the calling block and passed to the function or function block.

Rashad Alkakkali EEE422 ADVANCED PLC Page 38

Example:
* A "pump block" contains instructions for the control of a pump.

» The program blocks, which are responsible for the control of special pumps, call
the "Pump block" and give it information about which pump is to be controlled
with which Parameters.

* When the "pump block" has completed the execution of its instructions, the

program returns to the calling block (such as OB 1), which continues processing
the calling block's instructions.

Process Images

T T

| VPl . W PIQ =
User
g‘fte (1] Program gie ?
yie &

Byte 2 I:I—\"’i:t— — |Byte2

: o

: | 2.0
= Q 43

CPU Memory Area - . CPU Memory Area

Introduction

The CPU checks the status of the inputs and outputs in every cycle. There are
specific memory areas in which the module's binary data are stored: Pll and PIQ.
The program accesses these registers during processing.

PlI
The Process-Image Input table is found in the CPU‘s memory area. The signal
state of all inputs is stored there.

PIQ

The Process-Image Output (Q) table contains the output values that result from
the program execution. These output values are sent to the actual outputs (Q) at
the end of the cycle.

Rashad Alkakkali EEE422 ADVANCED PLC Page 39

User Program

When you check inputs in the user program with, for example, A | 2.0, the last
state from the PII is evaluated. This guarantees that the same signal state is
always delivered throughout one cycle.

Note

Outputs can be assigned as well as checked in the program. Even if an output is
assigned a state in several locations in the program, only the state that was
assigned last is transferred to the appropriate output module.

Cyclic Program Execution

Start-up block (OB 100)
Execution once after power ON, for example

4

-

4" Start of the cycle monitoring time 5 :.SE;L'E
Feading the signal states from the modules - :
and saving the data in the process image (Fll) (::I[II ! E
@ _ . -
; Execution of the prugrgm in OB1 Block > AlOA1
& (cyclical execution) OB 1 1 A D'z
= Events (time-of-day interrupt, hardware interrupts etc.) - 08- o
% call ather OBs, FBs, FCs, etc. | -
I —:
Iy —iz outout
Writing the process-image output tahle :: E Ltpu
(PIQ) to the output modules . = Module
| =
—z
Starting

The CPU carries out a complete restart (with OB100) when switching on or when
switching from STOP --> RUN. During a complete restart, the operating system:

* deletes the non-retentive bit memories, timers and counters.

» deletes the interrupt stack and block stack.

* resets all stored hardware interrupts and diagnostic interrupts.

» starts the scan cycle monitoring time.

Scan Cycle

The cyclical operation of the CPU consists of three main sections, as shown in
the diagram above. The CPU:

* checks the status of the input signals and updates the process-image input
table.

 executes the user program with the respective instructions.

* writes the values from the process-image output table into the output modules.

Rashad Alkakkali EEE422 ADVANCED PLC Page 40

The STEPT Programming Languages

STL
A | 0.0
A | 0.1
FBD = 8.0
lop — &
Q8.0
101 = |

LAD
100 101 Q8.0
| | | | | £
| [I LI

Introduction

There are several programming languages in STEP 7 that can be used
depending on preference and knowledge. By adhering to specific rules, the
program can be created in Statement List and later converted into another
programming language.

LAD

Ladder Diagram is very similar to a circuit diagram. Symbols such as contacts
and coils are used. This programming language often appeals to those who have
a drafting or electrical background.

STL

The Statement List consists of STEP 7 instructions. You can program fairly freely
with STL. This programming language is preferred by programmers who are
already familiar with other programming languages.

FBD

The Function Block Diagram uses “boxes” for the individual functions. The
character in the box indicates the function (such as & --> AND Logic
Operation).This programming language has the advantage that even a “non-
programmer” can work with it. Function Block Diagram is available as of Version
3.0 of the STEP7 Software.

Rashad Alkakkali EEE422 ADVANCED PLC Page 41

Absolute and Symbolic Addressing

A 0.0 A T_System_ON"

= 241 = L_SYITEM®

A 104 A "5_WA_ModeSelkect”
- 8.5 - W_RT™

Call FC13 Cal FC_Count

Symbol Address Data Typs Commant

K_RT @85 BOOL Fun Conweyor Right

FC_Count FC18 FC18 Count Transparied Panis
T_Syslem_ON 0.0 BOCL System ON Swich, Momeniary Contact
L_SYSTEM L BOOL Systam O Light
S_WiA_ModeSedact 0.4 BOCL Operaiing Mode Man=0/Auto=1

Sedecior Swkch

i A b, v +

[max. 24 chamaciars] {ran, 20 characisrs)

Absolute Addressing

In absolute addressing, you specify the address (such as input | 1.0) directly. In
this case you don‘t need a symbol table, but the program is harder to read.
Symbolic Addressing

In symbolic addressing, you use symbols (such as MOTOR_ON) instead of the
absolute addresses. You store the symbols for inputs, outputs, timers, counters,
bit memories and

blocks in the symbol table.

Note

When you enter symbol names, you don‘t have to include quotation marks. The
Program Editor adds these for you.

Rashad Alkakkali EEE422 ADVANCED PLC Page 42

Configuration of S7-314C-2DP at the LAB

CPU314C-2DP AI;?&(,P)?:;}’!B“ DI16/D0O16XDC24V
Ok 1126.0 0 | | |9/1124.0 0| |Ta124.0
)13 1126.1 1| | | [1/1124.4 1|] Q124.1
1126.2 2 | |12/1124.2 2| | Q124.2
Upc sv 1126.3 3| | | |3 11243 3| | Q124.3
CFRCE 1126.4 4| | | | [4 11244 4| Q124.4
LIRUN 1126.5 5| | | |5 1124.5 5| | Q124.5
(IsTOP 1126.6 6 | | | |6/ 1124.6 6| | 0124.6
RUN 1126.7 7| | L7 1247 7| || ©124.7

STOP DI+2 | DI+0 DO+0

IEI MRES NN ouT

DI+1 DO+1
N [|0a25.0 0| | [@i25.0
X1 MPl X2 DP L[1125.4 1| || @125
| |2 1252 2| Q125.2
| |31125.3 3| | | |@125.3
¥ Y | |4 1125.4 4] | Q125.4
| |5 1125.5 5 | Q125.5
T | |6 1125.6 6 | Q125.6
/ > | |7 1125.7 70 Q125.7

rd

‘power supply connector
of CPU 31xC (removable)

NEW PROJECT CREATION USING SIMATIC MANAGER

Procedure to run the Simatic manager and How to create a new project
To run the simatic manager, follow the procedure illustrated below.
Click on simatic Manager under Simatic on the start up menu.

=lE winzip

' SIMATIC y | Documentation +
HH] Information »
= Programs N M) License Management »

) STEPT ’
4y Dacuments r .'—J.u SIMATIC Manager

[}-‘ Settings r
4~ Search *

&9 Help and Support

Z=] Fun...
E shuk Do,

The following screen will appear.

Rashad Alkakkali EEE422 ADVANCED PLC Page 43

& SIMATIC Manager M =E3

File PLC ‘wiew Options Window Help

O |8/ | W \?

STEP T Wizard: "Hew Project”

“ou can create STEP 7 projects quickly and easily using
the STEP 7 Wizard. You can then start programiming
immedistely

Click one of the follovwing options:
\ i "Mext" to create vour project step-by-step

1 "Finish" to create your project according to the preview.

[Display Wizard on starting the SIMATIC Manager: Previguys>
Mext = | Finish Cancel | Help |

Press F1 to get Help, PC Adapter(PROFIBLS)

Click on Next button and in the following screen choose the CPU 314C-2DP
" SIMATIC Manager ME=8

File PLZ “iew Options 'Window Help
O |8fT@ 7 @ W

“New Project”

I] Which CPU are you using in your project? 204

cPU: CFU Type Oreder ho | ~
CPUS3C.20P BES7 313-5CE00-0ABD
CPU33C-2PIP BES7 313-5BE00-0AB0 =
CRU3 4 BEST 314-1AE04-0AB0
BES7 314-5CFO0-0AB0
CPU34C-2PIP BES7 314-6BFO0-0AB0

oL s REST M E A AFN2 NARAN —
CPU name: [CPLI314C-2 DP(1)
MPI acldress: |2 j 43 KB work memary; 0.1mai 000

instructions; DI24DO1 6, AIIACZ

SN2

Previews=»=

= Back Mext = | Finish | Cancel | Help |

L

Press F1 to get Help. PC Adapter{PROFIEUS)

Leave MPI address as itis 2

Rashad Alkakkali EEE422 ADVANCED PLC Page 44

& SIMATIC Manager

File PLC ‘“iews Options Window Help
O |86 | 7 @ a2

STEP ¥ Wizard: “New Project™

i] Which CPU are you using in your project? 2041
CPL: CPU Type Order o -
CPU313C-2 DR BESY 313-6CE00-0ABO
CPUZ3C-2 PP EEZY 313-6BE00-04B0 =
CPU314 BESY 314-1 AEO4-04B0
CPU314C-2 DP EESY 314-6CFO0-0AB0
CPUZ4C-2 PP BEZY 314-6BF00-04B0
[l =N ict EFEST 24 & A AFEM2 OAEN ‘_’
CPU name: |cpu31 4C-2DP(1)
WPl address: |§ j 48 KB weork memory; 0.1maH 000 ~
instructions; DI24D0 6, ASIAD2 =
W
Preview==
= Back Mext = | Finish | Cancel | Help |
Press F1 to get Help. PC Adapter{PROFIEUS)

Click on next again and Choose block OB1 from the list

& SIMATIC Manager

File PLC ‘“iew Options ‘Window Help

e | 8fem W x?

Blocks:

11 Which blocks do you want to add?

34

Block Mame Symbolic Mame 3
CB1 Cycle Execution o
[ocen Time of Dary Interrupt 0

[oB11 Time of Day Interrugpt 1

[omz Time of Dary Interrupt 2

[oe13 Time of Day Interrupt 3 v
[Select &l

Help an OB

Language for Selected Blocks

Press F1 to get Help,

v ST ™ LAD ™ FBD
[~ Create with source files Previgw==
cpok | e Firish cancel | vep |
P Adapter{PROFIBUS)

For the programming language select LAD for Ladder

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 45

=

& SIMATIC Manager

HER

File PLC ‘“iew Options Window Help

D |87 & | 7 ?

STEP 7 Wizard: “New Project”

13 Which blocks do you want to add ? 304
Blocks: Block Mame Symbolic Mame | ~
o1 Cycle Execution N
[omo Time of Day Interrupt O
[oB11 Time of Dary Interrupt 1
[domz Time of Day Interrupt 2
[JoB13 Time of Day Interrupt 3 b

I~ Select Al Help on OB

Language for Selected Blocks

s & LAD " EBD

[~ Create with gource files i Previewes

= Back Mext = Finish Cancel Help

Press F1 ka get Help, PC Adapter(PROFIBIS)

Click on next

Type the name of the new project - choose S7_proj-1

=

& SIMATIC Manager

HEE

File PLC “iew Options 'Window Help

D= &af® | W K2

STEP 7 Wizard: “New Project™

g What do you want to call your project? LIC)]
Project name: |S?_Proj.1
Existing projects: ST _new-proj

=7 _Prol

=7 _Pro2-ras

Check your newy project inthe presviesy.
Click "Finish" to creste the project with the displayed

structure.
Preview ==
= Back | Finish | Cancel | Help |

Press F1 to get Help. PiZ AdapterPROFIBLS)

Rashad Alkakkali EEE422 ADVANCED PLC

Page 46

Click Finish button, Simatic Manager will create the project S7_proj-1.

I.J SIMATIC Manager - [S7_Proj-1 -- C:\Program Files\Siemens\Step7\s7proj\S7_Pro-~2] =13

g X

% File Edit Insert PLC View Options ‘Window Help -
O 8'm W K2
= & 57_Proj-1 FiE]
- SIMATIC 300 Station
- CPU3T4C-2 DP(1)
= 57 Program(1)

(B Sources
Blocks

Press F1 to get Help, Filtered

This part is aimed to introduce you to the new projects and related files, follow
the procedure below to take a tour and learn more about the Simatic Manager.

If you highlighted S7_proj-1 you will see 2 entities

% File Edit Insert PLC Wiew Options Window Help - 8 x
O & D By | Bo |t EEE | < No Filter > = R E
=EST | SIMATIC 300 Station QE-PMF'IH]
= SIMATIC 300 Station
- CPUZT4C-2 DP[1)
- 57 Proagram(1)
(B Sources
Blocks
Press F1 ko get Help. PC Adapter{PROFIELS)

Click on Simatic 300 station

K SIMATIC Manager, - [S7_Proj-1 -- C:\Program Files\Siemens\Step /s 7projAS7_Pro-2]
% File Edit Insert PLC ‘“iew Options ‘Window Help -

g x

0= | 89 % g || @ 25 8 i |<NOFilter> ﬂvﬁ W H

= 57_Proj-1 Hardware CRUIT4C-2 DP(T)
- SIMATIC 300 Station
- [B] CPU4C-2DPF(1)
= 57 Pragram(1)
[E] Sources
Blocks

Press F1 ko get Help. PC Adapter{PROFIELS)

Rashad Alkakkali EEE422 ADVANCED PLC Page 47

Show what is under CPU314C-2DP

@ File Edit Insert PLC Yiew Options ‘Window Help - g X
D= 387 g Eg | 8% E = |
= S7_Praj1 57 Program(1) E_j Connections

- SIMATIC 300 Station
= 314C-2 DP[1)
= 57 Prograr1]
(A] Sources
Blocks
Press F1 to get Help. P Adapter(PROFIBLUS)

Under S7 program -> sources Blocks symbols

%File Edit Insert PLC Yiew Options ‘Window Help - x
D |37 | & B CRERRTS MRk
—_% 57_Proj1 B Sources
= SIMATIC 300 Station
- CPUZ4C-2 DP1)
BRG] 5 7 Frogiam1)
(BE] Sources
Blocks
Press F1 ko get Help, PC Adapter(PROFIEUS)
OBL1 is the block where we need to write our ladder program
! SIMATIC Manager - [S7_Proj-1 -- C:\Program Files\Siemens\Step7\s7proj\57_Pro-~2] (=]
%File Edit Insert PLC ‘iew Ophions Window Help - a8 x
O = 87 3 B P Tg fo e EE | < Mo Filter > AR AR

= & 57_Piojl o OB
= SIMATIC 300 Station
= CPU314C-2 DP(1)
= 57 Program(1]
(B Sources
o 24

Press F1 ko get Help. PC Adapter(PROFIBLS)

Rashad Alkakkali EEE422 ADVANCED PLC Page 48

Hardware configuration

Go back to click on Simatic 300 station to see the hardware configuration.
Remember that the system is already configured for you.

! SIMATIC Manager - [S7_Proj-1 -- C:\Program Files\Siemens\Step7\s7proj\S7_Pro-2] =]

% File Edit Insert PLC Wiew Options window Help -8 x
= D Bg | Oy i | < MaFiler » | T | BR G Ry
=& 57_Proj1 CPUI4C-2 DP[1]

- SIMATIC 300 Station
- CPU4C-2 DP(1)
- 57 Pragram(1)
(B Sources
Blacks
Press F1 to get Help. PC Adapter(PRIOFIBLUS)

Double click on Hardware icon

@d‘ HW Config - SIMATIC 300 Station
Station Edit Insert PLC VWiew Options Window Help

D8 & ain & | %8 | w2
2l SIMATIC 300 Station (Configuration) -- 57_... (2[5 [%)
-

o=l
Bnd | ot;g
E Profile: Standard =

=
222 PROFIBUS-P4

+ 22 PROFINET 10

<[SIMATIC 300

<[SIMATIC 400

<[SIMATIC PC Bas

+- 88, SIMATIC PC Stat

A/
< | k]
&0 v
Slot Module Y T o (o
1 ~ < | >
z |[§] CPU314C-2DP(1) [GESAVI.02 = FROFBUSDP %
Ko OF i v glaves for SIMATIC —=

S7. M7, and C7
[distributed rack]

Press F1 ko get Help,

Rashad Alkakkali EEE422 ADVANCED PLC Page 49

Using the mouse Enlarge the screen inside to see more details
The following screen shows the hardware configuration, profile side menu shows
more Hardware that can be added.

E{ﬁ' HW Config - [SIMATIC 300 Station (Configuration) -- S7_Proj-1] PS_?|
E“] Station Edit Insert PLC Wiew Options ‘Window Help - 8 X
D" BS sin gl |Gh [8 | w2
_ =1k
CllEne [atlmg
)2@ g;um 4C-2 DP(1) Erofile: [Standard_~|
27 240076 T + !ﬁ? PROFIBUS DP
23 AfBA02 !ﬁ'ﬂ! FROFIBUS-P&
24 Count + !ﬁ'ﬂ! FROFINET 10
25 Posion 2 + SIMATIC 300
= — + SIMATIC 400
+ SIMATIC PC Bas
-8, SIMATIC PC Gtat

|=

|
|~

Order riurmber Firnware | MPladd... | | address

CPU314C-2 DP[1) |GES7 314-6CFO0-DABD

L

LD

A L

Louwx % | o

Fosiin SIMATICS7-300, %,
M 7-300 and C7 -
modules [cental

b rack)

Press F1 to get Help,

Double Click on CPU314C-2DP(1) icon and select Cycle/Clock Memory card

W onftig M A [0 ation onfiguration Pro =

mp
0=

—

Tirne-of-D ay Interrupts] Cuclic Interrupts] Diagnostics/Clock] Pratection] Communication]
General] Startup Cyele/Clack Memary I Retentive Memory] Intermpts] 1
Cycle]
BP400TE o I
AfFA02
Secan cycle manitaring time [ms] 150
M
— Scan cycle load fram communication 2] |20 R
b
< 0B85 - call up at 140 access enar: |No 0B85 call up ﬂ
] o0 v
siot| [Modue .. | Order Clock Memory
1 ¥ Clock memony
2 CPU314C-2 DP(1] [BES7 3 Memory Byte: [fog
ey OF

Py DL IE
SF Aslr

e Eia

S5 Flaain Cancel Help J
3 | | | | |

4 | | | | |

Press F1 to get Help,

TS
modules (cential
rack]

Rashad Alkakkali EEE422 ADVANCED PLC Page 50

Creating a small Ladder diagram

Symbol table:
We begin with the symbol table to Click on S7 program icon first and then click
on Symbols

K SIMATIC Manager, - [S7_Proj-1 -- C:\Program Files\Siemens\Step s 7proj\S7_Pro~2]

@File Edit Insert PLC Yiew Options “Window Help - 8 x
D= 37 & B D Bg | fp T =l Hm B

—_% 57 _Frojl Sounces Blocks
= SIMATIC 300 Station

= CRUZ4C-2 DP(1)
= 57 Program(1)
(B Sources
Blacks

Press F1 ko get Help, PC Adapter{PROFIBLS)

The following screen will appear

E!.Swnhol Editor - 57 Program(1) (Symbols)
Symbol Table Edit Insert Wiew Options Window Help

= S| 4 | &0l Symbols || w2

2157 Program(1) (Symbols) -- 57_Proj-1\SIMATIC 300 Station\GPU314C-2.DP(1)

Status | Symbaol Address Drata type Comment
1 Cyele Execution o8 1
2
Press F1 ko get Help, MM

Start typing in the symbols and their addresses as below.

=157 Program(1) (Symbols) -- 57_Proj-13SIMATIC 300 Station\CPUI314C-2 DP(1)

Status | Symbaol Address Drata type Comment
1 Cycle Execution B 1 OB 1
2 start I 1240 BOCL
g stop I 1244 BOoL
4 Maotor @ 1240 [BOOL
5 Lamp Q1244 [BOOL
g

Now click on Blocks and then double click on OB1 to start typing your program.

K] SIMATIC Manager - [S7_Proj-1 -- C:\Program Files\Siemens\Step?\s7proj\s7_Pro~2] (=13
%File Edit Insert PLC View Options ‘Window Help - 8 X
O = | & & g | 2 % %ok | < MNoFier > - HE

—_@ 57 _Projl Systern data 1 0B
= SIMATIC 300 Station
= CPUZT4C-2 0P
- 57 Pragram(1]
(B] Sources
Blacks

Press F1 to get Help, PC Adapter{PROFIBUS)

Rashad Alkakkali EEE422 ADVANCED PLC Page 51

The following screen will appear, follow the procedure correctly to enter your first
program in Ladder. The program is to control the start and stop of a motor.

I174_0 I174_1 N1Z4_0
"start" "stop" "Motor"
| | (—
01z24_0
"Motor"
||

Click on the drawing area under Network-1

N LAD/STLIFBD. - [0B1 -- “Cycle Execution™ -- S7_Proj-1ASIMATIC 300 Station\CPU3T4C-2 DP(1))...AOB1]

NN Edit Insert PLC Debug Wiew Options Window Help - 8 x

bEsE & an o | 25 CE| & 4F 4 -0 £ K2

Contents 0f: 'EnvironmentiInterface’

=4 Intertace [wame
B hew network P + @ TEMP 4 [TENE
Eit logic a
{%] Comparator
{89 Converter
Counter
DE call
{51 Jumps
{£1] Integer Function N K /)
28 Floctng-aaint fet. OBL : "Main Drogram Sweep (Cycle)
Move
Program control
shift/Rotate m: ricle
Stakus bits
(@] Timers
4[5 Word lagic
3 FE blocks
0 Fe blocks
+ SFE blocks
¥ 5FC blocks

Jill Wulkiple instances
+- ¥ Libraries

BEET

_— — a
Program e... E: Call stiuic... @il s

x|
2 3L 1: Ermror 2 Info A 3 Crozz-references ,"\ 4 Address info.)\ 5 Modify)\ E: Diagnostics)\ 7. Comparizon

Press F1 to get Help. 2 |offline Abs 5.2 |Mwl Insert

Conment. - ‘

]]][] [] [] [

Coument : ‘

%

™
A

Step-1 When the mouse is in the drawing area click on open contact -] [-

it # -0 7 A2

click
here

Rashad Alkakkali EEE422 ADVANCED PLC Page 52

Step-2 Click again for another NO contact -] [-

FUOAE O B n?
d-f”'ﬂf
click here
';I"’I.? -??.?

Step-3 Click for the Coil -()-

ik # 0 7 A2

click here

PP PR »p_?

Step-4 Now for parallel contact you have to position the cursor in the
beginning of
the rung and click on = as show below.

g2 AF O L k2
then click
- pp_ o pp_ o
— | N (—
Position the cursor here
b - b - R
| | I o |
11 1 1 1, !

Rashad Alkakkali EEE422 ADVANCED PLC Page 53

Step-5 click on the NO contact -] [- and then click on ~ to close the branch

ik 4 K2

Now you can start editing the address on top of the ??.?

Click on the for contact for Start PB 1124.0

As soon as you press

the symbol table will appear

]
i
éﬂLamp
@ Motor
@ start
@ stop

3

Rashad Alkakkali

=

EQOL
EQOL
EOOL
EQOL

H H O O

e

»

B

EEE422 ADVANCED PLC

Double Click on start to select it

Et-a.t't-" '??_'? ':"?_?
| | P |
—1 — 1 . |
2
| |
|

I174_0 I174_1 Q1Z4_0
"start" "stop" "Motor"
| | |] Y |
|| 10 L 1
01Z4_0
Motor"
| |

The symbols will appear only if you have saved the OB1

Rashad Alkakkali EEE422 ADVANCED PLC Page 55

Downloading and running the program
Note : Don’t forget to put STOP switch in the on position (NC)
Now you need to download and run your program in the PLC. Also you can

simulate the program using PLCSIM

Skip the following steps (between the - marks) if you are not using the
PLCSIM.

2> 2> Skip here if not using PLCsim €« € €

o‘-,a SIMATIC Manager - 57_wuekro-introduction
File Edit Insert PLC ‘Wiew Options Window Help

D@8 & B dnl[o %l %8

£ | & |[< NoFiter> ;|Yy|“ﬁ§@_@|§?|
PLCSIM

on

Then the next screen will appear

& S7-PLCSIM - SimView1 -3
File Wiew Help

DR 282 E« e |EEEEa
| 0%

Open Project

" Open project From a fils
* Select CPU access node

Il Display open project options on skarktup

ok I Cancel Help |

Press F1 to get Help. &

Click ok

Select CPU Access Node m

Enkry poink:
IProject ;I ¥ Attach Symbols

Mame Starage Path:
| 37 _wuekro-introduckion LI I Ci\Program Files\Siemens\Step?is7 profis? w4

=@ SIMATIC 300 Station
= [@ crus4c-z oR(1)

oP

= adr: (not networked)
Count

Position

AISIA0Z

Grea || e |

Rashad Alkakkali EEE422 ADVANCED PLC Page 56

Select and highlight MPI adr: 2 (not networked) then press ok

(&} $7-PLCSIM - SimV¥iewT M=
File Edit Wew Insert PLC Execute Tools window Help
D= % BEw N B8 & 5.3
FIEEE i
Do) ,
click here on the

LIS e

@BE ~ RN lcons to display
RUN P
crop ¥ STOP MRES inputs and outputs

Press F1 to get Help. MPI=2

&) $7-PLCSIM - SimView M=

File Edit “iew Insert PLC Execute Tools Window Help

DezE%E & B BEW N BEATE

PN b
%= %
™ RUNP ERE R
M L) 7654 3210
¥ sToP wres|||Crrr rrror
Eos o |-

OB (124 |Bits ~|

T EAH 4 37 n
[I I I I Select Mumeric Farmat
]

|
Press F1 ko get Help. MPI=z
Now this the screen where you need to change the inputs and see the outputs

after you download the program.

- => => Continue below &« &« €&

Now make sure that your PLC is in the STOP mode and then click on Download
on the Program screen.

Rashad Alkakkali EEE422 ADVANCED PLC Page 57

PLC Debug Yiew Options ‘Window Help
Download Chrl+L

Establish Connection to Configured CPU

ZPU Messages. ..

Display Faorce Walues Chel+alk+F
MaonitorModify Wariables

Maodule Information. .. Ckrl+D
Operating Maode. .. Ckrl+I
ClearjReset, .,

Set Time of Day. ..

Then click on monitor under Debug menu.
Debug Yiew Options ‘Window Help
Monitar Chrl+F7

You need to watch the important information on screen. Change in color of the
top line to indicate the monitoring is active. Red color in the bottom line to show
that the CPU is in STOP mode.

5 LAD/STL/FBD - [2OB1 -- "Cycle Execution” -- S7_wuekro-introductiomSIMATIC 300 Station\CPU314C-2 DP(1)... E]@l
-

QlLz4.0
"Moot

|Tha statements are not being processed. 5] abs <5.2 rd chg

Switch the CPU to the RUN position.

{i%; LAD/STL/FBD - [@OB1 -- "Cycle Execution” -- $7_wuekro-introduction’\SIMATIC 300 Station\CPU314C-2 DP(1)...

1174.0 1174.1 01z4.0
start =top Motor
Ql1z4_0
Motor

Press F1 to get Help.) <> RN Abs < 5.2 Rd |Chg

The green solid line means that the contact is in True state “ON”, and a dot
line in the blue means that the contact is in False state “OFF”

Rashad Alkakkali EEE422 ADVANCED PLC Page 58

Switch “start” on and then back to off, the output “Motor” will be on.

I1Z74_0 I174_1 N1z24_0O
start" "stop" "Motor"
| | | | ()
Ql1z4_0
Motor"
|
Rashad Alkakkali EEE422 ADVANCED PLC Page 59

PART THREE

NUMBER SYSTEM AND CODES

Rashad Alkakkali EEE422 ADVANCED PLC Page 60

TYPES OF SIGNALS IN CONTROL SYSTEM TECHNOLOGY

The electrical signals which are applied at the inputs and outputs can be, in
principle, divided into two different groups:

BINARY SIGNAL

Binary signals can take the value of 2 possible states. They are as follows:

Signal state “1“
Signal state “0“

voltage available = e.g. Switch on
voltage not available = e.g. Switch off

In control engineering, a frequent DC voltage of 24V is used as a “control supply
voltage“ A voltage level of + 24V at an input clamp means that the signal status
is “1“ for this input. Accordingly OV means that the signal status is “0“. In
addition to a signal status, another logical assignment of the sensor is important.
I's a matter of whether the transmitter is a “normally closed” contact or a
‘normally open” contact. When it is operated, a “normally closed” contact
supplies a signal status of “0“ in the “active case“. One calls this switching
behavior “active 0“ or “active low“. A “normally open” contact is “active 1”/“active
high“, and supplies a “1“ signal, when it is operated.

In closed loop control, sensor signals are “active 1. A typical application for an
“active 0" transmitter is an emergency stop button. An emergency stop button is
always on (current flows through it) in the non actuated state (emergency stop
button not pressed). It supplies a signal of “1(i.e. wire break safety device) to
the attached input. If operation of an emergency stop button is to implement a
certain reaction (e.g. all valves close), then it must be triggered with a signal
status of “0“

Equivalent binary digits:

A binary signal can only take the two values (signal statuses) “0“ or “1“. Such a
binary signal is also designated as an equivalent binary digit and receives the
designation of “Bit“ in the technical language book. Several binary signals result
in a digital signal after a certain assignment (code). While a binary signal only
provides a grouping of a bivalent size/e.g. for door open/door close), one can
form e.g. a number or digit as digital information by the bundling of equivalent
binary digits.

The summarization of n-equivalent binary digits allows the representation of 2n
different combinations.

Rashad Alkakkali EEE422 ADVANCED PLC Page 61

One can show 4 different types of information with e.g. 2 equivalent binary digits
2X2.

Configuration 1 (e.g. Both switches open)
Configuration 2 (Switch 1 closed / Switch 2 open)
Configuration 3 (Switch 1 open / Switch 2 closed)
1 Configuration 4 (both switches closed)
ANALOG SIGNAL

R = OO
o - O

Contrary to a binary signal that can accept only signal statuses (,Voltage
available +24V* and “Voltage available 0V, there are similar signals that can
take many values within a certain range when desired. A typical example of an
analog encoder is a potentiometer. Depending upon the position of the rotary
button, any resistance can be adjusted here up to a maximum value.

Examples of analog measurements in control system technology:
Temperature -50 ... +150°C

m Current flow O ... 200l/min

m Number of revolutions 500 ... 1500 R/min

m Etc.

These measurements, with the help of a transducer in electrical voltages, are
converted to currents or resistances. E.g. if a number of revolutions is collected,
the speed range can be converted over a transducer from 500... 1500 R/min into
a voltage range from 0... +10V. At a measured number of revolutions of 865
R/min, the transducer would give out a voltage level of + 3.65V.

500 865 1500 R/min
365
- 10V: 1000 R/min = 0.01 V/R/min
1000 R/min
365 R/min x 0.01 V/R/min = 3.65V
1o0v
oV +10V

If similar measurements are processed with a PLC, then the input must be
converted into digital information to a voltage, current or resistance value. One
calls this transformation analog to digital conversion (A/D conversion). This

Rashad Alkakkali EEE422 ADVANCED PLC Page 62

means, that e.g. a voltage level of 3.65V is deposited as information into a set of
equivalent binary digits. The more equivalent binary digits for the digital
representation will be used, in order for the resolution to be finer. If one would
have e.g. only 1 bit available for the voltage range 0... +10V, only one statement
could be met, if the measured voltage is in the range 0.. +5V or +5V....+10V.
With 2 bits, the range can be partitioned into 4 single areas, (0... 2.5/2.5... 5/5...
7.5/7.5... 10V).

Usually in control engineering, the A/d converter is changed with the 8th or 11th
bit. 256 single areas are normally provided, but with 8 or 11 bits, you can have
2048 single areas.

O0A/OV 20mA/10vV

10V: 2048 = 0,0048828

- — Voltages with
11 Bit

differences <5mV can be

0 2048 i gentified

Rashad Alkakkali EEE422 ADVANCED PLC Page 63

NUMBER SYSTEMS

For the processing of the addresses of memory cells, inputs, outputs, times, bit
memories etc. by a programmable controller, the binary system is used instead

of the decimal system.

DECIMAL SYSTEM

In order to understand the binary number system, it is first necessary to consider
the decimal system. Here the number of 215 is to be subdivided. Thereby the
hundreds represent the 2, the 1 stand for the tens and the 5 for the ones.
Actually, one would have to write 215 in such a way: 200+10+5. If one writes
down the expression 200+10+5, with the help of the powers of ten as explained
earlier, then one states that each place is assigned a power of ten within the

number.

10

hundreds

M2

2 w119

Each number within the decimal system is assigned a power of ten.

107

tens

1107

10"

ones

510

azzigned
povwers of ten

decimal svstem

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 64

BINARY SYSTEM
The binary number system uses only the numbers O and 1, which are easily

represented and evaluated in data processing. Thus it is called a binary number
system. The values of a dual number are assigned the power-of-two numbers,

as represented below.

LEj LEﬂ sz Lgﬂ :fsts;glq_lned PONVErS

1 1 0 1 hinary system
1x23 Twp? w2 120
g + 4 + 0 + 1 = 13 decimal number

Each number assigned within the binary number system is a power-of-two.

BCD - CODE (8-4-2-1-CODE)

In order to represent large numerical values more clearly, the BCD code (binary
coded decimal number) is frequently used. The decimal numbers are
represented with the help of the binary number system. The decimal digit with
the highest value is the 9. One needs to demonstrate the 9 with power-of-two
numbers until 23, thus using 4 places for the representation of the number.

23 22f o1 0

B4 12 |1

1 0 0 1 = 9 decimal
|

1 0 0 O = & decimal

Because the representation of the largest decimal digit requires 4 binary places,
a four-place unit called a tetrad, is used for each decimal digit. The BCD code is

thus a 4-Bit-Code

Rashad Alkakkali EEE422 ADVANCED PLC Page 65

Each decimal number is coded individually. The number of 285 consists e.g. of
three decimal digits. Each decimal digit appears in the BCD code as a four-place
unit (tetrad).

2 8 5
001 | 100 | 010
0 0 1

Each decimal digit is represented by an individually coded tetrad.

HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system belongs to the notational systems because
value powers of the number 16 are used. The hexadecimal number system is
thus a sixteen count system. Each place within a hexadecimal number is
assigned a sixteenth power. One needs altogether 16 numbers, including the
zero. For the numbers 0 to 9 one uses the decimal system, and for the numbers
10 to 15 the letters A, B, C, D, E and F are used.

Each digit within a hexadecimal number system is assigned a power of the
number 16.
DEMONSTRATION OF THE NUMBER SYSTEMS

" !
decimal number hinary number hexadecimal number

16 | & 4 2

—_

0o, m ekl = O

mm—hayéjmlbmmﬂmmbmm_xg

L

000 - MM e W= O

i T e O e e Y| AP AR EPUR PR

i T O e e | SRR o Y o Y s T s] Ry

[I] A e) R L e PR R

—_ 0 =0 0= 0O 0O —=0|—= 0O = OpF=0—=0

[

Rashad Alkakkali EEE422 ADVANCED PLC Page 66

CONVERSION RULES

The transformation of the different number systems is based on simple rules.
These rules should be controlled by the PLC users, since they are often used in
handling this technology. For the use of a number system on which a given
number is based, an index sign is placed at the end of a number. Here “D*
stands for decimal, “B* for binary, and “H* for hexadecimal. This marking is often
necessary to identify a number system because in each system, different values
can be obtained when the same number is used. (e.g.. “111“ in the decimal
system has the value 111p (one hundred eleven). In the binary system it would
be 111s ,which is the decimal value 7 (1x20 + 1x 21 + 1x22). As a hexadecimal
number, 1111 would be the decimal value 273 (1x160 + 1x161 + 1x 162).

Converting decimal = binary

Integral decimal numbers are divided by the base 2 until the result of zero is
obtained. The remainder obtained with the division (O or 1) results in a binary
number. One needs to also consider the direction that the “remainders® are
written in. The remainder of the first division is the first right bit (low order width
unit bit).

e.g.. The decimal number 123 is to be changed into an appropriate dual number.

123 .2 =E1 remainder
51:2=30 remainder

—

allocate inthe

' - .
A2 =15 Femaincder clockwize direction

1Tm:-2=T remainder

T.2=13 remainder

B T Y e B

remainder

—

= 1
Tr2=10 remainder

122 — |1 1 1 1 0 1 1,

Pattern:
1 1 1 1 0 1 1
1x26 + 1x25+ 1x2%+ 1x23+ 0x22+ 1x21+ 1x20
64 + 32 + 16 + 8 + 0 + 2 + 1 =
123

Rashad Alkakkali EEE422 ADVANCED PLC Page 67

Converting decimal = hexadecimal
This transformation is performed exactly like the decimal - binary
transformation. The only difference is that instead of using base 2, we use base

16. Thus the number must be divided by 16 rather than by 2.

E.g. The decimal number 123 is to be changed into the appropriate hex number.

123/716=7 remainder |11 (B)

gllocate in the
clockwwize direction

716=0 remainder | 7 (7)

Pattern:
7 B
7x161 + 11x16°
112 + 11

I
|I—‘
N
w

Converting binary = hexadecimal

For the transformation of a dual number into a Hex number, one could first
determine the decimal value of the binary number (addition of the priorities). This
decimal number could then be changed into a hexadecimal number with the help
of the division:16. In addition, there is the possibility of determining the
associated hex value directly from the binary number. First of all, the binary
number is divided from the right beginning in the quadripartite groups. Every one
of the determined quadripartite groups results in a number of the hexadecimal
number system. If necessary, fill the missing bits on the left hand side with zeros
e.g. The binary number 1111011 is to be changed directly into a hex number.

0x2° + 1x27+ 1x2' + 1x2° 1x2°+ ox2% + 1x2' + 1x2°

Rashad Alkakkali EEE422 ADVANCED PLC Page 68

TERMS FROM COMPUTER SCIENCE

In connection with programmable controllers, terms such as BIT, BYTE and
WORD are frequently used in the explanation of data and/or data processing.

BIT

Bit is the abbreviation for binary digit. The BIT is the smallest binary (bivalent)
information unit, which can accept a signal status of “1“or “0“.

%

BYTE

For a unit of 8 binary characters, the term BYTE is used. A byte has the size of 8
bits.

BYTE [O[1[0[T[T[a]0]T]

Aignal state

WORD

A word is a sequence of binary characters, which is regarded as a unit in a
specific connection. The word length corresponds to the number from 16 binary
characters. With words, the following can be represented:

Pure hinary numbers
Type

Control assignments for
a controller

Signal state

woRD |o|1]o]o1]1]of1|1]1ooo]1]1]0]

1 Byte 1 Byte
A word also has the size of 2 bytes or 16 bits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 69

DOUBLE-WORD
A double-word corresponds to the word length of 32 binary characters.

A double-word also has the size of 2 words, 4 bytes, or 32 bits.

Further units are kilo-bit or kilo-byte, which stand for 2% or 1024 bits, and the
mega-bit or mega-byte which stands for 1024 kilo-bits.

BIT ADDRESS

So that individual bits can be addressed within a byte, each individual bit is
assigned a bit location. In each byte the bit gets the bit location 7 on the leftmost
side and the bit location 0 on the rightmost side.

hit addrezs

BYTE ADDRESS

The individual bytes also receive numbers called byte displacements.
Additionally, the operand is still marked, so that e.g. IB 2 stands for input byte 2
and QB4 stands for output byte 4. Individual bits are clearly addressed by the
combination of bit and byte displacement. The bit location is separated from the
byte displacement by one point. The bit location stands to the right of the point,
and the byte displacement to the left.

07 I0& 105 104 103 102 (01 104

1 Bvte

byte address

WORD ADDRESS

The numbering of words results in a word address.

Note: The word address is always the smallest address of the two pertinent
bytes when using words, e.g. input word(IW),output word(QW), bit memory
word(MW), etc. (e.g. With a word that comes from IB2 and IB3, the address is
IW?2).

Rashad Alkakkali EEE422 ADVANCED PLC Page 70

IWO

W2

IBO

IB1

IB2

IB3

W1

Word address

Note: During word processing it is to be noted that e.g. the input word 0 and the
input word 1 are in a byte overlap. In addition, when counting bits, one begins at
the rightmost bit. For example the bitO from IW1 is the bit of 12.0, bitl is 12.1....
bit7 is 1 2.7, bit8 is 11.0.... bitl5 0is11.7. A jump exists between the bits 7 and 8.

DOUBLE-WORD ADDRESS

The numbering of double-words results in a double-word address.

Note: When using double-words e.g. ID, QD, MD etc. the double-word address

is the smaller word address of the two pertinent words.

IDO

WO

W2

IBO

IB1

IB2

IB3

W1

Double word
address

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 71

Data Types

Integer (INT, 16-Bit Integer) Data Type

Value Range -32TE8 to +32787 Arithmetic
[without slgn: O fo 65535) Operations: suchas +1, %1, <1, ==
Display Formats:
2430 HLE BT ES 43210
DEC: + 662 [BIN: 2% DoDo000O01010010110 HEX: W#16025 6
— ~ L. | without |
g T z Sign | -
£ i £ Exi16°= 6
1 IEE:':IJ:?B ,! +27 9x 16" = 144
" o +2' 16 = 512
+ BE2 BEZ
B3390 0 AT A2 43310
[DEC: - 662 [BIN: 22 1111110101101010] HEX: W#1EFD 5 Al
. _2'.1J | wERCUE
r "\\ oM Elgn L
9] i
I—sﬂgﬂ—‘ — 0% 15" =16
numbers - Sy Bx16' = 96
. PR T . 13016 = 3328
! Rapresentation as | 24P 42 15x 18 = E1440
i twos complement | - gE2 54974

Integer Data Type

An Integer data type value is a whole number value, that is, a value without a
(16-Bit Integer) decimal point. SIMATIC® S7 stores Integer data type values with
sign in 16 bit code. This results in the value range shown in the slide above. As
well, SIMATIC® S7 provides arithmetic operations for processing Integer values.

Decimal

STEP7 uses the Decimal (not BCD!) display format to specify the constants of
the Integer data type. That is, with sign and without explicit format description.
The use of constant Integer values in the Binary and Hexadecimal display
formats is possible in principle, but because of the poor legibility, they are more
or less not suitable. For this reason, the syntax of STEP7 provides the
specification of Integer values only in the decimal display format.

Binary

In a digital computer system, all values are stored in a binary-coded form. Only
the digits 0 and 1 are available in the binary number system. Base 2 of this
numbers system results from the number of available digits. Accordingly, the
value of every position of a binary number results from a power of Base 2. This is
also expressed in the format specification 2#.... .

Negative values are represented as binary numbers in twos complement. In this
representation, the most significant bit (bit no. 15 for the Integer data type) has
the value - 215. Since this value is greater than the sum of all residual values,
this bit also has the sign information. That is, if this bit = 0, then the value is
positive; if the bit is = 1, then the value is negative. The conversion of a binary
number into a decimal number is made by adding the values of the positions that
have a 1 (see slide).

Rashad Alkakkali EEE422 ADVANCED PLC Page 72

Specifying constants in the binary display format is not only used for specifying
Integer values, but more often to specify bit patterns (such as in digital logic
operations) in which the Integer value represented by the bit pattern is of no
interest. The number of specifiable bits is variable from 1 to 32. Missing bits are
filled with leading zero digits.

Double Integer (DINT, 32-Bit Integer) Data Type

Value Range L# -2147483644 to LE+21 47483647 Arithmetic
{without sign: 0 to 42845887 205) Cperations: such as +D.* D, <D, ==D

Display Formats:
NEMITHMMEDITHTIEIBITIGIS1413 13 1

M 3 13
|DE|::L#154ua-ua| |EIIH 2 0000 uu|uunn|1nﬂﬂ|ﬂ1nn|uuuu|1nnu|1uu1|

C 7 sign i
Lot POBITIVE = -
+ Aumbere °

|HEK:D'|I"'.I'#1B# o008 4 0 8 89

l:‘!.'t'ICl.II.E anj
HENBANITIBHDITHDEWITHISIHI313190 & 87 885 4331
| DEC: L#-54080% | | BIN.: 2& |11111111111n1111n111111u111u111|
{ _l.-"- 0 “"I. i -, . \ \ | I_.'. Py)
__""_____"_]""_5_"'___‘ .) .
:WIHMEI-: |HEK:DW#1B#FFF?EIF??
EE——— [witnout sign)

Double Integer

SIMATIC® S7 stores Double Integer data type values with sign as 32 bit code.
(32-Bit Integer) This results in the value range shown in the slide above. As well,
SIMATIC® S7

provides arithmetic operations for processing DINT values.

Decimal

STEP7 uses a decimal number (not BCD!) to specify a constant of the Double
Integer data type. That is, with sign and the format L# for "long" (double word, 32
bit). When a value smaller than -32768 or greater than 32767 is specified, the
format L# is automatically added. For negative numbers smaller than -32768, the
user must specify the format as L# - (for example: L# -32769). This is imperative
if the value is to be further processed arithmetically as a double integer.
Otherwise you would work with false values (value + sign!)!

Hexadecimal

The hexadecimal numbers system provides 16 different digits (0 to 9 and A to F).
This results in Base 16 of this numbers system. Accordingly, the value of every
position of a hexadecimal number results from a power of Base 16. Hexadecimal
numbers are specified with the format W# for the dimension (W = word = 16 bit)
or DW# (DW = double word = 32 bit) and 16# for identifying the basic numbering
system. The number of specifiable bits is variable from 1 to 8. Missing bits are
filled with leading zero digits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 73

The digits A to F correspond to the decimal values 10 to 15. The value 15 is the
last value that can be binary-coded - without sign - with 4 bits.

This connection results in the simple conversion of a binary number in a
hexadecimal number and vice versa. Four binary bits make up one digit of a
hexadecimal number.

Constants in the hexadecimal format are therefore not used for specifying integer
values. They are used instead of binary numbers for specifying bit patterns in
which the integer value represented by the bit pattern is of no interest.

REAL (Floating-point Number, 32 Bit) Data Type

Value Range -1 175435410 to 3.402823+10+2 Arithmetfic
Operations: such as +R, *R, <R, ==R
sin, acos, In, exp, SGR

General Format of a Real Number = {Sign) * {1.f) » (2#127)

Example: 7.50000e-001 (7.5 " 101=0.76)
sign of
Real Ko, E'EXFEFEF'.I:EEI'.:- "M!I‘ﬂlIE-&E:ZEEhH:-
I:I| I:l] L - - ;5':: A OMiE T WIS MmO M WR 8T 4 &5 &« 3 3 1 I:l
Bl of1[1]1]1]1]1]e]1]o[o]o|e]o]o]a[o]o]o[a]o]a]a]c]o]o|e]a]a]a]n]

27 26 28 D4 23 32 00 30 J2-20-50.4

I—4_I

Real Mo, = +1.5 "2 12 = 075
&

]

Real

The previously described INT and DINT data types are used to store whole
number values with sign. Accordingly, only operations that supply a whole
number value as the result can be performed with these data types.

In cases where analog process variables such as voltage, current, and
temperature have to be processed, it becomes necessary to use Real values
(real numbers, "decimal numbers"). In order to be able to represent such values,
binary digits have to be defined whose value is less than 1 (power of base 2 with
negative exponent).

Real Format

In order to be able to form the greatest possible value range within a defined
memory capacity (for SIMATIC® S7: double word, 32 bit) (see slide), you must
be able to select the decimal point position. Early on, IEEE defined a format for
floating-point numbers. This format was laid down in IEC 61131 and was
included in STEP 7. This format makes it easy to process a variable decimal
point position.

Rashad Alkakkali EEE422 ADVANCED PLC Page 74

In a binary coded floating-point number, a portion of the binary digits contain the
mantissa and the rest contain the exponent and the sign of the floating-point
number.

When you specify real values, you do so without specifying the format. After you
enter a constant real value (for example: 0.75), the Editor automatically makes a
conversion (for example: 7.5000e-001).

Application
Floating-point numbers are used for "analog value processing", among others. A
great advantage of floating-point numbers is in the number of operations possible
with such numbers. These include, in addition to the standard operations such
as: +, -, *, / also instructions such as sin, cos, exp, In, etc, that are used mainly in
closed-loop control algorithms.

The BCD Code for Inputting and Qutputting Integers

Value Range 16 Bit: -999 to + 999 Conversion
32 Bit: -9%9993% to + 9995999 Dperations: 8TI. 87D, ITE, OTE
no arithmetic!)
A [omm | mm T mm —
1 1 1 1
o o] 2] 9] e
1 1 1 I !
'illllll_llll_ll'll_ll'
16 Bit: [BIN.: 22 00000010100101140]
I T T I]
[[I T
sign(+) 2 a g
HEX: W#i68 © 2 3 [DEC: + 662
Signi+ ©] O i 2 o g
| | | | | | |
| Il || || || || || 1 |
32Bit:[BIN: 22 0xxx00000000000000000010100101140]
HEX: DW8i6#8 © 0 [0 2 g 5 |DEC: + 662

Origin

In the past, the specification and visualization of whole numbers was done
exclusively using simple, mechanical thumbwheel buttons and digital displays.
These thumbwheel buttons and digital displays were connected to the PLC's
digital input and output modules through parallel wiring. The structure could also
be cascaded, without having to change the mechanical coding of a digit.

BCD Code

Each digit of a decimal number is encoded in four bit positions. Four bits are
used because the highest decimal digit, 9, requires at least four bit positions in
binary code. Decimal No. BCD Code Decimal No. BCD Code

0 0000 6 0110

10001 7 0111

2 0010 8 1000

3001191001

4 0100 10 ... 15 not allowed

50101

Rashad Alkakkali EEE422 ADVANCED PLC Page 75

Negative Numbers

So that negative numbers can also be specified using a BCD thumbwheel button,
STEP 7 codes the sign in the most significant bit of the most significant digit (see
slide). A sign bit = 0 indicates a positive number. A sign bit = 1 indicates a
negative number. STEP 7 recognizes 16-bit-coded (sign + 3 digits) and 32-bit-
coded (sign + 7 digits) BCD numbers.

Data Formats

There is no data format for specifying BCD-coded values in STEP 7. You can,
however, specify the decimal number whose BCD code is to be given, as a HEX
number. The binary code of the HEX number and that of the BCD-coded decimal
number is identical.

As you can see in the slide, the DEC data format is not suitable for specifying
BCD coded numbers!

Gray Code:

e The Gray code is a special type of binary code that does not use position
weighting.

e |tis set up so that as we progress from one number to the next, only one
bit changes.

e For this reason, the Gray code is considered to be an error-minimizing
code.

e Because only one bit changes at a time, the speed of transition for the
Gray code is considerably faster than that for codes such as BCD

e Gray codes are used with position encoders for accurate control of the
motion of robots, machine tools, and servomechanisms.

Typical Encoder Disk:

0111 0101

0”\0 [S | f}oo The encoder disk is attached to
0010 o o a rotating shaft and outputs a
1101 digital Gray Code signal that is

0011 ey

used to determine the position
of the shaft.

0007 m— 1111

7/ N 1110 i

/ \
1000 / ‘ 1010 —

Rashad Alkakkali EEE422 ADVANCED PLC Page 76

ASCII Code:

e ASCII stands for American Standard Code for Information Interchange.

e Itis an alphanumeric code because it indicates letters as well as numbers.

00 F U Il ﬂ 11 l"—‘

JJJJJJJJ FITL
|

MJJILBII & Fﬂlll I L

The keystrokes on the keyboard of a
computer are converted directly into
ASCIl for processing by the
computer.

:%iiii

'

Parity Bit:

e Some PLC communications systems use a parity bit to check the
accuracy of data transmission.

e For example, when data are transferred between PLC’s, one of the binary
bits may accidentally change states

e Parity is a system where each character transmitted contains one
additional bit known as a parity bit.

e The bit may be binary 0 or binary 1, depending on the number of 1 's and
O's in the character itself

e Two systems of parity are normally used: odd and even

e Odd parity means that the total number of binary 1 bits in the character,
including the parity bit, is odd

e Even parity means that the total number of binary 1 bits in the character,
including the parity bit, is even

Even Odd
Character Parity Bit Parity Bit
0000.......... O.......... 1
0001.......... 1.......... 0
0010.......... 1.......... 0
0011.......... O.......... 1
0100 1.......... 0
0101.......... O.......... 1
0110.......... O.......... 1
0O111.......... 1.......... 0
1000.......... 1.......... 0
1001.......... O.......... 1

Rashad Alkakkali EEE422 ADVANCED PLC Page 77

PART FOUR

BASICS OF PLC PROGRAMMING

Rashad Alkakkali EEE422 ADVANCED PLC Page 78

BASICS OF PLC PROGRAMMING

BASIC PROGRAMMING INSTRUCTIONS

The following programming instructions are sufficient for the basics of
programming. This is however not a complete listing of all instructions.
Information for further instructions in LAD/FBD/STL can be found in the manuals
or in the on-line help under the point of language description LAD, FBD and/or
STL.

ASSIGNMENT

The assignment (=) copies the logical operation result (RLO) of the preceding
operation and assigns it to the following operand. An operation chain can be
locked by an assignment.

LAD STL
A 10.0
10.0 Q0.0 = Q00
—t—0
FBD
Q00
10.0 =

AND - OPERATION

The AND -Operation corresponds to a series connection of contacts in the circuit
diagram. At the output Q 0.0, the signal status 1 appears if all inputs exhibit a
signal status 1 at the same time. If one of the inputs exhibits a signal status O,
the output remains in a signal status 0.

LAD STL
100 101 Q0.0 ﬁ:g;ﬁ)
FBD
Q0.0
100 —
& =
101 —

Rashad Alkakkali EEE422 ADVANCED PLC Page 79

OR - OPERATION

The OR -Operation corresponds to a parallel connection of contacts in the circuit
diagram. At the output Q 0.1, a signal status 1 appears if at least one of the
inputs exhibits a signal status 1. Only if all inputs exhibit a signal status 0, will
the signal status at the output remain on 0.

LAD STL
0O 102
10.2 Qo1 0103
] 0— ° oo
10.3
|]
1T
FBD 001
10.2 _
>1 = _
10.3 _

AND - BEFORE OR - OPERATION

The AND- before -OR -Operation corresponds to a parallel set-up of several
contacts in the circuit diagram.

With these branches from rows and parallel circuits aligned together, the output
0.1 is fed the signal status 1, if in at least one branch of all contacts switched in
the row are closed (have a signal status 1).

The AND before OR- Operations are programmed without parentheses in the
STL representation, however the parallel circuit branches must be separated by
the input of the character O (OR function). First the AND functions are edited
and from their results the result of the OR function is formed. The first AND
function (1 0,0, I 0,1) becomes separated by the second AND function (1 0,2, |
0,3) through the single O (OR function).

LAD FBD STL
00 A 100
100 101 00.1 & 001 A 101
Fl— | (: 0
102 |0.3I 0 101 ﬁ :8'2
— >1 = = Q01
o2 — |
&
03 —|

The AND- Operations have priority and will always execute before the OR- Operations.

Rashad Alkakkali EEE422 ADVANCED PLC Page 80

OR - BEFORE AN

D - OPERATION

The OR - before -AND operation corresponds to a series connection of several
contacts joined in parallel in the circuit diagram.
With these branches from the rows and parallel circuits aligned together, the

output 1.0 is fed the signal status 1, if in both branches at least one of the

contacts switched in the row is closed (have a signal status 1).

LAD

110 112 Q1
H I 0
111 113

FBD

11.0 ——

.0 r
4‘ 111 —— Q1.0

11.2 ——

113 ——

STL

I~oox-00x»

11.0
11.1

11.2
11.3

Q10

Parenthesis must be used on the OR- Operations so that they will have a higher
priority than the AND- Operations.

QUERY ON SIGNAL STATE O

The debugging for the signal status O corresponds in a contact-afflicted circuit to
an open contact and is realized in the connection AND NOT (AN), OR NOT (ON)
and EXCLUSIVE OR NOT (XN).

Example of an OR NOT - Operation:

LAD STL
O 102
10.2 Qo.1
| ——0—] ™
10.3
4
FBD
Qo.1
10.2 —_—
>1 =" -
10.3 —%0
Rashad Alkakkali EEE422 ADVANCED PLC Page 81

EXCLUSIVE - OR - OPERATION

The circuit shows an exclusive-OR operation (X), with which the output 1.0 is
switched on (signal status 1) if only one of the inputs exhibits a signal status of 1.
In an contact-afflicted circuit, this can be realized only with normally open and
closed contacts.

LAD STL
110 111 Q1.0 |
I /| 0 | X 110
110 111 X 111
/1 = Q10

FBD

11.0 —|

111 — XOR Q1.0

Caution: The exclusive- OR- Operation should only be used with exactly two inputs.

QUERY OF OUTPUTS

For the switching on of the outputs Q 1.0 and Q 1.1, different conditions apply. In
these cases a current path and/or an operation symbol must be planned for each
output. There the automation equipment can query not only the signal status of
inputs, outputs, bit memories, etc. It will also query the outputs Q 1.1 and Q 1.0
from the AND operation.

FBD STL
QLo A 110
110 —— A 111
& = = Q10
111 ——f A Q10
A 112
Q11 = Ql1
Q10 —
& =
112 —
LAD
110 111 Q10
10—
Q10 112 Q11
| —0——

Rashad Alkakkali EEE422 ADVANCED PLC Page 82

R -S - STORAGE FUNCTIONS

According to DIN 40900 and DIN 19239, an R-S memory function is represented
as a rectangle with the set input S and the reset input R. A signal status 1 at the
set input S sets the memory function. A signal status 1 at the reset input R
results in the resetting of the memory function. A signal status O at the inputs R
and S does not change the previously set condition. Should a signal status 1 be
applied to both inputs R and S simultaneously, the function will be set or reset.
This priority resetting or setting must be considered with programming.

RESET DOMINANT

LAD(1) STL
111 Q20
A 111
— ——(S)— S Q20
110 Q20 /Q IQLZOO
— R |
LAD(2) 020 FBD Q2.0
111 SR Q20 11 S
s Q— Q20
11.0
| R 110 R Q— =

The last operations programmed are worked on by the control with priority. In
the example the set operation is first implemented; the output Q 2.0 is again
reset and remains reset for the remainder of program processing.

This brief setting of the output is accomplished only in the process image. A
signal status on the pertinent 1/O rack is not affected during program processing.

Rashad Alkakkali EEE422 ADVANCED PLC Page 83

SET DOMINANT

The exit Q 2.1 in this example is set with priority.

LAD(1) STL
111 Q21 A 111
— F——R)}— R Q21
110 Q21 g lQléOl
— F——(S)— '
LAD(2) 021 FBD Q21
111 RS Q21 111 R
R Q— Q21
11.0
s 11.0 S Q =

EDGE OPERATIONS

The edge (flank) operations collect in contrary to a static signal status "0" and "1"
the signal change e.g. of a input. The program of an edge operation corresponds
to an edge-recognizing contact in a relay circuit.

POSITIVE EDGE (FP)

If a rising (positive) edge (change from “0“ to “1%) is recognized by | 0.2, then Q
4.0 for a OB1-Cycle is set to “1“. This output can be again used e.g. to set a
memory bit. A rising edge is recognized, as the automation system stores the
RLO, which supplied the operation A, in the edge memory bit M 2.0 and
compares it with the RLO of the preceding cycle.

The advantage of the second type of representation in LAD/FBD is that logical
operations can also be present at the input of the edge operation.

LAD/FBD
STL
102 040 A 102
_ [Ppos P M20
e—(O)— = Q4.0

M 2.0 — M_BIT

or.
M 2.0 Q4.0

10.2 P

] O

Rashad Alkakkali EEE422 ADVANCED PLC Page 84

Signal state chart

102 [S e IR
M2 [N o O e IR
Qa0 M mim 0
OB1-Cycle |1 |2 |3 |4 |5 |6 |7 |s |o |10]11]12|

NEGATIVE EDGE (FN)

If a falling (negative) edge (change of “1“ to “0“) is recognized by | 0.2, then Q
4.0 for a OB1-Cycle is set to “1“. This output can be used again e.g. to set a
memory bit. A falling edge is recognized, as the automation system stores the
RLO, which supplied the operation A in the edge memory bit M 2.0, and
compares it with the RLO of the preceding cycle. The advantage of the second
type of representation in LAD/FBD is that logic operations can also be present at
the input of the edge operation.

LAD/FBD
STL
102 040 A 10.2
_| nes FN M20
Al—()— = Q4.0

M 2.0 —MBIT

or:

M 2.0 Q4.0

—

Signalstate chart

102 —
M20 . 11
1
Q4.0 [[[0
OB1-Cycle |1 |2 |3 |4 |5 |6 |7 |8 |o |10]11]12|

Rashad Alkakkali EEE422 ADVANCED PLC Page 85

Binary Operation:
Binary Logic Operations: AND, OR

Circuit Diagram LAD FEBD | STL

—

-_— s - e
——
=\ 51(10.0)
100 101 Q8.0 A 100
A 101
”H@: F\s52(01) lﬁ) = 050
Q8.1 = Q81
\,{ (/)
L 1
L1 L2
(@B0) (QB1)
53
7 (10.2) '|ﬂ|2 Q82 0so || 0 102
N Y|l 102 — 5=1 & :
-\ 54 [\ O 103
llier ! (10.3) e 03 —| — =1|| - qaz
) | |
T [
L3 (@a32)
Logic Table:
AND | 0.0 [0.1 Q807281
1 1
OR 102 | 0.3 Q82
1
0
1 1

Rashad Alkakkali EEE422 ADVANCED PLC Page 86

Binary Logic Operations: Exclusive OR (XOR)

LAD | | F8D | STL

- = T

104 — & A 104

I l:l.f-ll [[?.5 Qa0 105 — |1 _ Q8.0 gN 105

. kel

— | 4 O _— AN 104
104 o & H A 105
104 105 105 — = Q8.0
— X 104

|04 —xXOR Qa0 X 105
10.5 — | = Q8.0

Logic table:
XOR 104 10.5 Q8.0

Rule
The following rule is valid for the logic operation of two addresses after XOR: the
output has signal state "1", when one and only one of the two checks is fulfilled.

Careful! This rule cannot be generalized to "one and only one of n" ! for the logic
operation of several addresses after XOR !! As of the third XOR instruction, the
old RLO is gated with the new result of check after XOR.

Rashad Alkakkali EEE422 ADVANCED PLC Page 87

Normally Open and Normally Closed Contacts, Sensors and Symbols

Process Interpretation in PLC program
The The senzor Woltage Signal Check for Check for
SENS0or s ... present state signal state “1° zignal state “07
S a8 ... at at
nput? nput Symbaol ¢ Result of | Symixol / Result of
Instruction check Instruction check
MO activated
contact * Yes b, 1 LAD: Ves! LAD: “Na
| —A+ 1 = 0
\ MO contact” 'MC contact”
not | M o
activated \ ° 0] Na}' \ffﬂ
FB0: FBLO:
NC acivated L, [y, . —14& '
contact (— 0 “Mo” es"
? ’ 0 1
nct L oy] o7 -]
acfivated ez - 1 bl “eg’ b “Ma”
Alwy 1 AN xy 0

Process

The use of normally open or normally closed contacts for the sensors in a
controlled process depends on the safety regulations for that process.

Normally closed contacts are always used for limit switches and safety switches,
so that dangerous conditions do not arise if a wire break occurs in the sensor
circuit.

Normally closed contacts are also used for switching off machinery for the same
reason.

Symbols

In LAD, a symbol with the name "NO contact" is used for checking for signal
state "1" and a symbol with the name "NC contact" to check for signal state "0".
It makes no difference whether the process signal "1" is supplied by an activated
NO contact or a non-activated NC contact.

Example

If an NC contact in the machine is not activated, the signal in the process image
table will be "1". You use the NO contact symbol in LAD to check for a signal
state of "1".

General:
The "NC contact" symbol delivers the result of check "1" when the checked
address state or status is "0".

Rashad Alkakkali EEE422 ADVANCED PLC Page 88

Exercise

Goal: In all three examples, the light should be on when 51 is activated and 52 is not activated!

Hardware | | |
”:“::> I—W S1 I—w 52 I—\ 51 I—% 52 I=|L 51 I—% 52
110 1.1 1.0 11.1. 11.0 1.1
Programmable controller Frogrammabls controller Programmable controller
Q4.0 4.0 240
I I I
(" Light () Light |j><';.ugm
L5 at
L L
Software
110 114 4.0 110 111 Q4.0 110 111 4.0
A
III — ——O — —— — ——O
110 - | & 110 - | & 1.0 -
]|-| FDB 111 — Q40 111 - — Q40 119 — o440
....... 1.0 e 1.0 — e N1
|]|_| STL - || .. R E—— 111 | [11.1
....... Q4.0 e 2 40 — 1

Exercise

Complete the programs above to obtain the following functionality: When switch
S1 is activated and switch S2 is not activated, the light should be ON in all three

cases.

Note !

The terms "NO contact" and "NC contact" have different meanings depending on
whether they are used in the process hardware context or as symbols in the

software.

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 89

Result of Logic Operation, First Check, and Examples

Example 1 Example 2 Example 3
" "4 ¢ "4 3
|25 2| |a|o|228|2||a]|0C |28 2
s 5 e O — o |oeg| O = o (ec| ©
P = =8 w 2 = ’;E'__ w a8 = (=228 &
= = ¥ =] o o =S " £
s | 282l ||a|3|8°c||a]| 3|39
i x [r |E r |E
- M34
A 110 :> 0 1 1
AN 111 [Z—>| 0 1 0
A M40 f:> 0 1 1
= Q80 ﬁ)
= Q81 ﬁ}
A 120 ﬁ} 0 1 0
Signal State

A logic operation is made up of a series of instructions to check the states of
signals (inputs (), outputs (Q), bit memories (M), timers (T), counters (C) or data
bits (D)) and instructions to set Q,M,T,C or D.

Result of Check

When the program is executed, the result of check is obtained. If the check
condition is fulfilled, the result of check is “1”. If the check condition is not fulfilled,
the result of check is “0”.

First Check

The first check that follows an RLO limiting operation (such as S, R, CU, =) or
the first check in a logic string is called a First Check (FC) since the result of this
check - regardless of the last RLO - is accepted as the new RLO.

Result of Logic Operation

When the next check instructions are executed, the result of logic operation is
gated with the result of check and a new RLO is obtained. When the last check
instruction in a logic operation has been executed, the RLO remains the same. A
number of instructions using the same RLO can follow.

Note

The result of the first check is stored without being subjected to a logic operation.
Therefore, it makes no difference whether you program the first check with an
AND or an OR instruction in STL. To convert your program to one of the other
programming languages, you should, however, always program using the correct
instruction.

Rashad Alkakkali EEE422 ADVANCED PLC Page 90

Assignment, Setting, Resetting

LAD | FBD STL
110 111 - : A 110
[||:| Assignment }—(— |7:EB.)H e S 2 e
= i
i j —=] -
_||1.T _||1|3 [](8_1 12 — 3 . A 112
Set = —(s) - A 113
[ID 113 o4 — 5| S Q8.1
II1.I4 Qs
i
| (R) 14 =51 gas O
[||:| Reset ||1_I5 115 — | —1 R’ | R Q81
[

Assignment
An assignment passes the RLO on to the specified address (Q, M, D). When the
RLO changes, the signal state of that address also changes.

Set
If RLO="1", the specified address is set to signal state "1" and remains set until
another instruction resets the address.

Reset
If RLO="1", the specified address is reset to signal state "0" and remains in this
state until another instruction sets the address again.

Rashad Alkakkali EEE422 ADVANCED PLC Page 91

Setting / Resetting a Flip Flop

-k
A 112
Dominant i :""1153;?
Reset R ME.T
A MLT
= Q93
A 13
Dominant R M5T
Set A 12
5 M&AT
A MLT
= Q93
Flip Flop

A flip flop has a Set input and a Reset input. The memory bit is set or reset,
depending on which input has an RLO=1. If there is an RLO=1 at both inputs at
the same time, the priority must be determined.

Priority
In LAD and FBD there are different symbols for Dominant Set and Dominant
Reset memory functions. In STL, the instruction that was programmed last has
priority.

Note

If an output is set with a set instruction, the output is reset on a complete restart
of the CPU. If M 5.7 in the example above has been declared retentive, it will
remain in the set state after a complete restart of the CPU, and the reset output
Q 9.3 will be assigned the set state again.

Rashad Alkakkali EEE422 ADVANCED PLC Page 92

Midline Qutput Coil

LAD STL
" R
110 111 MS7 120 121 M11 Q40
}—(—#— | NOT —(#)—(H A 1 10
A I 1.1
= M 5.7
A M 5.7
FBD A 1 20
== A | 2.1
NOT
1o — & =
Ms.7 = T
oy = . A M 11
' —— = Q40
120 — M1.1 Q40
121 — — # —| =

Midline Output Coil

The midline output coil exists only in the LAD and FBD graphic languages. It is
an intermediate assignment element with assignment function that assigns the
current RLO at a specified address (M5.7 in the slide). The midline output coil
provides this same address in the same network for subsequent gating. In the
STL language, this is equivalent to

=M>5.7
AMS.7

In the LAD language, when connected in series with other elements, the "midline

output coil" instruction is inserted in the same way as a contact.

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 93

Instructions that Affect the RLO

LAD
L=

- >

0.0

10.1

I]D CLR not available
UDIE> S
NOT

The NOT instruction inverts the RLO.

CLR

not availakle

not availakle

LSTL_|
A 100
A 101
NOT

- Q8.0

Examples:

STAT O - Bit memory

CLR
= MOO

STAT 1 - Bit memory

SET
= M0O.1

The CLEAR instruction sets the RLO to "0" without pre-conditions (available only
in STL at present !). The CLR instruction completes the RLO, thus the next scan

becomes a first check.

SET

The SET instruction sets the RLO to "1" without pre-conditions (available only in
STL at present !). The SET instruction completes the RLO, thus the next scan

becomes a first check.

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 94

RLO - Edge Detection

LAD FBD STL
== 1
I A | 1.0
110 111 MI0 MBO 110 % I A dE
| (P : FP M1.0
LT T S | 11.1 — P = = M8
110 111 M11 M8.1 10— & | A 110
MEE L M1 M1 A M
U N A | 11 — N =] = M8.1
OB1-Cyck

1.0 ____+ |
— |

RLO ———
Example
i M10 ——

M&.0
ME&.1

RLO Edge Detection
An "RLO edge" detection is when the result of a logic operation changes from "0"
to "1" or from "1" to "0".

Positive Edge

(Positive RLO Edge Detection) detects a signal change in the address (M1.0)
from "0" to "1", and displays it as RLO = "1" after the instruction (such as at M
8.0) for one cycle.

To enable the system to detect the edge change, the RLO must be saved in an
FP bit memory (such as M 1.0), or a data bit.

Negative Edge

(Negative RLO Edge Detection) detects a signal change in the address (M1.1)
from "1" to "0" and displays it as RLO = "1" after the instruction (such as at M 8.1)
for one cycle.

To enable the system to detect the edge change, the RLO must be saved in an
FN bit memory (such as M 1.1), or a data bit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 95

Signal - Edge Detection

LAD FBD STL
= - = VI"_.
1.1 11.0 A 110
1o — M8.0 1.1 — A
| % a— H POS MED || A 11
M1.0—| M_BIT M1.0—|M_BIT _|T| FP M10
' =)
= MS.D
11.1 A 11.0
o nEG . I g 10— A
| a—(=G Med || A 114
- FN M1.1
M1.1—| M_BIT M1.1—|M_BIT _m _J
= M8.1
11.0 | 3
I
11 |
; Exan1pl§> M10
M1.1 5
0B1-Cycle
M8.0
M8. 1 L

Signal Edge Example

A "signal edge" is when a signal changes its state. Input | 1.0 acts as a static
enable. Input | 1.1 is to be monitored dynamically and every signal change is to
be detected.

Positive Edge

When the signal state at | 1.1 changes from "0" to "1", the "POS" check
instruction results in signal state "1" at output Q for one cycle, provided input | 1.0
also has signal state "1" (as in the example above). To enable the system to
detect the edge change, the signal state of | 1.1 must also be saved in an M_BIT
(bit memory or data bit) (such as M 1.0).

Negative Edge

When the signal state at | 1.1 changes from "1" to "0", the "NEG" check
instruction results in signal state "1" at output Q for one cycle, provided input | 1.0
has signal state "1" (as in the example above). To enable the system to detect
the edge change, the signal state of 1 1.1 must also be saved in an M_BIT (bit
memory or data bit) (such as M 1.1).

EEE422 ADVANCED PLC

Rashad Alkakkali Page 96

PART FIVE

PROGRAMMING TIMERS

Rashad Alkakkali EEE422 ADVANCED PLC Page 97

Timers:

There are very few industrial control systems that do not need at least one or two
timed functions. They are used to activate or de-activate a device after a preset
interval of time.

Time Delay
Relay

Solid-State

Time delay relays and solid-state timers are used to provide a time delay. They
may have displays, pots or other means of operator interface for time settings
and electromechanical or solid state outputs.

Rashad Alkakkali EEE422 ADVANCED PLC Page 98

On-Delay Timing Relay:

Non-timed contacts are controlled
directly by the timer colil, as in a
general-purpose control relay.

When the coil is energized, the
timed contacts are prevented from
opening or closing until the time

V7777777
= ////é
é

(1l

Operating coil

X NO
I_—II—

Instantaneous

- contacts

e

delay period has elapsed. T

However, when the coil is de- [[R @))">= / °l\° NO

energized, the timed contacts

return instantaneously to their Time control

normal state.. contacts
b

Rashad Alkakkali EEE422 ADVANCED PLC Page 99

Timed Contact Symbols

On-Delay Symbols

O

Normally open, timed
closed contact (NOTC)

Contact is open when
relay coil is de-
energized

When relay is energized,

there is a time delay in
closing

Normally closed, timed
open contact (NCTO)

Contact is closed when
relay colil is de-
energized

When relay is energized,
there is a time delay in
opening

o Off Delay Symbols oTcs

Normally open, timed open
contacts (NOTO).

Contact is normally
open when relay coil
is de-energized.

When relay coil is energized,
contact closes instantly.

When relay colil is de-energized,
there is a time delay before the
contact opens.

Normally closed, timed closed
contacts (NCTC).

Contact is normally
closed when relay coill
is de-energized.

When relay coil is energized,
contact opens instantly.

When relay coil is de-energized,
there is a time delay before the
contact closes.

Rashad Alkakkali

EEE422 ADVANCED PLC Page 100

On-Delay Relay Timer Circuit (NOTC Contact):

Sequence of Operation

S1 open, TD de-energized, TD1
open, L1is off.

S1 closes, TD energizes, timing
period starts, TD1 still open, L1
is still off.

After 10 s, TD1 closes, L1 is
switched on.

S1 is opened, TD de-energizes,
TD1 opens instantly, L1 is
switched off.

On-Delay Relay Timer Circuit (NCTO Contact):

Sequence of Operation

S1 open, TD de-energized, TD1
closed, L1is on.

S1 close, TD energizes, timing period
starts, TD1 is still closed, L1 is still

on.

After 10 s, TD1 opens, L1 is switched

off.

Off-Delay Relay Timer

S1
o {TD}
TD1 N /
& M
NS
/7 L1 AN
10s
L
INP Ut m— ON e
OFF
Output St
Timing Diagram
S1
—"" 0 o §
o \T_D/ L
D1 . Bt

Input
Output

On

Off

Timing Diagram

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 101

Circuit (NOTO Contact):

S1
Sequence of Operation
o ——®
S1 open, TD de-energized, TD1 open, L1 is off. TD1 \ L1 ~
o O
S1 closes, TD energizes, RD1 closes instantly, 4} N .
L1 is switched on.
. . o . 10 s
S1is opened, TD de-energizes, timing period
starts, TD1 is still closed, L1 is still on. I I I
nput |
On

After 10 s, TD1 opens, L1 is switched off. Output OffI |

Timing Diagram
Off-Delay Relay Timer Circuit (NCTC Contact):

Sequence of Operation

S1
S1 open, TD de-energized, TD1 closed, L1 is f\
(o TD
on. 4
L1
S1 closes, TD energizes, TD1 opens TD1 N 4
instantly, L1 is switched off. ()
&
/ N

Slis opened, TD de-energizes, timing

period starts, TD1 is still off. | 10s

After 10 s, TD1 closes, L1 is switched on. Input _IO I

Output ' —

Off

Timing Diagram

Rashad Alkakkali EEE422 ADVANCED PLC Page 102

Programmed Timer Instructions:
PLC timers are output instructions that provide the same functions as timing
relays and solid state timers.

Some advantages of PLC timers:
» Their settings can be altered easily.

» The number of PLC timers used can
be increased or decreased by
programming changes without wiring
changes.

» Timer accuracy and repeatability are
extremely high.

Step7 Timer Commands:

Simatic S7 has 5 types of timers

- (@] {Timers
I s_PULSE Pulse Timer
FT s_pext Extended Pulse Timer
] s_oot On-Delay Timer
] s_oots Retentive On-delay Timer
] s_OFFDT Off-Delay Timer
<> --{5P) Pulse Timer coil
<> --(SE) Extended Pulse Timer coil
<> --(SD) On-Delay Timer coil
<> --(55) Retentive On-delay Timer coil
< --{SF) Off-Delay Timer coil

Timers: ON Delay (SD)

LAD FBD STL
T4 T4
10.7 5_0DT Qa5 S _ODT A 107
| —s Qal—¢) 07 —s Bl —mMwo | L S5T#35s
105 . =T BCD Q8.5 A 105
L R BCD [~ QW12 105 R ab =] R T4
L T4
T MWD
RLOatS | - || B -
RLO atR —| T Qwi2
\ A T4
Timer L - Q&5
:: operation
Example
Q

|_
—[\ LAy [[[T [T H P11}
Da 0.01s =— [0 10 M ey

ta type 0
: : 01 < [017] e
S5TIME bt 37 Units of time: 0 to 999 (BCD-coded)
105 =— 1
Start

The timer starts when the RLO at the Start input "S" changes from "0" to "1". The
timer starts with the time value specified at the Time Value "TV" for as long as
the signal state at input "S" =1.

Reset

When the RLO at the Reset input "R" changes from "0" to "1", the current time
value and the time base are deleted and the output "Q" is reset.

Digital Outputs

The current time value can be read as a binary number at the "BI" output and as
a BCD number at the "BCD" output. The current time value is the initial value of
"TV" minus the value for the time that has elapsed since the timer was started.
Binary Output

The signal at the "Q" output changes to "1" when the timer has expired without
error and input "S" has signal state "1". If the signal state at the "S" input changes
from "1" to "0" before the timer has expired, the timer stops running and output
"Q" has a signal state "0".

Note

In STEP 7, you can also implement IEC conforming timers using SFBs. The use
of system function blocks is dealt with in an advanced programming course.

Rashad Alkakkali EEE422 ADVANCED PLC Page 104

Timers: Stored ON Delay (SS)

w5 £

Te IES A 107
0.7 | S_ODTS Qa5 5_0DTS L SAT#35s
T 3 QL—1() 07 — 8 Bl —MWO 35 T4
10.5 A BCOI qas E‘- E
1R BCD— QW12 105 —{R Q =
A — =] T MWO
LC T4
T aQwiz
A T4
- Q85
RLOat S | | .]
RLO atR] [] ‘ |]
Timer \ \
:: operation
Example >
Q

Start

The stored-on-delay timer starts when the RLO at the "S" input changes from "0"
to "1". The timer runs starting with the time value specified at input "TV" and
continues to run even if the signal at input "S" changes back to "0" during that
time. If the signal at the start input changes from "0" to "1" again while the timer is
still timing down, the timer starts again from the beginning.

Reset
When the RLO at reset input "R" changes from "0" to "1", the current time value
and the time base are deleted and output "Q" is reset.

Binary Output
The signal state at output "Q" changes to "1" when the timer has expired without
error, regardless of whether the signal state at input "S" is still "1".

Rashad Alkakkali EEE422 ADVANCED PLC Page 105

Timers: Pulse (SP)

' LAD | FBD @
T4 1L ___ A 107
0.7 | S_PULSE Q85 S_PULSE L S5T#35s
s Q—() lo7 — s Bl —MWO SP T4
SET#35s — Ty Bl SET#ISS — v SO QW12 A 105
105 T Q8.5 [* H
| | =} BCD [~ Qwiz 105 —| R = |
> ' Q| T MW
LC T4
T Qw12
A T4
- Q85
RLO at S | L]
RLO atR [
Timer \
:: operation
Example >
Q _]
Start

The pulse timer starts when the RLO at the "S" input changes from "0" to "1".

Output "Q" is also set to "1".

Reset

Output "Q" is reset when:

* the timer has expired, or

« the start "S" signal changes from "1" to "0", or
* the reset input "R" has a signal state of "1".

Rashad Alkakkali EEE422 ADVANCED PLC

Page 106

Timers: Extended Pulse (SE)

LAD | FBD s
T4 T4
A 10T
10.7 S_PEXT Qa5 S_PEXT L S5T#35s
S5T#35s — Ty — MWO 1 A 105
- |}IR BCD [Qwi2 105 — R q # Lqm
LC T4
T Qw12
A T4
= Q8.5
RLO at S | | L]
RLO at R |—
Timer \ \
Operation
Example >
llj Q _ s [[E

Start

The extended pulse timer starts when the RLO at the "S" input changes from "0"
to "1". Output "Q" is also set to "1". The signal state at output "Q" remains at "1"
even if the signal at the "S" input changes back to "0". If the signal at the start
input changes from "0" to "1" again while the timer is running, the timer is

restarted.

Reset

Output "Q" is reset when:
* the timer has expired, or
* the reset input "R" has a signal state of "1".

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 107

Timers: OFF Delay (SF)

[LAD | _FeD] B

T Lo A 107
o7 | S_OFFDT Q85 S_OFFDT L S5T#35s
s Qi —C() 107 —8 BI —MWO SF T4
S5T#3hs — ™ Bl — MW SETR#IGS — L TEYE T A 10.5
T T Bco[—QW! [{ H
|| R BECD — QW12 05 — R =]
i 9 T MWD
LC T4
T Qw2
A T4
= Q85
RLO at S ‘ ‘
RLO at R] \I
Timer \ \ \
: operation
Example >
Q i L1 L

Start

The off-delay timer starts when the RLO at the "S" input changes from "1" to "0".
When the timer has expired, the signal state at output "Q" changes to "0". If the
signal state at the "S" input changes from "0" to "1" while the timer is running, the
timer stops. The next time the signal state at the "S" input changes from "1" to
"0", it starts again from the beginning.

Reset

When the RLO at reset input "R" is "1", the current time value and the time base
are deleted and output "Q" is reset. If both inputs (S and R) have signal states of
"1", output "Q" is not set until the dominant reset is deactivated.

Binary Output

Output "Q" is activated when the RLO at the "S" input changes from "0" to "1". If
input "S" is deactivated, output "Q" continues to have signal state of "1" until the
programmed time has expired.

Rashad Alkakkali EEE422 ADVANCED PLC Page 108

Timers: Bit Instructions

LAD FBD STL
Tk L.
Metwork 1 T4
10.0 T4 100 — & — gp A 100
— | (sp } L S5T#5s
SET#55 — TV ,
S5T#5s 1 SD T4
Metwork 2
| T4 080 Q8.0 2
| | f N — ;i
|) T4 — & - = Q80
Metwork 3
10.1 T4 T4 A 101
I | (R) 01— & | R R T4

Bit Instructions
All timer functions can also be started with simple bit instructions. The similarities
and differences between this method and the timer functions discussed so far are
as follows:
« Similarities:
- Start conditions at the "S" input
- Specification of the time value
- Reset conditions at the "R" input
- Signal response at output "Q"
* Differences (for LAD and FBD):
- It is not possible to check the current time value (there are no "BI"
and "BCD" outputs).

Rashad Alkakkali EEE422 ADVANCED PLC Page 109

PULSE TIMER S PULSE
The output Q124.0 is activated by the closure of input 1124.0 and
deactivated 5 seconds later. If the input is reopened during this period
of time, the output is immediately deactivated.

F Y

1124.0

k4

0124.0

Y

5s ' s

Time diagram of the pulse timer

The operation of the pulse timer is shown in the time diagram above. The first
line represents the input signal and the second line its output.

The program ladder has been designed using a timer S_PULSE activated by the
NO contact of 1124.0, with a time constant equal to 5 seconds and the output
connected to the coil of Q124.0.

Network | : Title:

Tl
Illlil.o S_PULSE al24.0 |
1 3 Q {} 1
SS5T#SS TV BI ...
.. —E BCD ...
PULSE TIMER COIL -(SP)-
| I124.1 T2
| | { 5B)—
SSTH3S
Network 3% : Title:
‘ T2 g124.1
|] [|
‘ 11 WS 1
Network 4 : Title:

| 1124.7 T2

|1 PR |
| 1 { B} {

Rashad Alkakkali EEE422 ADVANCED PLC Page 110

EXTENDED PULSE TIMER S PEXT

The output Q124.2 is activated when inputl124.2 is closed and deactivated 5
seconds later, irrespective of whether the input is opened again during this period
of time.

1124.2 | L

0124.2 —

v

- 85

The operation of the pulse timer is shown in the time diagram above. The first
line represents the input signal and the second line its output.

The program ladder has been designed using a timer S_PEXT (extended pulse)
activated by the NO contact of 1124.2 , with a time constant equal to 5 seconds
and the output connected to the coil of Q124.2.

Network 5: Title:

T3
I124.2 S PENT gl24.2
s @ (—
s5THSs Ty BI ...
. -k ECD ...

EXTENDED PULSE TIMER COIL -(SE)-

Network 6 : Title:

‘ I124.3 T4
| |
1 T

{ 5E}—

S5T#53

Network 7 : Title:

Rashad Alkakkali EEE422 ADVANCED PLC Page 111

ON-DELAY TIMER S_ODT
The output Q124.0 is activated 5 seconds after input 1124.0 is closed. When the
input is reopened, the output is deactivated.

F Y
1124.0
o e
t
0124.0 —
4 > 4 > t
Bs bs

The operation of the pulse timer is shown in the above time diagram. The first
line represents the input signal and the second line is the corresponding output.
The program ladder has been designed using a timer S_ODT (delayed
activation) activated by the NO contact of 1124.0, with a time constant equal to 5
seconds and the output connected to the coil of Q124.0.

Network |EESR-ATH

Tl
I124.0 5 00T ol124.0
|] o |
. L) |
SS5THSs TV EI —..
..k BCD —...
ON-DELAY TIMER COIL -(SD)-
Network 2: Title:
I124.1 TZ
| (50—
S5TH#SS
Network 3 : Title:

Rashad Alkakkali EEE422 ADVANCED PLC Page 112

RETENTIVE ON-DELAY TIMER S ODTS
Output Q124.0 is activated 5 seconds after input 1124.0 is closed (even though
this input is opened again during this time) and deactivated with the closure of
input

F

1124.0 >
i

1124.4 »
t

Q124.0 | >
< > t

B

The operation of the retentive On-delay timer with reset can be obtained by comparing
the first two lines and the last line of the above time diagram. The first two lines
represent the input signals, and the last line is the resulting output.

The program ladder has been designed using a timer S_ODTS (retentive On-delay)
activated by the NO contact of 1124.0, with a time constant equal to 5 seconds, the reset
connected to a NO contact of 1124.4 and the output to the coil of Q124.0.

Network 1HESE-AI-H

Tl
I124.0 S ODTS R124.0
| | 5 Q {) |
SETESS TV BI ...
I124.4-R BCD ...

RETENTIVE ON-DELAY TIMER COIL —(SS)-

Network 2 : Title:

I124.1 T2

|| N b |
[{55 1

SSTH#SS

Network 3 : Title:

Network 4 : Title:

I124.5
| (R)—

Rashad Alkakkali EEE422 ADVANCED PLC Page 113

OFF-DELAY TIMER S OFEDT
Output Q124.0 should activate when input 1124.0 is closed and deactivate itself 5
seconds after it is reopened.

Fy

1124.0

-~ ¥

2124.0

- ¥

s

The operation of the Off-delay timer is shown in the time diagram. The first line
represents the input signal and the second line is the corresponding output.
The program ladder has been designed using a S_OFFDT (Off-delay timer)
activated by the NO contact of 1124.0, with a time constant equal to 5 a second
and the output connected to the coil of Q124.0.

PRt Al Title:

Tl
I124.0 S _OFFDT nl124.0
|] 3 0 £ |
| L 1
SSTHS5 TV BI ...
. /R BCD ...
OFF-DELAY TIMER -(SF)-
Network 2: Title:
I124.1 T2
| | { 3F }—
S5T#55
Network 3% : Title:

Rashad Alkakkali EEE422 ADVANCED PLC Page 114

PART SIX

TIMER APPLICATIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 115

FLASHING USING PULSE TIMERS

One of the most important applications of timers is to produce flashing signals. It
is possible to obtain a flashing signal of the rate of one second using two pulse
timers as shown below. This way of linking the two pulse timers can start the
flashing automatically as soon as the CPU is in the RUN mode.

OBl : "Main Program Sweep (Cycle)"
m: FIRST TIME SCAN TE IZ OFF 30 TE' Igmate the timer Tl to start

Tl
TZ 5 PILSE Qlz4._0
| <1 P |
{1 3 Q i} 1
SETH1SE ATV ET—...
..k ECD—...

Netwwork 2 - Waiting for Tl to finish Tl=off T1l' will enakle TEZ to start.

TZ
Tl 5_PILSE Qlz4.1
| ~1 F |
1] s Q i} 1
SETH1IE ATV EIR...
1 ECD [—. ..

T2'

T2

T1' ‘

Rashad Alkakkali EEE422 ADVANCED PLC Page 116

To control the flashing we can add a pushbutton with SR block to enable the
timers. The following diagram illustrates that; please note the nature of the
different timers when using them in the applications (refer to previous chapter).

OBl : "Main Program Sweep (Cycle)"
m: start PE to start the flashing and stop PE to stop the flashing

I1Z4_0 MO0
"start" SR
| | g Q
I124_1
"stop "
11 R

Netvmoxk 2 : FIRST TIME =2CaAN TE IS OFF 250 TE' Ignate the timer Tl to start

Tl
MO0 TZ % PULSE N1z4._0
I | A - {
11 2 Q —
BOOL
SETHLE TV EIl...
. —E ECD ...

Netwvmork 3 : Waiting for Tl to finish Tl=off T1l' will enable TE to start.

TEZ
MO0 Tl % PULSE Q1z4.1
| | | /1 -
1 T 11) af— —
SETH#15 TV EIR...
. —E ECD ...

Rashad Alkakkali EEE422 ADVANCED PLC Page 117

Flashing for a certain amount of time

To obtain flashing for a certain amount of time like a flashing for 10 second, an
extra timer will be added to the above ladder diagram. This additional timer will
act as a Master timer and the other two timer works as a slave.

I1Z24_0 MO0
"start" SR
| |
1 T g Q
T174_1
"stop"
| #1
11 B
master timer Z0 seconds
TO
Ho.o &§_PULSE HMO. 1
| | - £ |
1 T g Q i} |
SETHZ05 4 TW BIR—...
.. — R ECD ...
Tl
MO.1 TZ % PULSE Qlz4.0
| | | /] - {
1 | 11 2 Q —
SETHLE TV BEI...
.. — R ECD ...
TE
MO.1 Tl % PULSE Qlz4.1
| | | - {
1 T 11 2 Q —
SETHLIE TV EBI...
.. R ECD[—...

Rashad Alkakkali EEE422 ADVANCED PLC Page 118

Flashing using on-delay timers

Similarly, two on delay timer can be used to obtain flashing for 1 second interval.
The following ladder diagram illustrates flashing using on-delay timers.

OEl : "Main Program Sweep (Cycle)"
Tl
TZ S ooT Qlz4.0
| - i |
11 = 0 i} |
SETHLE TV BEIl...
.. —R BCD[—. ..

Hetymrk 2 : Title:

Tz

Tl §_0o0T

| | g q

SETELE —|TV EI|-...
.. —E ECD . .

T2| \dela

Rashad Alkakkali EEE422 ADVANCED PLC Page 119

Sequence of operations using timers

Automatic Sequential Control System:

Timers are often used as part of automatic sequential control systems. The
following schematic shows how a series of motors can be started automatically
with only one start/stop control station.

According to the relay ladder schematic, lube-oil pump motor started coil M1 is
energized when the start pushbutton PB2 is momentarily actuated. As a result,
M1-1 control contact closes to seal in M1, and the lube-oil pump motor starts.
When the lube-oil pump builds up sufficient oil pressure, the lube-oil pressure
switch PS1 closes. This in turn energizes coil M2 to start the main drive motor
and energizes coil 1TD to begin the time-delay period. After the preset time-delay
period of 15 s, 1TD-1 contact closes to energize coil M3 and start the feed motor.
The ladder logic program shows how the circuit could be programmed using a
PLC.

Relay Ladder Schematic Diagram

— gg’; Lube oil L2
PB1p pump motor OL
L N | !
=1
Main drive
PS1 M1 motor QL
! °Z° @
(lube oil
pressure switch) @
oL
1TD-1 Feed
(15 s) motor

Rashad Alkakkali EEE422 ADVANCED PLC Page 120

0124.0

nputs | PRI R o
$—lo- PB1 @124-0 Qutputs
| A oL
I124.2 0124.1 M1 () | f
[O "BPSL" "M
l"' F |} {) oL
! M2 O*f
5_0DT
0
SET# 155 TV BI M3 O*{
— R BCD
9124,
T "M
| | {)
Rashad Alkakkali EEE422 ADVANCED PLC Page 121

Applications using On-Delay timers

On-Delay timer with instantaneous output:

Timers may or may not have an instantaneous output (also known as the enable
bit) signal associated with them. If an instantaneous output signal is required
from timer and it is not provided as part of the timer instruction, an equivalent
instantaneous contact instruction can be programmed using an internally
referenced relay coil.

The following figure shows an application of this technique. According to relay
ladder schematic diagram, coil M is to be energized 5 s after the start pushbutton
is pressed. Contact 1TD-1 is the instantaneous contact, and contact 1TD2 is the
timed contact.

The Ladder logic program shows that a contact instruction referenced to an
internal relay is now used to operate the timer. The instantaneous contact is
referenced to the internal relay coil, whereas the time-delay contact is referenced
to the timer output coil.

L1 Start L2

Stop
1

1TD

1TD-1 a~

(instantaneous
contact)

1TD-2
(5s)
(timed contact)

Rashad Alkakkali EEE422 ADVANCED PLC Page 122

Programmed Circuit

Inputs

L1
Stop

Start

Ma0.0
I124.0 I124.1 " INTERNAL-
"START" "STOPR" RELAY"
| | | | i |
1T 1T L 1
M50.0
INTERNAL-
RELAY"
N
Tl
Ma0.0 "motor-
INTERNAL- timer" 0124.0
RELAY" 5 00T "MOTOR"
| | Q i |
1T L 1
SSTHSS TV BI |...
.. R BCD ...

S7_timer-applic-01
Start-up Warning Signal Circuit:
The schematic below shows the application of an on-delay timer that uses an
NCTO contact. This circuit is used as a warning signal when moving equipment,
such as a conveyor motor, is about to be started. According to the relay ladder
schematic diagram, coil CR1 is energized when the start pushbutton PB1 is
momentarily actuated. As a result, contact CR1-1 closes to seal in CR1, contact
CR1-2 closes to energize timer coil 1TD, and contact CR1-3 closes to sound the
horn. After a 10-s time delay period, timer contact 1TD-1 opens to automatically
switch the horn off. The ladder logic diagram shows how the circuit could be
programmed using a PLC.

Relay Ladder Schematic Diagram

Output

Motor

L1 Start-up Reset o L2
PB1 PB2
- . - 7\ l
, P
&
CR1-1
1TD
& {) 4
CR1-2 ANy
Horn
& O Q I I i : 2]
x 1 | cri3
1TD-1
(10s)

L2

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 123

Programmed Circuit

INTEERHAL—
START "RESET " RELAY"
I124.0 I124.1 MAO. 0
Inputs | | ¥)
INTERNAL—
RELAY "
Start-up 0.0 Output
[
PB1 "horn-time
Reset et s
ese .
PB2 IR I Horn
55TH58 TV BI ...

RESET "

I124.1 D L
11 R

"horn-time INTERMNAL—
" RELAY" “HORN"
T2 M0.0 0l24.1
/1 [{)
S7_timer-applic-02a
Rashad Alkakkali EEE422 ADVANCED PLC

Page 124

Applications using OFF-Delay timers

Off-Delay Timer Used to Switch Motors Off at a 5 s intervals:
Closing the sw-1 immediately turns on motors M1, M2, and M3. When the switch
is opened, motors M1, M2, and M3 turns off at 5-s intervals.

I124.0 Tl
el S_OFFDT
1 3 8 —
SETH#5S TV BI
1R ECD
T2
S_OFFDT
3 &
SAT#105 TV BI
1R ECD
T3
S_OFFDT
3 &
SET#155 TV BI
1R ECD
0124.0
Tl "Bl
| | Y
1 L
0124.1
T2 "R
| | Y
1 L
0124.2
T3 "I"'B"
| | Y
1 L
Rashad Alkakkali EEE422 ADVANCED PLC Page 125

Annunciator flasher program

Two timers can be interconnected to form an oscillator circuit. The oscillator logic
is basically a timing circuit programmed to generate periodic output pulses of any
duration. They can be used as part of an annunciator system to indicate an alarm
condition.

The oscillator circuit output is programmed in series with the alarm
condition. If the alarm condition is true, the appropriate output indicating
light will flash.

L1 Inputs .
T S 00T
TS1 141 5) S—
55T§ 15 TV BI ...
... R BCD ...
o— PS1
T2
lTll 5_0DT
D—%Q_—LS1 10 3 0 —_—
557415 TV BT L... Outputs i
.. R BCD ...
N rd
1124.0 0124.0 O
"Tsl" T] g G _ \ 4
[|| [|
[1T { } |
e ~
1124.1 9124.1 N /s
"p5]" Tl -
A N (— R O G
/ N
1124.2 0124.2 N P
"LEl" T1 e
| |1 L | Y /--\
e ~

Rashad Alkakkali EEE422 ADVANCED PLC Page 126

Application “Tank filling system”

Suppose that you have a Tank Filling System. Design a Ladder Program for the
system with the following conditions:
i) When the START push button is pressed, the Pump starts to fill the
tank until the HIGH level is reached. Then Pump stops.

i) Then, STEAM valve opens, raising the temperature, until the
temperature switch 1124.5 is activated.

iii) Ten minutes after the desired temperate is reached the Steam
shuts off and the Drainl valves open.

iv) After the Tank is Empty and water level reaches LOW LEVEL
sensor, the Drainl valve also shuts off.

V) The process can be stopped whenever by pressing the STOP push

button.
TAMK
240
: ee- HGHLEWHE. H244
PUNP
1124 5 :
_______ —-- Lo LEWHE. H24.2
Hz4.0
START (N Oj
O 241
STOP (N C)
STEAM DRAIR
2241 242

Rashad Alkakkali EEE422 ADVANCED PLC Page 127

Solution

Rashad Alkakkali EEE422 ADVANCED PLC Page 128

Application “Traffic light of one street”

Control of Traffic in One Direction
Sequence of Operation

- I ===
Red Green Amber
30s 25s 5s

Homework: Design the Ladder Program to perform
this function

<OOO

Rashad Alkakkali EEE422 ADVANCED PLC Page 129

SOLUTION

Rashad Alkakkali EEE422 ADVANCED PLC Page 130

Application “Traffic light of two streets”

Rashad Alkakkali EEE422 ADVANCED PLC Page 131

PART SEVEN

PROGRAMMING COUNTERS - |

Rashad Alkakkali EEE422 ADVANCED PLC Page 132

PROGRAMMING COUNTERS |

Counters:
Common applications of counters include keeping track of the number of items
moving past a given point, and determining the number of times a given action
occurs.

A preset counter can control an external circuit
when its counted total matches the user-entered
preset limits.

Mechanical Counters:
Programmed counters can serve the same functions as
mechanical counters.

Every time the actuating lever is moved over the counter
adds one number, while the actuating lever returns

ﬁ@ﬁ automatically to its original position. Resetting to zero is
done with a pushbutton located on the side of the unit.

Electronic Counters:

Electronic counters can count up, count down, or be combined to count up and

down. They are dependent on external sources, such as parts traveling past a

sensor or actuating a limit switch for counting.

Item Counting
Reflector

Length Totalizer

=

?g\ Photocell Counter
% — Applications
Counter Footage Windup Control Counter

— Rotopulser

—]

Counter

Rashad Alkakkali EEE422 ADVANCED PLC Page 133

Step 7 Counters
COUNTER OPERATIONS

In control engineering, counter functions are needed for collecting the number of
items or pulses and for the evaluation of times and distances. In the SIMATIC
S7, counters are already integrated in the CPU. These counters possess their
own reserved storage area. The range of the count value lies between O and
999. The following functions can be programmed with a counter:

£T 5_cub | UP/Down Counter
FI s_cu | UP Counter

F] s_co | Down Counter

<y --{sCy | Set Counter Value
< —(cuy | Up Counter coil
—-{CD) Down Counter coill

RELEASE COUNTER (FR) ONLY IN STL

A positive edge change (of “0“ to “1%) in the logical operation of the operation
release (FR) releases a counter.

A counter release is not needed for setting a counter or for normal counting
operations. However, if one wants to set a counter without a rising edge before
the appropriate counting operation (CU, CD or S), then this can take place with a
release. This is however possible only if the RLO bit before the appropriate
operation (CU, CD or S) has a signal status “1°.

The operation release (FR) only exists in the
programming language STL.

COUNTER UP (CU)

The value of the addressed counter is increased by 1. The function becomes
effective only with a positive edge change of the logical operation programmed
before CU. If the count value achieves the upper limit of 999, it is no longer
increased. (a carry is not generated!)

Rashad Alkakkali EEE422 ADVANCED PLC Page 134

COUNTER DOWN (CD)

The value of the addressed counter is reduced by 1. The function becomes
effective only with a positive edge change of the logical operation programmed
before CD. If the count value achieves the lower limit O, it is no longer reduced.
(Only positive counter values!)

SET COUNTER (S)

In order to set a counter, you must insert three operations into its STL program:
e Query a signal status
« Load a count value
« Set a counter with the loaded count of the function.
This function is only edited by a positive edge change of the query.

COUNTER VALUE (CV)

If a counter is set, then the contents of ACCU 1 are used as the count. There is a
possibility to code the count value either as binary or BCD code. The following
operands are possible:

- Input word W .. eg.

- Output word QW .. A 123
- Memory bitword MW .. L CH#5
- Data word DBW/DIW .. S c1
- Local data word LW ..

- Constant C#5, 2#...etc.

RESET COUNTER (R)

The counter is set to zero (to reset) with RLO 1. The counter remains
unchanged with RLO 0. Resetting a counter works statically. During a satisfied
resetting condition, a counter can be neither set nor counted.

LOAD COUNTER (L/LC)

A count is stored in a counter word binary code. The value in the counter can be
loaded as a dual number (DU) or as BCD number (DE) into the ACCU and be
transferred from there into other operand ranges. With STL programming, you
have the choice between L C1 for the query of the dual number and LC C1 for
the query of the BCD number.

Rashad Alkakkali EEE422 ADVANCED PLC Page 135

QUERY SIGNAL STATE OF COUNTER (Q)

A counter can be tested for its signal status. The meaning of the signal states

are:

Signal state 0 = Counter stays on the value 0;
Counter runs, i.e. it is count ready.

Signal state 1

Signal statuses can be queried with A C1, AN C1, ON C1, etc.... and can be

used for further logical operations.

FBD c1 STL
COUNTER
100 —cu A 107 Release (only in STL)
FR C1
101 —CD A 100
10.2 s cv ow2 CU C1 Count up
A 101
C#5 ——|PV CV_BCD|—QW4 CD C1 Count down
A 102
103 —R Q |—qo.0 L C#5 Load counter with default value
S C1 Set counter with default value
LAD c1 A 103
R C1 Rest counter C1
L C1 Load counter C1 DUAL-coded
10.0 COUNTER Q00 T ow2
| —cu Q 0 LC C1 Load counter C1 BCD-coded
101 —CD T Qw4
A C1 Query of the counter C1
102 —S = Q0.0
C#5 —PV CV|—qw2
103 —R CV_BCD—qwa
Signal state chart:

]
L 1|

e

Rashad Alkakkali EEE422 ADVANCED PLC

Page 136

§5 Counters in STEP 7

LAD | FBD | STL |

= L - S
A D4
(o CH
e = oun CU Cc5
104 - Q8.3 S A D5
— - cu a— H||104 —cu CD C5
: =
— <o CVF—MW4 | | 105 —CD o
S C5
10.3 A D7
— = Ccv_BCDo— awiz2| |103 — 5 CW | — MW 4 R 5
L C5
CEIN— PV CE0—- PV CV_BCD| — QW 12 T MW4
10.7 Q8.3 LC C5
— = 107 — & a |—= T OWi12
A C5
= 083

Counter Value
A 16-bit word is reserved for each counter in the system data memory. This word is used for
storing the counter’s value (0 to 999) in binary code.

Count Up
When the RLO at the "CU" input changes from "0" to "1", the counter’s current value is
incremented by 1 (upper limit = 999).

Count Down
When the RLO at the "CD" input changes from "0" to "1", the counter’s current value is
decremented by 1 (lower limit = 0).

Set Counter
When the RLO at the "S" input changes from "0" to "1", the counter is set to the value at the "PV"
input.

Reset Counter

When the RLO at the Reset changes from "0" to "1", the counter’s value is set to zero. If the reset
condition is fulfilled (stays "high"), the counter cannot be set and counting in either direction is not
possible.

PV The preset value (0 to 999) is specified in BCD format at the "PV" input as:
* As a constant (C#...)
» A BCD format through a data interface.

CV/CV_BCD
The counter value can be loaded as a binary number (CV) or BCD number (CV_BCD) into
accumulator 1 and then transferred to other addresses.

Q The signal state of the counter can be checked at output "Q":
*Count=0->outputQ =0
*Count><0->outputQ =1
Types of Counters
* S_CU = Up counter (counts up only)
* S_CD = Down counter (counts down only)
+ S_CUD = Up/Down counter.

Rashad Alkakkali EEE422 ADVANCED PLC Page 137

Counters: Function Diagram

o [N -
= UL 1]

ol

&

Notes

When the counter reaches its maximum value (999), the next count up signal
does not affect the counter. Likewise, when the counter reaches its minimum
value (0), the next count down signal does not affect the counter. The counters
do not count above 999 of lower than zero. If an up count and a down count
signal occur at the same time, the count remains the same.

Rashad Alkakkali EEE422 ADVANCED PLC Page 138

Counters: Bit Instructions

LAD | FBD | STL |
L L

Mebwork 1: C5
~E 10.0 SC
10.0] n
.y (sc)—] L ce
C#F20 [n
C#20 i s CS5
Feebwork 2:
10.1 cs e -
I fou' | 0.1 —|I| A 10
— | LB CU C5
Feebwork 3
10.2 c5 ChH A 102
— | (0 — 02 CD C5
Febwork 4;
i P = A CS
— | Y cs — = | = Q4.0

Bit Instructions
All counter functions can also operate with simple bit instructions. The similarities
and differences between this method and the counter functions discussed so far
are as follows:
* Similarities:

- Setting conditions at the "SC" input

- Specification of the counter value

- RLO change at the "CU" input

- RLO change at the "CD" input
» Differences:

- It is not possible to check the current counter value since there are no

Binary

(CV) or BCD (CV_BCD) outputs.
- There is no binary output Q in the graphical representation.

Note

IEC-compliant counters can also be implemented in STEP 7. The use of system
function blocks for implementing IEC counters is dealt with in an advanced
programming course.

Rashad Alkakkali EEE422 ADVANCED PLC Page 139

Simple Up-Counter Program:

This simple up counter is designed to turn the red pilot light on and the green
pilot light off after an accumulated count of 7. Operating pushbutton PB1
provides the off-to-on transition pulses that are counted by the counter. [Unlike
the other plc’s Siemens counter requires the use of a comparator to check
for the preset value]. In this case the counter preset value is 7. PB2 pushbutton
is used to reset the counter value.

L1 Inputs Ii-0
"FE1 C1
coumt" s cu
N v g
.. s [N, OLrtpub L2
counted -value
PB1 {Count) U X
L:1/0 s LB Red PL
Fese=t" R * 4
0:2/0— :)——ﬂ
oy
nz.0 —
PBZ (Reset = "Fed PL" @
) CMP ==| .\f}' I 0:2.‘11 p. ’ .
—C o—1i U Green PL
T—INZ
CMP <l H2.1
(i |
Vs 1
MHG —{IM]
T4IN2

S7_counter-applic-01

Rashad Alkakkali EEE422 ADVANCED PLC Page 140

Tue.
PB1 |
I
t
et Fase | ™=
!
I
REDPL
P i i :
L . '
GREEN !
PL !
! I | | 1
Lo . i
T I I
PB2 E | L
(l'ssﬁt) 1 | I 1

Rashad Alkakkali EEE422 ADVANCED PLC Page 141

PART EIGHT

PROGRAMMING COUNTERS - lI

Rashad Alkakkali EEE422 ADVANCED PLC Page 142

PROGRAMMING COUNTERS Il

One-Shot, or Transitional, Contact Program:

The transitional or one shot contact program can be used to automatically clear
or reset a counter. The program is designed to generate an output pulse that,
when triggered, goes on for the duration of one program scan and then goes off.

Internal One-Shot

K Input Relay Contact Output

] P /r \ >—
—oto-4

Tngger

Input

A Internal
Relay Coil

The transitional or one shot contact program can be used to automatically clear
or reset a counter. The program is designed to generate an output pulse that,
when triggered, goes on for the duration of one program scan and then goes off.

Internal Relay One-Shot
Contact Output

| '"“"A%& iy O

Trigger Input

v
(O

Internal Relay Coil

Rashad Alkakkali EEE422 ADVANCED PLC Page 143

Types of Transitional Contacts:

Off-To-On Transitional Contact

e

Symbol

off ——
On-To-Off Transitional Contact

On

«— One —»

scan

Is programmed to provide a
one-shot pulse when the
referenced trigger signal makes

=

Symbol .

Off ——

One
scan

a negative (on-to-off) transition

Conveyor Motor Circuit That Uses a Programmed
One-Shot Reset Circuit:

Conveyor Motor

Start/Stop Station Button

Count Reset

Sequential Task:
The start button is pressed to
start the conveyor motor.

Cases move pass the proximity
switch and increment the
accumulated value.

After a count of 50, the conveyor
motor stops automatically and the
counters accumulated value is
reset to zero.

The conveyor motor can be stopped or started manually at anytime without loss

of the accumulated count.

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 144

Conveyor Motor Circuit That Uses a Programmed One-Shot
Reset Circuit:

Q2.0
Inpuis I1.2 Il1.1 " OV -
"START" "ETOR " MOTOR"
| | | | F |
11 11 L 1
L1 02.0
STOP " DM —
MZ.0 MOTOR" Output
1A | . 1| P
I/{I 11
START 11.3 rl b
"PRON-SW" z oU 0:2/0
O-LO A e
I:1/2
R OV MWD
PROXIMITY 1
SWITCH M20.0 R OV BCD |- ..
—CO<JO—1L:1/3
MZ.0 M20.0
RESET | | { I
I1.4
"RESET-PE"
—0 O—ILid ||
CHP ==I M2-0
{7 |
MWG | IN]
S0 IN2

Rashad Alkakkali EEE422 ADVANCED PLC Page 145

Counter Cascading:

Note the use of cv_BCD

Tl z2
T2 5 00T M7] S_cuU
L1 5 ¢ — | | cu Q
S5TH 20M3 TV BI s oo
—E BCD — PV ©V_BCD MA]
) Il.1
Tl "reset
O S_0DT counter" —R
10 2
SSTH# 20M3 TV BI N BCDELIO
—E ECD
MR 10
el "counter "counter
BCD" 4 IH oUT —INT"
M20.0
g_cu
| | w o
s . CMP == M7
— —
oo BV M0
M7 1 "counter
| | R CW_BCD INT " —{IN]
) Il.1 Q0L —TNZ
reset
counter"
| |
Rashad Alkakkali EEE422 ADVANCED PLC Page 146

Down-Counter:

The down-counter output instruction will count down or decrement by 1 each time
the counted event occurs. Each time the down-count event occurs, the
accumulated value is decremented. Normally the down-counter is used in
conjunction with the up counter to form an up/down counter.

Simple down counter in simatic s7

I1.0
"counter |
input” S oD
} } ch 0]
Il1.2
"preset" 45 W M0
C# 1 2PV
Il-1 CV BCD - .-
"reset
counter" K

Q4.0
"preset
CME == reach"
{0 |
L l
M10
"cnunter_
INT" {INI
5 INZ2

S7_down_counter

Rashad Alkakkali EEE422 ADVANCED PLC Page 147

Up/Down Counter Timing Diagram:

L2
L1 Inputs i S_CUD LIGHT f“"’“t’
cu 0N
Count up Q L J LIGHT
3 O-PB1 PB2 © .
| | oV
n | I Count down |“P
S
—O0 O-PB2 iy CV_BCD
B3
| | R
+—30 O-PB3 3 Reset

|
1 2 18 4 5 6

| |
| |
On : :
Count up I I
Off | T T
| |
On : 1 2 3 /14 i
Count down | {
On] | |
Counter | 4 5 65 4 3 : :
iccumulated o 13 2 I
value or 1 :
count 0 | : ! 0
: | |
On :
Output I
Off T
: | |
On | |
Reset | | l
Off 1 :
! I

Rashad Alkakkali EEE422 ADVANCED PLC Page 148

Parking Garage Counter Program:

Please Take Ticket

» As a car enters, it triggers the up-counter output instruction and
increments the accumulated count by 1.

» As a car leaves, it triggers the down-counter output instruction and
decrements the accumulated count by 1.

» Since both the up- and down-counters have the same address, the
accumulated value will be the same in both.

» Whenever the accumulated value equals the preset value, the counter
output is energized to light up the Lot Full sign.

Parking Garage Counter Program:

I1.1

cl

"Enter-3W"

L1 Inputs §_CUD
[| cu 9
ENTER 11.2
T2 switcH EXIT-sw |op v |-
. 4R
EXIT oo
1o~ switcH Lov ev nep Leepr
J_ 11.0
T—O O— RESET R,
BCD_|
FMO
MG
"counter_
BCD " —{1H OUT -MW]0
Q2.0 L2
"LOT-FULL- \C'UtDUt,
CMP ==| LIG;H\I‘ " | LOT EULL
L |
LGHT i
MWl —IN]
N IH2
Rashad Alkakkali EEE422 ADVANCED PLC Page 149

Counting Beyond the Maximum Count

I1.0 cl
FBI 5_cuU BCD_|
| cu Q EN Evo
.5 Vo= MG — IH oUT |-IMW] 2
. —{FV CWV BCD [—DMWE
_ 2.0
1.1 e "C]-DONE"
S { —
11.0 02.0 c2 MA10 Il
PBE] C1-DONE 5 cu oog | T2
| | | | tu
.3 oV oL 02.1
— "C2-DONE"
PV v BCD |mwh CMP == () |
I1.1 M1 2| TN
"PEL" R
20z
BCD_|
ENg 92.0 92.1 02.7
"¢]-DONE" "C2-DONE" "LIGHT"
MWE {IN OUT | -MWIO | | e
11 1 T L |
Rashad Alkakkali EEE422 ADVANCED PLC Page 150

Counter Speed:

The maximum speed of transitions you can count is determined by your
program's scan time. Any counter input signal must be fixed for one scan time to

be counted reliably.

If the input changes faster than
one scan period, the count
value will become unreliable
because' counts will be missed.
When this is the case you need
to use a hiah-speed counter.

Combining Counter and Timer Functions:

Complete stack

Metal plates

Rashad Alkakkali

EEE422 ADVANCED PLC

When the start button is pressed,
conveyor M1 begins running.

After 15 plates have been stacked,
conveyor M1 stops and conveyor M2
begins running.

After conveyor M2 has been operated
for 5 s, it stops and the sequence is
repeated automatically.

The done bit of the timer resets the
timer and counter, and provides a
momentary pulse to Automatic
Stacking Process automatically
restart conveyor.

Page 151

Automatic Stacking Program:

Tl
"M2 run
02.1 time" M1.0 02.1
Rl 5 0DTS "] -DONE" "M
| o | P |
1 11 L) 1
SST#55 TV BI ...
M].2 |
"t]l-reset" Ml4.0 BCD ... "M2 run Ml.1
|l (P} R time" MI3.0 "C]-RESET"
b 1| = P |
11 L=k i} 1
I1.2 Il-1
"PHEOTO- cl “sTOP "
SEMIOR"
5_CuU |/|
| v e ——— Vi
. s oV ... Tl
"M2 run M].2
. PV CV_BCD |-MWg time" "t]-reset"
M1 | | {) I
"] -RESET" <R 11.1
"aTOP"
|
BCD| e
EN END
Il.1 I1.0 Q2.1 Q2.0
MWE - IN oUT |MWI10 "STOPR " "START" M2 DL
| | | | | 7} P |
11 11 171 LS 1
M0 92.0 92.1
CNP o=l cl{—r\:\om | np] N
L) I | | 1}
MA10 —{IN] T]
"MZ run
15 JIN2 time"
||
11

Rashad Alkakkali EEE422 ADVANCED PLC Page 152

Product Flow Rate Program:

This program is designed to indicate how many

parts per minute pass a given process point.

When the start switch is closed, both the counter
and timer are enabled.

The counter is pulsed for each part passing the

Sensor.

Sensor I

The counting begins and the timer starts timing through its 1-min time interval.

At the end of 1 min, the timer done bit causes the counter rung to go false.
Sensor pulses continue but do not affect the PLC counter. The number of parts
for the past minutes is represented by the accumulated value of the counter.

Product Flow Rate Program:

I1.0 Tl
L1 Inpuls "st&llrils—sw" S_ODTQ
off On "
IS5TH IM—TV BI
—c‘é— START SW M1.0 R BCD
I1.0 I1.1 cl
"start-sw" Tl "sensor" 5 cu
|| L/} || U
—3 oV =
-@— SENSOR
— PV CW _BCD -
Ml.2—ER
I1.0
"start-sw" M. 2
11 {}
Rashad Alkakkali EEE422 ADVANCED PLC Page 153

Example:
e Write a program to operate a light according to the following sequence:

— A momentary switch is pressed to start the sequence -The light is
switched on and remains on for 2 s.

— The light is then switched off and remains off for 2 s -A counter is
incremented by 1 after this sequence.

— The sequence then repeats for a total of 4 counts.

— After the fourth count, the sequence will stop and the counter will
be reset to zero.

Rashad Alkakkali EEE422 ADVANCED PLC Page 154

PART NINE

PROGRAM CONTROL INSTRUCTION

Rashad Alkakkali EEE422 ADVANCED PLC Page 155

PROGRAM CONTROL INSTRUCTIONS

e Program control instructions are
used to alter the program scan
from its normal sequence.

e Sometimes referred to as
override scan instructions, they
provide a means of executing
sections of the control logic if
certain conditions are met.

e They allow for greater program
flexibility and greater efficiency in
the program scan.

scan

Program l

Jum

Program not scanned

e Jump destination

Program scan
continued

Hardwired Master Control Relay Circuit:

L1 L2
o C
MASTER START
MASTER STOP ~
& Q| O MCR r:l
oJo N}?R I @
|
—_— MCR MCR _—_
O—OJ_DE Iﬁ @—-
CR4 l—O O_l oL
: | —()—H
CR1
CR2 M1 oL
| | |
' \Il\ | | {""2)_\“_'
Rashad Alkakkali EEE422 ADVANCED PLC Page 156

MCR Instruction:

e The master control reset (MCR) instruction can be programmed to control an

entire circuit or to control only selected rungs of a circuit.

e When the MCR instruction is false, or de-energized, all non-retentive (non-
latched) rungs below the MCR will be de-energized even if the programmed

logic for each rung is true.
e All retentive rungs will remain in their last state.

e The MCR instruction establishes a zone in the user program in which all non-

retentive outputs can be turned off simultaneously.

e Therefore, retentive instructions should not normally be placed within an
MCR zone because the MCR zone maintains retentive instructions in the last

active state when the instruction goes false.

In SIMATIC S7, the following instructions have to be in the sequence below. You

may have more than one MCR zone.
(MCRA) Master Control Relay Activate
(MCR<) Master Control Relay On
(MCR>) Master Control Relay Off
(MCRD) Master Control Relay Deactivate

{MCRA)

| | (McR<)
10.3 Q40

|1 o™
(B =P

104 Q41
-

[S

{McR=)

{MCRD)

The instruction —{MCRA) activates the function MCR up to the next MCRD. The instructions
between —(MCR<=) and —(MCR=) are processed dependent on the MA bit (here | 0.0):

* [fthe signal state of input | 0.0 = 1, the following conditions can exist:
— Qutput Q4.0 is set to 1 if the signal state of input 1 0.3 is 1.
— Qutput Q 4.0 remains unchanged if the signal state of input 1 0.3 is 0.
— The signal state of input 1 0.4 is assigned to output O 4.1.
s [fthe signal state of input | 0.0 = 0, the following conditions exist:
— Qutput Q 4.0 remains unchanged regardless of the signal state of input 1 0.3
— Qutput @ 4.1 is 0 regardless of the signal state of input 1 0.4

Status Word Bits

BR CCH cco ov as OR STA RLO FC
Write — -

Rashad Alkakkali EEE422 ADVANCED PLC

Page 157

MCR functionality is activated by the MCRA rung. It is then possible to create up
to eight nested MCR zones. In the example above there is only one MCR zone.

L1 Inputs

+—0 O— ON/OFF

+—olo—sror

—0 O—START

(crn)|

I1.2 g2.0

o
H
[=]
m
- =

I1.3
"LEVEL-
SWITCHE"

{ MCR< }— Outputs L2

A

When MCR

is de-energized,
all nonretentive
\ / outputs

A

de-energize.
92.1
"PL1" PL1 _O

' LEVEL | O—
SWITCH
I1.4 02.2
"L5]" "SOL"
e |
I1.5 02.2
"L532 "SOL"
rs O Q L82 I I (R)—|
{ MCR> }—]
(mcrD |

{5 — SOL—ONP—U*‘(— When MCR

is de-energized,
all retentive
outputs remain
in last state.

MCR Instruction Programmed To Control a Fenced Zone:

The Master Control Reset Activate (MCRA) and
Master Control Reset Deactivate (MCRD)

instruction are used in pairs to disable or enable —
a zone within a ladder program and has no
address. You program the first zone (MCR<)
with input instructions in the rung and the ending Feiived
the zone by (MCR>) without any other Zone
instructions in the rung.

.+

(MCRA)}—
— —————(MCR<H

{ MCR> H

(MCRD)—

Rashad Alkakkali EEE422 ADVANCED PLC

Page 158

MCR Zone True

ACTIVE
L1 In
i {mcea
Input A
I1.0
—C—T—nput A HMCR= —|
Input 8 Output A
I1.1 Q1.1
-b—u_l_n—lrpus |
Input C T1
L I1.z s ooT QL.z
0 O=—Imput C L - .y |
1 e 0 L) |
SET§108 —{TV BI
._@_mmg
... —Em ECD
Input D Oulpul B+
I1.3 QL. 3
HeCo>-ma :—
Anput E Output 5-
I1.4 QL. 3
| | 2 —
{ MoRs —]
{ mcEp

Start fance

Output A—.—ﬂ
Output B-.—«

End fanca

Try to use both retentive and non-retentive timers to see the effect of

controlled zone.

Rashad Alkakkali EEE422 ADVANCED PLC

Page 159

MCR Zone False Ladder loglc program
L1 Inputs p
{mona
Input A
I1.0 Star fence
$—0—T—Input A | | {mon<
Input 8 Output 4 Outputs L2
I1.1 nl.1
-—n.l.n—lrputs {} |
Input C T1 qu:n.rlﬁ;r
p—0 O—Input C I|l]2 s_ooT erl\. z |
11 g a L) |
S5T#105 —{ TV EI|-... Output B'._"
-—@-lnmo
...k BCD ...
Input O Qutput B
I1.3 o1z
--@-|ms | | 2 —]
Anput £ Oulput B-
IT1. 4 o1z
| | n—]
{mcps
End fancea
{morm
Rashad Alkakkali EEE422 ADVANCED PLC Page 160

Jump Instruction '(”V'P}

As in computer programming, it is sometimes desirable to be able to jump over
certain program instructions. The jump instruction (JMP) is an output instruction
used for this purpose. The advantages to the jump instruction include:
e The ability to reduce the processor scans time by jumping over
instructions not pertinent to the machines operation at that instant.
e The PLC can hold more than one program and scan only the program
appropriate to operator requirements
e Sections of a program can be jumped when a production fault occurs.

Jump Operation:

By using the jump instruction, you can branch or skip to different portions of a
program and freeze all affected outputs in their last state.

Program rungs

l .
Program

scan

Jumps are normally allowed
Jump — in scan both the forward and
backward directions.

Program not scanned .
Jumping over counters and

timers will stop them from
being incremented.

— Jump destination

continued

Program scan l

Description
With Siemens PLC, You can use logic control instructions in all logic blocks:
organization blocks (OBs), function blocks (FBs), and functions (FCs).
There are logic control instructions to perform the following functions:
---(JMP)--- Unconditional Jump
---(JMP)--- Conditional Jump
---(JMPN)--- Jump-If-Not

Rashad Alkakkali EEE422 ADVANCED PLC Page 161

Label as Address

The address of a Jump instruction is a label. A label consists of a maximum of
four characters. The first character must be a letter of the alphabet; the other
characters can be letters or numbers (for example, SEG3). The jump label
indicates the destination to which you want the program to jump.

Label as Destination

The destination label must be at the beginning of a network. You enter the
destination label at the beginning of the network by selecting LABEL from the
ladder logic browser. An empty box appears. In the box, you type the name of
the label.

Pletwork 1
SEG3

Netwark 2
@ 4.0
01 — =]

Pletwork X

Gz dn

104 — r |

LABEL Label

Symbol

}— LABEL

Description

LABEL is the identifier for the destination of a jump instruction.

The first character must be a letter of the alphabet; the other characters can be
letters or numbers (for example, CAS1).

A jump label (LABEL) must exist for every ---(JMP) or ---(JIMPN).

Rashad Alkakkali EEE422 ADVANCED PLC Page 162

Example

Example
Metwork 1

(0.0 O AS

| {IMPY)

M etwark 2 0.3 4.0

| || R
Metwork 3

CAS
0.4 241

| | | R
If 10.0 ="1", the jump to label CAS1 is executed. Because of the jump, the
instruction to reset output Q4.0 is not executed even if there is a logic "1" at 10.3.

---(JMP)--- Unconditional Jump

Symbol

<label name>

—--(JMP)

Description

---(JMP) (jump within the block when 1) functions as an absolute jump when
there is no other Ladder element between the left-hand power rail and the
instruction (see example).

A destination (LABEL) must also exist for every ---(JMP).

All instructions between the jump instruction and the label are not executed.

Status word

BR CC1 CCO OV OS OR STA RLO /FC
writes: - - - - - - - - -

Rashad Alkakkali EEE422 ADVANCED PLC Page 163

Example

Metwork 1
‘ CAST
— {IMP)
Metwork
CAS1
| 0.4 24
|| LR

The jump is always executed and the instructions between the jump instruction
and the jump label are missed out.

---(JMP)--- Conditional Jump
Symbol

<label name>
—--(JMP)

Description

---(JMP) (jump within the block when 1) functions as a conditional jump when
the RLO of the previous logic operation is "1".

A destination (LABEL) must also exist for every ---(JMP).

All instructions between the jump instruction and the label are not executed.

If a conditional jump is not executed, the RLO changes to "1" after the jump
instruction.

Status word

BR CC1 CCO OV O0OS OR STA RLO [FC
writes: - - - - - 0 1 1 0

Rashad Alkakkali EEE422 ADVANCED PLC Page 164

Example
M etwork 1

A

0.0
I
[

{JMP

@40
TR

Metwork 2 |'|:'|3
I N
Metwork 3

CAS

104
| |

4.1

R

If 10.0 = "1", the jump to label CAS1 is executed. Because of the jump, the
instruction to reset output Q4.0 is not executed even if there is a logic "1" at 10.3.

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 165

Jump-To-Label from Two Locations:

Ladder logic program
Input A CASI
- {JMP)
Input B " Output A
1L * I'd \
J L .o \ 4
T5
Input C S _ODT
3 E 3 Q
SETIMER2S —|TV Bl|—
—r BCD—
Input D CASI
) —(JMP)
Input £ Output C
< B - - e 3
" 8 = Y e \ 7
H cast — e
|npu\t F Output D
1k & 2D

Avoid jumping backwards in the program too many times as this may increase
the scan beyond the maximum allowable time. The processor has a watchdog
timer that sets the maximum time for a total program scan. If this time is
exceeded, the processor will indicate a fault and shut down.

You should never jump into an MCR zone. Instructions that are programmed
within the MCR zone starting at the LBL instruction and ending at the end MCR
instruction will always be evaluated as though the MCR zone is true, without
consideration to the state of the start MCR instruction.

Rashad Alkakkali EEE422 ADVANCED PLC Page 166

CALL Subroutine:

Another valuable tool in PLC programming is to be able to escape from the main
program and go to a program subroutine to perform certain functions and then
return to the main program.

PROGRAM NETWORKS FC 10 L
¢ SUBROUTINE AREA
FC10 ——
B T — | S—r=
L
CONDITIONAL RETURN

NO NEED FOR RETURN <4RET} IF UNCODITIONAL
RETURN IS DESIRED (SIEMENS)

SIEMENS Subroutine-Related Instructions:
FC11

—{(CALL}

The CALL instruction causes the scan to jump to the program file designated in
the instruction. It is the only parameter entered in the instruction.

When rung conditions are true for this output instruction, it causes the processor
to jJump to the targeted subroutine file.

Rashad Alkakkali EEE422 ADVANCED PLC Page 167

(0.0
| |
[

{RET

The RET instruction is an output instruction that marks the end of the subroutine
file. It causes the scan to return to the main program at the instruction following
the JSR instruction where it exited the program.

The scan returns from the end of the file if there is no RET instruction. The rung
containing the RET instruction may be conditional if this rung precedes the end of
the subroutine. In this way, the processor omits the balance of a subroutine only
if its rung condition is true.

Flashing Pilot Light Subroutine:

If the weight on the conveyor exceeds a preset value, the solenoid is de-
energized and the alarm light will begin flashing.

If the weight on the conveyor exceeds a preset value, the solenoid is de-
energized and the alarm light will begin flashing.

Process

When the weight sensor switch
closes, the JSR is activated and the
processor scan jumps to the
subroutine area. The subroutine is
continually scanned and the light
flashes.

" When the sensor switch opens, the
processor will no longer scan the
subroutine area and will return to the on
state.

Rashad Alkakkali EEE422 ADVANCED PLC Page 168

Flashing Pilot Light Subroutine Program:

I174_3
Inputs "sensor" FClo
L1 . | | { EALL }— Outputs
Ilz4_3 ‘0L24.0
. . FLASHMG ¢ LE2®-!
) OFF/ON Zens0r _rr PL1
W O N A Mnmn—@—
,
11
"Flash-1" o
"—ﬂ.JJ}--STGF Vo x o b i
r— F- - f]
FN ,* F'LI—.—<
I124.2 % I124.1 - QlZ4_1 , “
n n 1 n n * n n
) . : START 51I:alrt 1“ sltnl:up 'f; HE'I".IIIR
. v LI Iy L)
.’I- ‘I.i
0lz4_1 Y - 8oL —o'\ O——
$- SENSOR | "MOTOR" o
et |1 -
11 PR
S
I174a. 0 7 TIl34_ 3 QLz4_7
"fof-:-n""r' "sen\s‘-:-r" "s0L"
] 1 -] L I3
| I 11 ‘i. LS
& L}
- 1.
FCl0 - Title: '-._.
T1 '*.1
Tz "Flash-1"
"Flash-z" S 0OoT
11 g Q
S5TH#1=
SETH13 — TV BI —...
E5THIm=
—-B BCD | —. ..
Tz
Tl "Flash-&2"
"Flazh-1" [~ "“sgor ™
| | E Qprmmmmmm oo
sS6TH#1= ! |
BETH13 — TV Bl —...
: | E5TH2 T0m=
- BLD —. ..
Rashad Alkakkali EEE422 ADVANCED PLC Page 169

Fault Routine:

PLC controllers allow you to design a subroutine file as a fault routine. If used, it
determines how the processor responds to a programming error.

There are two kinds of major faults that result in a processor fault: recoverable
and non-recoverable faults.

When there is a fault routine, and the fault is recoverable, the fault routine is
executed.

If the fault is non-recoverable, the fault routine is scanned once and shuts down.

Either way, the fault routine allows for an orderly shutdown.

Rashad Alkakkali EEE422 ADVANCED PLC Page 170

PART TEN

FPRCING EXTERNAL 10 ADDRESSES

Rashad Alkakkali EEE422 ADVANCED PLC Page 171

Forcing External 10 Addresses

Forcing External 10 Addresses:

The forcing capability of a PLC allows the user to turn an external input or output
"on" or "off" from the keyboard of the programmer.

OUTFUT]
I - =
. - 10
— —C
L) - - | LU
- o . _|C
- - Program _1©
1)]
-JIL- w
!.'L Ff)fl.'.t i False Output
Forced
- Ilonll

Forcing Inputs:

Overriding of physical inputs on conventional relay control systems can be
accomplished by installing hardwire jumpers. With PLC control this is not
necessary as the input data table values can be forced to an "on" or "off" state.

Forcing inputs manipulates the input image table file bits and thus affects all
areas of the program that uses those bits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 172

Forcing an Input Address On:

Input module
| Input image table
Z T ———— —
off 1:1/3 ||
o— = e -~
—é- <
Field input & [?l S |
device o
> T
Actual state of input / e
device (0) ignored
Programming terminal
forces the state of
input 1:1/3 "on" (1)
Programming terminal
Ladder Logic Program
L1 Input Outputs
1:1/3 0:2/5
0:2/5

Force> ON

=\
0:2/5 0:2/6 0:2/6 —@—4
b

Rashad Alkakkali EEE422 ADVANCED PLC Page 173

Forcing Outputs:

Forcing outputs affects only the addressed output terminal. When we force an
output address; we are forcing only the output terminal to an on or off state.

The output image table file bits are unaffected; therefore, your program will be
unaffected. The forcing of outputs is done just before the output image table file

is updated.

By forcing outputs "off" you can prevent the controller from energizing those
outputs, even though the ladder logic, which normally controls them, may be true.

Forcing an Output Address On:

Output image table

Output module

forces output 0:2/5 "on"

Programming terminal

Status of bit Bl On

|- 0:2/5 remains—- : ’\,

at llO" off
________________ 0:2/6 m
o/

Field output
devices
Programming terminal

Rashad Alkakkali EEE422 ADVANCED PLC

Page 174

Forcing an Output Address On:

Ladder Logic Program

L1 Input Outputs
Ii“l; 0:2/5 oN L2
o3 $— {3 —
Force> ON
0:2/5 0:2/6 0:2/6 —{ : —¢
& | { —se
21 4l ./

Forcing outputs affects only the addressed output terminal.

Using Forcing Functions:
The Force functions can be applied when the processor is in the run mode.

An understanding of the potential effect that forcing given inputs or outputs will
have on the machine operation is essential to avoid possible personal injury and
equipment damage.

Most programming terminals provide some visible means of alerting
the user that a force is in effect.

Rashad Alkakkali EEE422 ADVANCED PLC Page 175

SIEMENS PLC

Force in/Force out

Step 1: Enter program

OBl : "Main Program Sweep (Cycle)"
Netwmork 1: Title:

fh |
[L 1

| Il1z4.0 QlzE.1
| |

A : Title:

| Qlzt. 1 QlzE. &

| | f |
| [L 1

Step 2: Download program and monitor ON
Step 3: To, Activate forcing on: GOTO PLC — DISPLAY FORCE VALUES

&Lhu.ﬂi IL/FBL - | @0B1 -- "Cycle bxecution™ -- 3119086 3-M IVSIMA TIC 300 Station\CPU3T4C-2 DP{1)L...V
¥ File Edit Insert Debug Wiew Options Window Help

O = 2~ : Imj=y

ntents 0f: 'Environment’Inter face'

|NalTl=_-
P Messages... - |TEMP

B Mew network
= @ it logic Display Force Yalues Chrl+Alt+F

A |- MonitorModify Variables

- (Cycle) "
A=l Module Information. .. Chrl+D
Il -~ |WOT|--

< B Operating Made. .. Chrl+1
Clear/Reset...

- Set Time of D Q1zs.1

< (R} et Time of Day... 25

<1 --(5) C s
FIrs
T sr
<3 (M) Hetwwork 2 : Title:
<1 --{F)--
<3 --[SAVE) QlzE. 1 QlzE. &

] neG e SR
Tl pos

+-[£] Comparator

Rashad Alkakkali EEE422 ADVANCED PLC Page 176

Step 4: Enter values in table for address and force value.

Table Edit Insert PLC Variable “iew Options indow Help

#| D@ S| %[B[0 x| 2] A 0 e e el 7

X

H

Al pddress Symbol | Display format | Force value
BooL true

Step 5: GOTO VARIABLE and press FORCE: Observe Output

X SIMATIC Manager - 31190863-MT
File Edit Insert PLC View Options Window Help
D 8% & B b [2 % 2 % 5 3 & |[<Nofile> ST @ BEM
2131190863-MT -- C:\Proaram Filas\Siemans\StanTic7nrail311908-3 =E
= Ep NG0BEIMT
= @0 SIMATIC 300 Table Edit Insert PLC EGEESN Yiew Options Window Help
Cirl+R.

CtrkF?
todify CtikFg

Update Monitor alues 7
Activate Modify Values F9

Miadfy Address ta 1 Crrl+1
Madify Address bo 0 Cirl+0)

Enable Peripherl Dutputs Shift+Fa

Display Farce Yalues Alt+F2
Force

Stop Forcing

Force Yalue as Comment 3 |

Activates the current Force variables in the module. FRCE T RUMIIN abs <5.2 Y

Press F1 to get Help. [PC Adapter(Auta)
iy Start. 2 € 6 | K smarncm: 3., 3 i unkitled - Pairk i va EN @)18

Rashad Alkakkali EEE422 ADVANCED PLC Page 177

Step 6: Observe program, because of forcing input, both outputs are HIGH

OEl "Main Program Sweep

[Cycle)"

Ilz4.0 Qlz5.1
1 L I
11 LS
Network 2 : Title:
| Qlz5.1 Q15 &
1 L iy
LS

Step 7: To UNDO forcing, press STOP FORCING, both OUTPUTS will be low

L]
Table Edit Insert PLC Wiew Options Window Help
Tri Chrl+HR
#| D)@ & r o el] e
Monikor Chr4+F7
A | address| Symb pdate Manitor Values F7
1_ _IF| 1240 Ackivate Modify Walues F2
2 Modify Address to 1 Chrl+1
3 Maodify Address ta 0 Chrl4H0
Enable Peripheral Qukputs Shift+F9
Display Force Yalues Alk+F2
Farce
Stop Farcing
Force Yalue as Comment

Jeletes all activated force variables in the module,

FRCE 0 |RUNDI abs <5.2 |~

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 178

Step 7: To make forcing OFF, switch on outputs manually from inputs. Turn ON
the outputs and then in the variable table, enter the inputs and FORCE VALUE —
0, it will turn off the outputs.

‘able Edit Imsert PLC Yarisble Wiew Options Window Help ‘

| D|@|E| S| &|%|@[o] | x| | »| Spler| | 4|47 el

Address | Symbal| Dizplay format | Force value
| 1240 BOOL falze

|The last row is always empty and is used For insertion,

me of Last Update:19:25:52 B> RO ks <52 | 2

Rashad Alkakkali EEE422 ADVANCED PLC Page 179

Wiring of Stop Push Buttons:
The wiring of stop buttons is another important safety consideration. A stop
button is generally considered a safety function as well as an operating function.

As such, it should be wired using
a NC contact and programmed to

Always use a NC examine for an on condition.
button for a stop Using a NO contact programmed
button

to examine for an off condition
will produce the same logic,
NC Pushbutton however, this is not preferred and
is considered to be not as safe.

Normally open pushbutton stop configuration

Inputs Ladder logic program Output

Sto; ?Itarrt M
o—u_l_u- Stop ﬁl- JMI' { }- M _.(: HO,F‘L b
1 ==

NEVER use the NO button for a stop button.

If a NO button is used and the circuit between the
button and the input point were to be broken the PLC
logic control could never react to the stop command -
since the input would never be true.

NO Pushbutton

Rashad Alkakkali EEE422 ADVANCED PLC Page 180

PART ELEVEN

SHIFT & ROTATE INSTRUCTIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 181

11 Shift and Rotate Instructions

11.1 Shift Instructions

11.1.1 Overview of Shift Instructions

Description

You can use the Shift instructions to move the contents of input IN bit by bit to the
left or the right (see also CPU Registers). Shifting to the left multiplies the contents
of input IN by 2 to the power n (2 n); shifting to the right divides the contents of
input IN by 2 to the power n (2 n). For example, if you shift the binary equivalent of
the decimal value 3 to the left by 3 bits, you obtain the binary equivalent of the
decimal value 24 in the accumulator. If you shift the binary equivalent of the
decimal value 16 to the right by 2 bits, you obtain the binary equivalent of the
decimal value 4 in the accumulator.

The number that you supply for input parameter N indicates the number of bits by
which to shift. The bit places that are vacated by the Shift instruction are either
filled with zeros or with the signal state of the sign bit (a 0 stands for positive and a
1 stands for negative). The signal state of the bit that is shifted last is loaded into
the CC 1 bit of the status word. The CC 0 and OV bits of the status word are reset
to 0. You can use jump instructions to evaluate the CC 1 bit.

The following shift instructions are available:
+« SHR_| Shift Right Integer

« SHRE_DI Shift Right Double Integer

« SHL W Shift Left Word

« SHR_W Shift Right Word

« SHL DW 5hift Left Double Word

« SHR_DW 5hift Right Double Word

Rashad Alkakkali EEE422 ADVANCED PLC Page 182

11.1.2

SHR_I Shift Right Integer

Symbol
SHR_I

—{EN ENO—

—{IN OUT|—

— M
Parameter Diata Type Memaory Area Description
EN S00L L O M, LD Enable input
ENO 200U LG, M LD Enable output
IM INT LG, M, LD Walue to shift
I WORD Q. M, L, D Murnber of bit positions to shift
ouT INT LG, M LD Result of shift insfruclion

Description

SHE_I (3hift Right Integer) iz activated by a logic "1" at the Enable (EM) Input. The
SHE_I instruction iz used to shift bits 0 to 15 of input 1N bit by bit to the right. Bits
16 to 31 are not affected. The input N apecifies the number of kit by which to zhift.
if M iz larger than 16, the command actz as if M wers equal to 16. The bit positions
shifted in from the left to fill vacated bit positions are assigned the logic state of bit
15 (zign bit for the integer). This means thess bit postions are aszsigned "0° if the
integer iz positive and "1 if the integer iz negative. The result of the =hift instruction
can be scanned at output OUT. The CC O kit and the OV bit are =2t 1o "0" by
SHE_Iif M iz not equal to 0.

EMNC has the same signal state as EM.

15... 8T ...

IN l[tot1of1111|oooof1010

M Si;;"u bi 4 places —*

— - - |

o 1111|110 0 11 10000] 0o
L — —
The vacated places are These four bits
filled with the signal state are lost.
of the sign bit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 183

Status word

BR CC1 [CCo [ow 05 R 5TA RLO IFC
Wrifes: x x x X X X X 1
Example
0.0 SHRE_| 24.0
- ——EN ENO——{5)
R 0— I OUT —NMw4
MW2—HM
The SHE_| box iz activated by logic ™17 at 10,0, MWD is lcadsd and shifted right by
the number of bits specified with MW2. The result iz written to MW4. 4.0 is =2t
Rashad Alkakkali EEE422 ADVANCED PLC Page 184

11.1.3

SHR_DI Shift Right Double Integer

Symbaol
SHE_DI
EM ENO
—IN OuUT
—1MN
Parameter Data Type Memory Area Description
EM SOOIl Q. ML D Enable input
EMND SO0L QML D Enable output
M DINT QML D Walue to shift
[+ WORD S, M, LD Murnber of bit positions to shift
oUT CIMT QM LD Fesuli of shift instruction
Description

SHR_DI {Shift Right Douixle Integer) iz activated by a legic "1" at the Enable (EN)
Input. The SHE_DI instruction iz used to shift bitz © to 21 of input 1M Bit Iy bit 1o the
right. The input N specifies the numier of bitz by which o shift. If M iz larger than
32, the command acts as if N were egual to 32. The bit positions shifted in from the
|eft to fill vacated bit positions ars assigned the logic state of bit 31 {sign bit for the
double integer). Thiz means these bit positions are azsigned "0" if the integer is
poeitive and "1" if the integer is negative. The result of the shift instruction can ke
ascanned at output OUT. The CC 0 bit and the OV bit are set to "0" by SHE_DI if M

iz mot equal o 0.

ENC has the same signal state az EMN.

Status word

BR CC1 |[CCO |Ov 05 OR STA RLO fFC
writes: x x x X X X X 1
Example
10.0 SHE_DI 4.0
' —EM ENO 4{_5]
MDO IM ouT MO0
hvVd—
The SHR_DI box i= activated by logic "1" at 10.0. MDD iz loaded and shifted right by
the number of bits apecifisd with MW4. The result iz written to MD10. Q4.0 iz set
Rashad Alkakkali EEE422 ADVANCED PLC Page 185

11.1.4

Symbol

SHL_W Shift Left Word

SHL_W
EM EMNO
— I OuT
—H
Parameter Data Type Memory Area Description
EM 2001 LQ ML D Enable input
EMO 2001 LQ ML D Enable output
IM WORD LG ML D Walue fo shift
I WORD LG M, L D Mumber of bit positions fo shift
ouUT WORD LQ, M LD Result of shift insiruction

Description

SHL_W (Shift Left Word) is actvated by a logic "1" af the Enable (EM) Input. The
SHL_W insfruction is used fo shift bits 0 to 15 of input IM bit by bit to the left. Bits
16 to 31 are not affected. The input M specifies the number of bite by which to ghift.
if M iz larger than 16, the command writes a "0" at owtput OUT and sets the bits
CC 0and OV in the status word to "0". M zeros are also shifted in from the right to
fill vacated bit positions. The result of the shift insfruction can be scanned at output
CUT. The OC 0 kit and the OV Lit are zet to "0" by SHL_W if M iz not egual 1o 0.

ENC has the same signal state as EM.

15... L8 T .0
IM Ooo0oan I 1111|0121 |0101
o ’_J,-*"f *— § places ’
-

,_ac’:__ a
oUT 00001111017]j0101)0100 (0000

L .- - o, -

These six bits The vacated places

are lost. ara filled with zeros.

Status word

ER CC1 [CCo [OV 05 R STA RLO IFC

Rashad Alkakkali EEE422 ADVANCED PLC Page 186

Example

| | EN ENO—(5)

MIWO—] IN OUT — M4
MW2Z— N

| 0.0 SHL_W 24.0

The SHL_W box iz activated by logic "1" at 10.0. MWD iz loaded and shifted left Ly
the number of bits epecified with MW2. The result iz written to MW4. QL0 is a=t.

Rashad Alkakkali EEE422 ADVANCED PLC Page 187

11.1.5

Symbol
SHR_W
—EN ENOC[—
—IH OUT[—
—{H
Parameter Data Type Memory Area Description
EN 2001 .G, ML D Enable input
ENOD 500L .G, M, LD Enable output
IM WORD .G, ML D ‘Walue fo shift
i WORD L ML D Mumber of bif positions fo shifi
oUT WORD Q. M. LD Fesuli word of shift instruction
Description

SHR_W Shift Right Word

SHR_W (Shift Right Word) is activated by a logic "1" at the Enakble (EN) Input. The
SHE_W instruction iz used to shift itz 0 fo 15 of input [N Bit by bit fo the right. Bits
16 10 31 arz not affected. The input M 2pecifies the number of kits by which to shift.
If M iz larger than 16, the command writes a "0" at output OUT and s2ts the bitzs
CC Dand OV in the status word to "0". M zercs are also shifted in from the lefi {o
fill vacated Lit positions. The result of the shift insfruction can be scannad at output
OUT. The CC 0 kit and the OW kit are 2et to "07 by SHE_WIf N iz not equal to 0.

EMNO has the same signal siale az EM.

Status word

BR CC1 | CCD oW 05 R 5TA RLC IFC
WTTEs: X X X X X X X 1
Example
| 0.0 SHR_W Q 4:D
, I EN ENO—(57
R O— 1M OUT | —NMW4
MW2— N
The SHE_W box iz activated by logic "1" at 10.0. MWD iz loaded and shifted right
by the number of bite specified with MW2. The result is written to MWL, 040 iz sefl.
Rashad Alkakkali EEE422 ADVANCED PLC Page 188

11.1.6

SHL_DW Shift Left Double Word

Symbol
SHL_DW
—EN ENOC
—Id OUT
— N
Parameter Data Type Memory Area Description
EN SCOL LG M LD Enable input
ENO 300U .G ML D Enable output
IM JWORD LG M LD ‘alue o shift
i WORD L M. LD Murnber of bit positions fo shift
QU DWORD LG, M, LD RFesult double word of shift
nistruciion
Description

SHL_DW (Shift Left Double Word) iz activated by a logic "1" at the Enable (EM)
Input. The SHL_DW instruction iz uzed to shift bits 0to 21 of input 1IN bit by bit to
the l=ft. The input M 2pecifies the number of bits ey which to shift. If M i larger than
32, the command writez a "0" at output OUT and zets the bites CC 0 and OV in the
status word 1o "0". N zeros are also shifted in from the right to fill vacated bit
pogitions. The result doukble word of the shift instruction can be scanned at cutput
CUT. The CC 0 kit and the OV bit ars set to 07 by SHL_DWW I M iz not equal to 0.

ENC has the same signal state as EN.

Status word

BR CC1 | D OV 05 R 5TA RLO IFC
WTites: ® x x X - ® X ® i
Example
10.0 SHL_Dw ﬂ 4.0
{ ———EN ENO—5)
MOD— IM OUT —mMD10
Mvd— M
The SHL_DW box iz activatad by logic "1" at 10.0. MDO is lcaded and shified left by
the number of bits 2pecifiesd with MVW4. The result iz written to MD10. Q4.0 s st
Rashad Alkakkali EEE422 ADVANCED PLC Page 189

11.1.7

Symbol

SHE_DW Shift Right Double Word

SHE_DW
EMN ENG
— I OUT
— M
Parameter Data Type Memaory Area Description
EN 2001 LG, M, LD Enable input
ENO 2001 LG ML D Enable output
IM DWORD LG M LD Walue fo shift
I WORD LG, M LD Murmnber of bit positions fo shift
ouT OWORD LG, M LD Rezsult double word of shitt

nistruction

Description

SHE_DW (Shift Right Double Wiord) is activated by a logic "1" at the Enable (EN)
Input. The SHRE_DW instruction is used to ehift bits 0 to 31 of input 1N bit by bit to
the right. The input M specifies the number of bits by which to shift. IF N is larger

than 32, the command writes a "0" at output OUT and 2=ts the bits CC 0 and OV
in the status word o "0". M zeros are also shifted in from the lef to fill vacated bit
pozitions. The result double word of the shift instruction can be scanned at cutput
CUT. The ©C 0 bit and the O% kit are zet to "07 by SHE_DW if N is not equal to 0.

EMND haz the same signal state az EM.

3. .16 15.. .0
IN [1111]1111{o101orotiotofiosafiitif1111]s
M \ 3 places ——=
Y
out [oooift111]11sofrotofior1foto1fotor]rire] 111]
— 4 -+ 4
The vacated places These three
are filled with zeros. bits are lost.
Status word
BR _|cc1 |cco |ov |os |or [sTA |RLO|iFC
writes: [x b = £ X £ £ 1

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 190

Example

| 10.0 SHR_DW 040

, | EN ENOF—5)

MDO— IM QOUT —MD10
MWd— N

The SHRE_DW box is activated by logic ™17 at 10.0. MDO is loaded and shifted right
by the number of bits specified with MW4. The result is written to MD10. 320 is
aet.

Rashad Alkakkali EEE422 ADVANCED PLC Page 191

11.2 Rotate Instructions

11.2.1 Overview of Rotate Instructions
Description
You can use the Rotats instructions to rofate the entire contents of input IM kit by
hit to the left or to the right. The vacated bit places are filled with the signal states
of the bitz that are shifted out of input 1M
The number that yvou supply for input parameter M specifies the number of bits by
which to rotate.
Depending on the instruction, rotation takes place via the CC 1 bit of the status
word. The C©C 0 bit of the status word iz reset to 0.
The following rotate instructions are available:
« ROL_DW Rotate Left Doulble Word
+ ROR_DW Rotate Right Doulle Word
11.2.2 ROL_DW Rotate Left Double Word
Symbaol
ROL_DW
—EN ENO—
— I OUT}—
M
Parameter Data Type Memory Area Description
EN S0L LG, M, LD Enable input
END SO0L L, M, LD Enable output
IM JWORD LG M, LD Value fo rotate
I WORD LG, M, LD Murnber of bit positions 1o rotate
ouT WORD LG M, LD Fesult double word of rotate
nstruciion
Rashad Alkakkali EEE422 ADVANCED PLC Page 192

Description

ROL_DW (Rotate Left Double Word) is activated by a logic "1" at the Enakls (EN)
Input. The ROL_DW instruction is used to rotate the enfire contents of input IM it
by kit to the lefi. The input M specifies the number of bitz by which fo rotate. If M iz
larger than 32, the double word IM is rotated by ((M-1) modulo 22)+1 positions. The
bit positions shifted in from the right are azsigned the logic states of the bitz which
wers rotated out to the left. The result doulle word of the rotate instruction can be

scanned at output OUT. The CC 0 bit and the OV hit are set to "0" by ROL_DW if
M iz not egual to 0.

EMD has the same signal state az EM.

3. REEED .0
IN «1111|oooof1oto|1010]oooof1111|oooo]a9s
| *+— 3 places
ouT | 111 [1oo00Joto1]o1o1foooofoti1]1000]o111]1911]
- i =
The signal states of the thres Thess thres
bits that are shifted out ars bits ars lost.
imsaried im the vacated places.

Status word

BR CC 1 JCC D |OV] OR 5TA RLO | JFC

WTiies: X x x % - % % % 1

Example

| 10.0 ROL_OW Q40

, I EN ENO——5)
MDO—{IN OUT|—MD10
MW4— N

The ROL_DWW box iz aclivated by logic "1" &t 10.0. MDD is lcaded and rotated to the
left by the number of bits specified with MW, The result is written to MD10. Q4.0 02
aet,

Rashad Alkakkali EEE422 ADVANCED PLC Page 193

11.2.3

Symbol

ROR_DW Rotate Right Double Word

ROR_DW
—EN EMNO—
—Id OUT—
—H
Parameter Data Type Memory Area Description
EM S0L L O, M, LD Enable input
EMD S0L L O, M, LD Enable output
I JWORD LG, M, LD ‘alue fo rotate
I WORD L ML D Murmber of bit positions 1o rotats
ouT OWORD LG, M, LD Result double word of rotate
nistruction

Description

ROR_DW (Rotate Right Double Word) iz activated by a logic "1" at the Enable

(EM} Input. The ROE_DW instruction is used to rotate the entire contents of input
IM it by kit to the right. The input M 2pecifies the number of bitz by which o rotats.
If M iz larger than 32, the double word IM is rotated by ((M-17 modulo 323+1
pozitionz. The bit positions shifted in from the left are azsigned the logic states of
the bits which were rotated out o the right. The result double word of the rotate
instruction can be scannad at output SUT. The TC 0 bit and the OV bit are 22t to
"0 by ROR_DW if M iz not equal to 0.

EMD haz the same signal state az EM.

3 0
IN 1010f1o10|oooof1111]oooo]1111]|o101{D101

[Iplaces —*

out [1ov11fotrot]otoofooosfi1iofoooi]t110]1o10] 101!
1 The signal states of the three |
bits that are shifted cut are -
nserted in the vacated places.
Rashad Alkakkali EEE422 ADVANCED PLC Page 194

Status word

BR

CCoA

CiCon

oW

D5

2R

STA

RLC

IFC

Example

10.0
|

M4 —

MO0—

ROR_DW

EM ENO
I ouT

M

240

—(3)

— MO0

The ROR_DWW box iz activated by logic "1" at 10.0. MDO i= lcaded and rotated to
the right by the numiber of bitz specified with MW4. The result iz written to MD10.

2120 s =at.

Rashad Alkakkali

EEE422 ADVANCED PLC

Page 195

Application s of shift operations

The program of figure 12-26 illustrates a spray-painting operation controlled by a
shift register. Each file bit location represents a station on the line, and the status
of the bit indicates whether or not a part is present at that station.

The bit address, | 1.0, detects whether a part has come on the line. The shift
register’s function is used to keep track of the items to be sprayed. A bit shift left
instruction is used to indicate a forward motion of the line. As the parts pass
along the production line, the shift register bit patterns represent the items on the
conveyor hangers to be painted. LS1 is used to detect the hanger and LS2
detects the part. The logic of this operation is such that when a part to be painted
and a part hanger occur together (indicated by the simultaneous operation of LS1
and LS2), a logic 1 is input into the shift register.

The logic 1 will cause the undercoat spray gun to operate, and five steps later,
when a 1 occurs in the shift register, the topcoat spray gun is operated. Limit
switch 3 counts the parts as they exit the oven. The count obtained by limit
switch 2 and limit switch 3 should be equal at the end of the spray-painting run
(PL1 is energized) and is an indication that the parts commencing the spray-
painting run equal the parts that have completed it. A logic O in the shift register
indicates that the conveyor has no parts on it to be sprayed, and it therefore
inhibits the operation of the spray guns.

\ /
Limit Oven 1 Oven 2 ‘
switch1\ [———| ——— .
] PL1
2 L L e 4
v _ 7
/ ¢ ! 2 3 7 8
g g T P 5 7 P ’
\ : / A A /_))_A # ’~' 4
T\ gl HE #
A Pl R L I}
Limit x Limit
switch 2 - switch 3
Undercoat :@'-" Topcoat Storage
spray gun 1 Reset spray gun 2 r
(a) Process

FIGURE 12-26 Shift register spray-painting application.

Rashad Alkakkali EEE422 ADVANCED PLC Page 196

The Solution using Siemens S7

O0El : "Main Program Sweep (Cycle)"
I1.0
nLgz M1.7
X (s —
I1.1
"LE-1 M1E.0 SHL_WY
ot || (e} EN END
nputs Out
puts
) 1]
L1 "o — IN OUT |- "Hwa L2
.
Shift pulse - Spray gun 1
LS1
sol-1 4>-/\/-o—4
m0_0 0Z_0
"hitQ! nEOL-1"
. | | { —
LSz
Spray gun 2
HD_S 021
"hit 5’ "EOL-2"
| (y— soF2—ol\ ro—¢
LS3 I1.0 cl
"LEzt 5_tU
|| cu Q » 4
g CV |-Hus PL-1 ()
RESET Y “\
—IV OV _EBCD
I1. 4
'RESET
/1]
1.2 cz
"LEst 5_CU
|| (i} 0
e E CV -Mw1o
... —|P¥ C¥_BCD
I1.4
"RESET"
/1 B
0z_2
Chif == “PL1®
i |
L 1
Miis —{ TH1
MWLl0 —{INZ
Rashad Alkakkali EEE422 ADVANCED PLC Page 197

PART TWLEVE

MATH INSTRUCTIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 198

MATH INSTRUCTIONS

PLC math instructions allow you to perform arithmetic functions on values stored in
memory words.

For example, assume you are using a counter to keep track of the numbers of parts
manufactured and you would like to display how many more must be produced in order
to reach a certain quota. This would require the data in the accumulated value of the
counter to be subtracted from the quota required.

SIEMENS STEP7 MATH ICTIONS
z1] Integer function

-] ADDI ~Fl ADD_R
T sUBI T SUB_R
P MULT - MUL_R
~FT DIv_I -] DIV_R
-] ADD_DI] ABS
- SUB_DI -] SQRT
~F MUL_DI T SQR
~FT Dv_D1 ~FT LM
T MOoD_DI T EXP
-] Cos
~FT TAM
;E[ASIM
- ACOS
T ATAMN

Rashad Alkakkali EEE422 ADVANCED PLC Page 199

ADD Instruction:

The ADD instruction is an output instruction that performs the addition of two values

stored in the referenced memory locations.

ADD_| Add Integer

Example

| 10.0 ADDI Q4.0
|
|

EN ENO—|NOTH—{S>

MWD — 1M
MW2— N2 OUT —MWA10

The ADD_| box is activated if 10.0 ="1". The result of the addition MWO + MW2 is output to MW10.

If the result was outside the permissible range for an integer, the output Q4.0 is set.

When the rung is true, the value stored at the MWO address, MW0=(25), is added to the
value stored at the MW2 = (50), and the answer (75) is stored at the destination

address, MW10.

Input A

L1 I1z4.0 ADD_|

25
MW0 —(IN1

MWz —[INZ

ouT

75
—MW10

Rashad Alkakkali EEE422 ADVANCED PLC Page 200

Counter Program That Uses the ADD Instruction:

The program of the following slide shows how the ADD instruction can be used to add
the accumulated counts of two up-counters. This application requires a light to come on
when the sum of the counts from the two counters is equal to or greater than 350.
Inputl of the ADD instruction is addressed to store the accumulated value of counter
C1, while input2 is addressed to store the accumulated value of counter C2.

The value at MW8 is added to the value at MW10 and the result (answer) is stored at
destination address MW12. Input 1 of the GREATER THAN OR EQUAL instruction is
addressed to store the value of the destination address MW12, while Input 2 contains
the constant value of 350. Therefore the GREATER THAN OR EQUAL instruction will
be logic true whenever the accumulated values in the two counters are equal to or
greater than the constant value 350. A reset button is provided to reset the accumulated
count of both counters to zero.

T1z24_.0 Cl
wLg" —
Inputs 1 =y
11 co Q@
Li
-.—5 CWV M2
ool —ev ov_BCDl
e - Oulpud
T1Z24 _Z
$—cr=To- 50 "Reset™ —R Lz
~ ’
I1z4_1 cz pu—("‘l
#-0 O—Feget wpgon =T = &
| | -
1 T c Q2
-.—5 CWV—MW10
—FV CWV_BCD—
T1z24 2
"Beset" 4R
ADD_|
EN EMO
MWE {IN1 OUT —MW1Z
MW10 —INZ
Qlz4_0
CMF >=| "EFL1™
F |
i !
MW1z H{IN1
350 qINz

Rashad Alkakkali EEE422 ADVANCED PLC Page 201

SUBTRACT Instruction:

The SUBTRACT instruction is an output instruction that subtracts one value from
another and stores the result in the destination address.

SUB_| Subtract Integer

Example
| 100 SUB_| @4.0
L EN ENOR—|NOT—S>
WO — 1A
MW2—IN2 OUT —MWA10

The SUB_| box is activated if 10.0 ="1". The result of the subtraction MWD0 - MW2 is output to MVW0.

If the result was outside the permissible range for an integer or the signal state of 10.0 = 0, the output Q4.0 is set.

When rung conditions are true, the subtract instruction subtracts IN2 from IN1 and
stores the result in the destination.

When the rung is true, the value stored at the IN2 address, MW2 (322), is subtracted

from the value stored at the IN1 address, MWO (520), and the answer (198) is stored at
the destination address, MW10.

Input
L1 P

T1z4.0 SUB |

o— A 520 138

MWD —[IN1 OUT (—MW10

MWZ —[INZ

Rashad Alkakkali EEE422 ADVANCED PLC Page 202

Overfill Alarm Program:

The program of the following side shows how the SUBTRACT function can be used to
indicate a vessel overfill condition. This application requires an alarm to sound when a
supply system leaks 5 Ib or more of raw material into the vessel after a preset weight of
500 Ib. has been reached. When the start button is pressed, the fill solenoid (rung 1)
and filling indicating light (rung 2) are turned on and raw material is allowed to flow into
the vessel. The vessel has its weight monitored continuously by the PLC program (rung
3) as it fills. When the weight reaches 500 Ib, the fill solenoid is de-energized and the
flow is cut off. At the same time, the filling pilot light indicator is turned off and the full
pilot light indicator (rung 3) is turned on. Should the fill solenoid leak 5 Ib or more of raw
material into the vessel, the alarm (rung 5) will energize and stay energized until the
overflow level is reduced below the 5 Ib overflow limit.

glz4_0
I124._1 I124_0 Qlz14_2 "Fill-
"Stop" "Start” " FULL"™ Solenoid"”
Qlz4_0
Inputs "Fill-
L1 Solenoid"™ Outputs
L2
. Fill A
. @lz4_0 soleneld
"Fill- Qlz14_2 glz4a_1
#—0a | o Stop Solenoid" "ETLL" "Filling™ .
| Filling —{)
MEE
1012 PR
............ . Ful
Weight [All 16 bits) P MR f
tranaducer : P LT
400! i
MilE — IN1 g .
500
00— INZ
Qlz14_z
FULL™ SUB_|
-------- EN ENO
MWE —|IN1 OUT|-MWio
500 —{INZ
Qlz4_3
TTTmuE e "Alarm
0:
MW10 —IN1
5.
5—iINZ

Rashad Alkakkali EEE422 ADVANCED PLC Page 203

Q1z4.0 Q1240 0124.0

I124.1 I124_0 Q1214 2 "Fill- I1z4_1 I1z4_0 Qlz14_z "Fi11- f;d-% “Isld.f‘!_ Qldd.: - lFlll.;,,
"Stﬂp“ "Start" "FIILL" Solenoid™ "Stﬂp" "Start™ "EULL™ Solenaid™ tﬂp tart IIUIJ.:I o En‘ﬂl
1 11 1 A iy 1L ' " I | | | | R
1 1T Ll L 1 | 1 | RERELECERELES LR u
Q1240 Qlza_0 Q122.0
nEil1l-
"Fill- wEill- Fill
Solenoid" Solencid™ Snleln?:l.d
: : _.' :,_____ I
Qlza_o @glza_ 0 @lza_0
"Fill- p1214 2 Q124 1 "Fill- Q1214 2 1241 "Fill- Q1241
Solenoid"” "FULL" "Filling" Solenoid” "FULL" "Filling" Solenoid” "Filling™
11 14 {1 L N R . S0
1 -1 L H P L .
Qlz14_ 2z Q1214.2 Qlzia_z
"EULL" CMP ==| "FULL" CMP ==1 "EULL"
{1 {1
LY LY
500 505
MHE — INL MHE — INL
500 500
500 —| INZ 500 —| INZ
Q1214 2 QL2142 Qlz14_2
wETLL SR "EFULL" SUB_| "EFULL" SUB_|
o] | EN ENO f M ENO
500 i
MWE—|INL OUT [-MW1o MWE—|IN1 OUT|-MWL10 MHE—|IN1 OUT -MW10
500
s00 | mhz 500 —{INZ 500 —{INZ
Q124_3 Q124.3 Q124._3
oo :
M "Alarm” TR "hRlarm” CMF ==l "Rlarm”
| ' I . oo Y
' P s H ! B L
: : 0; ! 5
MHL10 — IN1 ' Mi10 — INL : MH10 —| IN1
H 5 , 5
! S—INZ : 51Nz

Rashad Alkakkali EEE422 ADVANCED PLC Page 204

MULTIPLY Instruction:

The MULTIPLY instruction is an output instruction that multiplies two values and stores
the result in the destination address.

MUL_| Multiply Integer

Example

100 MUL | Q4.0
| || EN ENO—{NOT—SD
WO —] IN1
MW2—IN2 _ OUT —MWA10

The MUL_| box is activated if [0.0 ="1". The result of the multiplication MW0 x MW2 is output to MD10.

If the result was outside the permissible range for an integer, the output Q4.0 is set.

When rung conditions are true, the multiply instruction multiplies IN1 by IN2 and stores
the result in the destination “OUT".

When the rung is true, the data in IN1 (the constant, 20) will be multiplied by the data in
IN2 (the accumulated value of counter C5), with the result being placed in the
destination MW10

cs
T1z4.0 & cU
Cu Q
1640002
s oV |—Mnz
1640010
Input ... PV CV _BCD|—. ..
L1 o
I124.1-R
I124. 2 ML |
o | EN ENO
20 200
z0—-|m1 oOT |[-Wio
10
MWz —| IN2

As with previous math instructions, IN1 and IN2 can be values (constants) or addresses
that contain values.

Rashad Alkakkali EEE422 ADVANCED PLC Page 205

Simple MULTIPLY Program:

T1Z4_Z
L1 Input A" MUL | Output L2
EN ENO
123 7503
MWO —|{IN1 OUT|-MW10 . i
- A 61
MWz —|INZ PLA1
Q1z4_0 7 N
CMFP ==| "ELL1™
7503
MW10 — IN1
7503
7503 — IN2

Oven Temperature Control Program:

The program of the following side shows how the MULTIPLY instruction is used as part
of an oven temperature control program. In this program, the PLC calculates the upper
and lower dead band or off/on limits about the set point. The upper and lower limits are
set automatically at + 1 % regardless of the set-point value. The set-point temperature is
adjusted by means of the thumbwheel switch. An analog thermocouple interface module
is used to monitor the current temperature of the oven. In this example, the set-point
temperature is 400°F. Therefore, the electric heaters will be turned on when the
temperature of the oven drops to less than 396°F and stay on until the temperature
rises above 404 °F. If the set-point is changed to 100°F, the dead band remains at +
1%, with the lower limit being 99° of and the upper limit being 101°F. The number stored
in word MD4 represents the upper temperature limit, while the number stored in word
MD12 represents the lower limit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 206

Inpata

L1

MUL_R —
B G EN ENO L2
) 400 a
WS . MDO —| IN1 OUT [-MD4 Healer =] =+
EE | 1008981770
o J 1wz | MDO 1.000000e-
o E 00z —{INz2 % #*
P —{ —
Fa LY
13— MDI14
ADD_R & B
Themooouple = =
fsp EN ENO e _O i
400 a04 I S
MDO —|IN1 OUT [-MDS
a
MD4 —|INZ
Temperatu re Control
SUB_R
Program EN ENO
400 396
MDO —|IN1 OUT|-MD1z
a
MD4 —|INZ
Qlz4_0
CMF <R "ELL™
i1
LS
300
MD14 —| IN1
336
MD1z — INZ
Qlz4a_ 1
GE R T "PLZ"
300 ! |
MD]4 — IN1 !
404 . '
MDE—INZ ;
I1z4.0 Qlz4_0 Qlz4a_ 1 Qlz4_z
"OM/OFE" "EL1" "ELZ" "Heater™
i
1 | 1 | A {}
Qlz4_z
"Heater™
] L
| |
Rashad Alkakkali EEE422 ADVANCED PLC Page 207

DIVIDE Instruction:

The DIVIDE instruction divides the value in IN1 by the value in IN2 and stores the result
in the destination OUT and math register.

DIV_I Divide Integer

Example

| 10.0 DIV_| Q4.0
| | EN ENO—|NOT—S2
WO —] IN1
MW2—IN2 _ OUT —MW10

The DIV_| box is activated if 10.0 = "1"_ The result of the division MWO by MW2 is output to MWI0.

If the result was outside the permissible range for an integer, the output Q4.0 is set.

When the rung is true, the data in MW2 will be divided by the data in MW4, with the
result being placed in the destination MW8

EN ENO

I1z4.0 oIV |
| | B
1 T

MWZ | IN1 OUT —MWE

M4 —{INzZ
Simple DIVIDE Program:
Output
L2 IHPUt "R oIV tp L2
ZN ENC
wiso|m1 ouT|amiie N 4
A MHE : INz PL1 ‘O—.
e Fa N
CMF == ""_I-‘L;L-"_
30
MA10 —| IH1
30
20— INZ2

Rashad Alkakkali EEE422 ADVANCED PLC Page 208

Converting °C to °F Program:
The program of the following side shows how the DIVIDE instruction is used as part of a

program to convert Celsius temperature to Fahrenheit.

In this application, the

thumbwheel switch connected to the input module indicates Celsius temperature. The
program is designed to convert the recorded Celsius temperature in the data table to
Fahrenheit values for display. The formula: F = (9/5 x C) + 32 forms the basis for the
program. In this example, a current temperature reading of 60 °C is assumed. The
MULTIPLY instruction multiplies the temperature (60°C) by 9 and stores the product
(540) in address N7:0. Next, the DIVIDE instruction divides 5 into the 540 and stores
the answer (108) in address N7:1. Finally, the ADD instruction adds 32 to the value of
108 and stores the sum (140) in address O:13. Thus 60°C = 140°F.

Converting °C to °F Program:

MUL_|

U Input - 10 Output i
Mw2 mrf 2 IN1 OUT —m:f 40
TWS ﬁ 2 LED display
0E) i 1
—icE Iz DIV_| O:013 |
0 E J_- EN ENO |H
= 540 108
MW4 —|IN1 OUT [-Mms
: i
5 —|INZ
MW10
ADD._|
N ENO
108 140
MWa —|IN1 OUT [-MHio
a2
3z —|INZ
Rashad Alkakkali EEE422 ADVANCED PLC Page 209

Square Root (SQRT) Instruction:

The Square Root (SQRT) instruction is an output instruction that determines the square
root of a number.

SQRT Establish the Square Root

SORT
—EMN EMO—
— N OUT—
Parameter Data Type Memory Area Description
EM BOOL QML D Enable input
ENOC BOOL QML D Enable output
I REAL &, ML D Input value: floating-point
or constant
ouT REAL o, ML D CQutput value: square root of
floating-point number
Description

SQRT establishes the square root of a floating-point number. This instruction issues a positive result
when the address is greater than "0". Sole exception: the square root of -0 is -0.

When rung conditions are true, the square root instruction calculates the square root of
the number stored at IN and places the answer in the OUT.

Square Root (SQR) Instruction:
When the rung is true, the square root of the number in IN, MD2 (144), will be
calculated and the answer (12) placed in the destination OUT, MD8.

Input A

L1 I1z24.0 SORT
=N ZNO

144 1z
MLDZ —[IN OUT (—MDE

A
(V144 = 12)

Rashad Alkakkali EEE422 ADVANCED PLC Page 210

Negate Instruction (NEG):

The Negate (NEG) instruction is an output instruction that negates (changes the sign of)
of a value.

NEG_| Twos Complement Integer
Description

NEG_I (Twos Complement Integer) reads the content of the IN parameter and performs a twos complement instruction.
The twos complement instruction is equivalent to multiplication by (-1) and changes the sign (for example: from a positive
to a negative value). ENO always has the same signal state as EMN with the following exception: if the signal state of EN = 1
and an overflow occurs, the signal state of ENO = 0.

Example
10.0 NEG_| Q4.0

— —en Enop—noTH_ >

MWWE — 1IN ouUT— MWA10

If10.0 is "1", then the value of MW with the opposite sign is output by the OUT parameter to MWW10.
MWE =+ 10 results in MW10 = - 10. The output Q4.0 is "1" if the conversion is not executed (ENO = EN = 0).

If the signal state of EM = 1 and an overflow occurs, the signal state of ENO = (.

When rung conditions are true, the negate instruction changes the sign of IN and stores
the result in the destination OUT.

Negate Instruction (NEG)
When the rung is true, the sign of the number IN, MW8 (101), will be changed and the
result (-101) placed in the destination OUT, MW10.

L1

T1Z24_0

wa PEG_|

101 101
MWE —[IN OUT [—MW10

Positive numbers will be stored in straight binary format, and negative numbers will be
stored in two's complement.

Rashad Alkakkali EEE422 ADVANCED PLC Page 211

Convert Integer to BCD Instruction:

The convert to |_BCD output instruction is used to convert 16-bit integers into binary
coded decimal (BCD) values.

|_BCD Integer to BCD

|_BCD
—EN ENO [—
—IN__ QuT[—

Description
|_BCD (Convert Integer to BCD) reads the content of the IN parameter as an integer value {16-bit) and
converts it to a three-digit BCD coded number {+/- 999). The result is output by the parameter OUT.

If an overflow occurred, ENO will be "0".

Example

10.0 | BCD Q4.0

— F—EN” ENO—NOT 7

MWA0 71N ouT— MW12

If10.0 is "1", then the content of MW10 is read as an integer and converted to a three-digit BCD coded number. The

result is stored in MW12. The output Q4.0 is "1" if there was an overflow, or the instruction was not executed {I0.0 = 0).

When rung conditions are true, the |_BCD instruction converts the 16-bit integer stored
at IN to BCD and places the answer in the destination OUT. This instruction could be
used when transferring data from the processor (which stores data in binary format) to
an external device, such as an LED display, that functions in BCD format.

When input A is true, the |_BCD instruction will convert the binary bit pattern at the IN
address, MW2, into a BCD bit pattern of the same decimal value at the destination

address MW4

Rashad Alkakkali EEE422 ADVANCED PLC Page 212

L1

|_BGD
A EN ENO
10 16
MWz —|{IN OUT |—Mi4

The IN displays the value 10, which is the correct decimal value; however, the
destination OUT displays the value 16. Since the processor interprets all bit patterns as

binary, the value 16 is the binary interpretation of the BCD bit pattern. The bit pattern for
10 BCD is the same as the bit pattern for 16 binary.

Rashad Alkakkali EEE422 ADVANCED PLC Page 213

Convert From BCD to Integer Instruction:

The convert from BCD_I| output instruction is used to convert binary coded decimal
(BCD) values to integer values.

BCD_| BCD to Integer

BCD_|

—EN EMNO[—
—M ouT—

Description
BCD_I (Convert BCD to Integer) reads the contents of the IN parameter as a three-digit, BCD coded number (+/- 999)

and converts it to an integer value {16-bit). The integer result is output by the parameter OUT. ENO always has

the same signal state as EN.

Example

0.0 BCO | Q4.0

— —en EnO—NOTH_

MW10 —IN QUT— MWH12

If input 10.0 is "1" , then the content of MW10 is read as a three-digit BCD coded number and converted to an integer.

The result is stored in MVW12. The output Q4.0 is "1" if the conversion is not executed (ENO = EN = 0).

When rung conditions are true, the BCD_|I instruction converts the BCD value to the
equivalent integer value and stores the converted value in the destination. This
instruction could be used to convert data 'from a BCD external source, such as a BCD
thumbwheel switch, to the binary format in which the processor operates.

When input A is true, the BCD_I instruction will convert the BCD bit pattern stored at the
source address, MW4, into a binary bit pattern of the same decimal value at the
destination address, MW8.

L1

=
Y]
L]

BCD_|

h’ﬁ A EN ENC

16 10
M4 —[IN OUT |—-MWE

Rashad Alkakkali EEE422 ADVANCED PLC Page 214

REFRENCES

Text Books:
Programmable Logic Controllers By: Frank D. Petruzella
McGrawHill
ISBN 0-07-829852-0
Lab Manual for Programmable Logic Controllers with LogixPro
PLC simulator By: Frank D. Petruzella

SIEMENS Manuals:
Ladder Logic (LAD) for S7-300 S7-400 Programming Manuals

Siemens CTRAIN Documents.

Rashad Alkakkali EEE422 ADVANCED PLC Page 215

