

JUBAIL INDUSTRIAL COLLEGE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2014

 EEE 422 ADVANCED PLC

Rashad Alkakkali EEE422 ADVANCED PLC Page 2

EEE 422: ADVANCED PLC

TABLE OF CONTENTS

PART 1: PROGRAMMABLE LOGIC CONTROLLERS 1 – 24

PART 2: PLC HARDWARE COMPONENTS 25 – 59

PART 3: NUMBER SYSTEM AND CODES 60 – 77

PART 4: BASICS OF PLC PROGRAMMING 78– 96

PART 5: PROGRAMMING TIMERS . 97– 114

PART 6: TIMERS APPLICATIONS . 115–131

PART 7: PROGRAMMING COUNTERS I 132–141

PART 8: PROGRAMMING COUNTERS II 142–154

PART 9: PROGRAM CONTROL INSTRUCTIONS 155–179

PART 10: FORCING EXTERNAL IO ADDRESSES 172–180

PART 11: SHIFT AND ROTATE INSTRUCTIONS 181–197

PART 12: MATH. INSTRUCTIONS . 198–214

Rashad Alkakkali EEE422 ADVANCED PLC Page 3

PART ONE

PROGRAMMABLE LOGIC CONTROLLERS

AN OVERVIEW

Rashad Alkakkali EEE422 ADVANCED PLC Page 4

PROGRAMMABLE LOGIC CONTROLLERS

(PLC's)

The Need for PLC’s

 Hardwired panels were very time consuming to wire, debug and change.

 GM identified the following requirements for computer controllers to

replace hardwired panels.

 Solid-state not mechanical

 Easy to modify input and output devices

 Easily programmed and maintained by plant electricians

 Be able to function in an industrial environment

The First Programmable Logic Controllers (PLC’s)

 Introduced in the late 1960's

 Developed to offer the same functionality as the existing relay logic

systems

 Programmable, reusable and reliable

 Could withstand a harsh industrial environment -They had no

hard drive, they had battery backup

 Could start in seconds

 Used Ladder Logic for programming

Programmable Logic Controller

 A programmable logic controller (PLC) is a specialized computer used to

control machines and process.

 It uses a programmable memory to store instructions and specific

functions that include On/Off control, timing, counting, sequencing,

arithmetic, and data handling

Rashad Alkakkali EEE422 ADVANCED PLC Page 5

Advantages of PLC Control Systems

 Flexible

 Faster response time

 Less and simpler wiring

 Solid-state -no moving parts

 Modular design-easy to repair and expand

 Handles much more complicated systems

 Sophisticated instruction sets available

 Allows for diagnostics "easy to troubleshoot"

 Less expensive

Advantages of a PLC Control System

Eliminates much of the hard wiring, which was associated with conventional relay

control circuits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 6

The program takes the place of much of the external wiring that would be

required for control of a process.

Increased Reliability:

Once a program has been written and tested it can be downloaded to other

PLC’s.

Since all the logic is contained in the PLC’s memory, there is no chance of

making a logic wiring error.

More Flexibility:

Original equipment manufacturers

(OEMs) can provide system updates

for a process by simply sending out a

new program.

It is easier to create and change a

program in a PLC than to wire and

rewire a circuit. End-users can modify

the program in the field.

Rashad Alkakkali EEE422 ADVANCED PLC Page 7

Lower Costs:

Originally PLC’s were designed to replace relay control logic. The cost savings

using PLC’s have been so significant that relay control is becoming obsolete,

except for power applications.

Generally, if an application

requires more than about 6

control relays, it will usually be

less expensive to install a PLC.

Communications Capability:

A PLC can communicate with other controllers or computer equipment.

They can be networked to perform

such functions as: supervisory control,

data gathering, monitoring devices and

process parameters, and downloading

and uploading of programs.

Rashad Alkakkali EEE422 ADVANCED PLC Page 8

Faster Response Time:

PLC’s operate in real-time which means that an event taking place in the field will

result in an operation or output taking place.

Machines that process

thousands of items per

second and objects that

spend only a fraction of a

second in front of a sensor

require the PLC's quick

response capability.

Easier To Troubleshoot:

PLC’s have resident diagnostic and override functions allowing users to easily

trace and correct software and hardware problems.

The control program can be watched in real-time as it executes to find and fix

problems.

Rashad Alkakkali EEE422 ADVANCED PLC Page 9

PLC Architecture:

PLC System:

Rashad Alkakkali EEE422 ADVANCED PLC Page 10

PLC Architecture:

 An open architecture design allows the system to be connected

easily to devices and programs made by other manufacturers.

 A closed architecture or proprietary system, is one whose design makes it

more difficult to connect devices and programs made by other

manufacturers.

NOTE: When working with PLC systems that are proprietary in nature you

must be sure that any generic hardware or software you use is compatible

with your particular PLC.

I/0 Configurations:

 Fixed I/O .

 Is typical of small PLC’s

 Comes in one package with no

separate removable units

 The processor and I/O are

packaged together.

 Lower in cost – but lacks

flexibility.

Rashad Alkakkali EEE422 ADVANCED PLC Page 11

Modular I/0 Modules:

 Modular I/O .

Is divided by compartments into which

separate modules can be plugged.

This feature greatly increases your

options and the unit's flexibility. You can

choose from all the modules available

and mix them In any way you desire.

 Modular I/O .

When a module slides into the

rack, it makes an electrical

connection with a series of

contacts -called the backplane. The

backplane is located at the rear of

the rack.

Rashad Alkakkali EEE422 ADVANCED PLC Page 12

Power Supply:

 Supplies DC power to other modules

that plug into the rack.

 In large PLC systems, this power

supply does not normally supply power

to the field devices.

 In small and micro PLC systems, the

power supply is also used to power field

devices.

Processor (CPU):

 Is the "brain" of the PLC

 Consists of a microprocessor for

Implementing the logic, and supply

controlling the communications

among the modules.

 Designed so the desired circuit can

be entered in relay ladder logic form.

 The processor accepts input data

from various sensing devices,

executes the stored user program,

and sends appropriate output

commands to control devices.

Rashad Alkakkali EEE422 ADVANCED PLC Page 13

I/0 Sections:

Consists of:

 Input modules supply

 Output modules.

 Input Module .

 Forms the interface Power

by which input field

devices are connected to

the controller.

 The terms “field” and the

“real world” are sued to

distinguish actual external

devices that exist and

must be physically wired

into the system.

Rashad Alkakkali EEE422 ADVANCED PLC Page 14

 Output Module

 Forms the interface by which

output field devices are

connected to the controller.

 PLC’s employ an optical isolator

which uses light to electrically

isolate the internal components

from the input and output

terminals.

Programming Device:

 A personal computer (PC) is the most commonly used programming device.

 The software allows users to create, edit, document, store and troubleshoot

programs.

 The personal computer communicates with the PLC processor via a serial or

parallel data communications link

Rashad Alkakkali EEE422 ADVANCED PLC Page 15

Programming Device:

 Hand-held programming

devices are sometimes used

to program small PLC’s

 They are compact,

inexpensive, and easy to

use, but are not able to

display as much logic on

screen as a computer

monitor

 Hand-held units are often

used on the factory floor for

troubleshooting, modifying

programs, and transferring programs to multiple machines.

PLC Mixer Process Control Problem:

Mixer motor is to automatically stir

the liquid in the vat when the

temperature and pressure reach

preset values.

Alternate manual pushbutton is

provided to control the motor.

The temperature and pressure and

pressure sensor switches close their

respective contacts when conditions

reach their preset values.

Rashad Alkakkali EEE422 ADVANCED PLC Page 16

Process Control Relay

Ladder Diagram:

Motor starter coils is energized when both the pressure and temperature

switches are closed or when the manual pushbutton is pressed.

The temperature and

PLC Input Module

Connections:

 The same input field

devices are used.

 These devices are wired to

the input module

according to the

manufacturer’s labeling

scheme.

Rashad Alkakkali EEE422 ADVANCED PLC Page 17

PLC Output Module Connections:

Same output field device is used and

wired output module.

Triac switches motor ON and

OFF in accordance with the

control signal from the processor.

PLC Ladder Logic Program:

 The format used is similar to that of the hard-wired relay circuit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 18

Rashad Alkakkali EEE422 ADVANCED PLC Page 19

PLC ladder logic Program:

 I/O address format will differ, depending on the PLC manufacturer. You

give each input and output device an address. This lets the PLC know

where they are physically connected

Entering and Running the PLC Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 20

PLC Operating Cycle:

During each operating cycle, the controller examines the status of input devices,

executes the user program, and changes outputs accordingly.

The completion of one cycle of this

sequence is called a scan. The scan

time, the required for one full cycle,

provides measure of the speed of

response of the PLC.

Coil O/I is energized when contacts I/1 and I/2 are closed or when contact I/3 is

closed. Either of these conditions provides a continuous path from left to right

across the rung that includes the coil.

Rashad Alkakkali EEE422 ADVANCED PLC Page 21

Modifying a PLC Program:

 The change requires that the manual pushbutton control should be

permitted to operate at any pressure but not unless the specified

temperature setting has been reached.

 If a relay system were used, it would require some rewiring of the system,

as shown, to achieve the desired change.

 If a PLC is used, no rewiring is necessary! The inputs and outputs are still

the same. All that is required is to change the PLC program.

Relay ladder diagram for modified

process

Relay ladder diagram for modified

process

Rashad Alkakkali EEE422 ADVANCED PLC Page 22

PLC’s Versus Personal Computers:

PC Based Control Systems:

Advantages:

 Lower initial cost

 Less proprietary hardware and

software required

 Straightforward data exchange

with other systems

 Speedy information processing

 Easy customization

Rashad Alkakkali EEE422 ADVANCED PLC Page 23

PLC Size Classification:

Criteria

 Number of inputs and outputs (I/O count)

 Cost

 Physical size

Rashad Alkakkali EEE422 ADVANCED PLC Page 24

PLC Instruction Set:

The instruction set for a particular PLC type lists the different types of instructions

supported.

An instruction is a command that will cause a PLC to perform a certain

predetermined operation.

Typical PLC Instructions:

--] [-- NO contact Examine a bit for an ON condition

--] [-- NC contact Examine a bit for an OFF condition

--()-- output coil Turn ON a bit

--(S)-- output set Set a bit

--(R)-- output reset Reset a bit

Rashad Alkakkali EEE422 ADVANCED PLC Page 25

PART TWO

PLC HARDWARE COMPONENTS

&

SIMATIC S7 SOFTWARE

Rashad Alkakkali EEE422 ADVANCED PLC Page 26

SIMATIC OVERVIEW

Introduction
In the past, control tasks were solved with individual isolated Programmable
Logic Controls (PLCs) controlling a machine or process. Today in order for
companies to remain competitive, it is not enough to automate only individual
processing stations or machines in isolation. The demand for more flexibility with
higher productivity can then be fulfilled when the individual machines are
integrated in the entire system.

Totally Integrated
Totally Integrated Automation (TIA) provides a common software environment
Automation that integrates all components, in spite of the diversification of
applied technology, into one uniform system. This brings together everything you
need to program, configure, operate, handle data, communicate, and maintain
your control solutions.
Step 7 SIMATIC Manager, running on Siemens PGs or PCs, provides an
integrated set of tools for all system components that allows easy creation,
testing, start-up, operation and maintenance of your control solutions. While you
are configuring and programming, the Siemens software puts all of your data in a
central database to which all of the tools have access.
Central Database A common database of all components of Totally Integrated
Automation means that data only have to be entered once and are then available
for the entire project. The total integration of the entire automation environment is
made possible with the help of:
• One common software environment (Step 7 SIMATIC Manager) that integrates
all components and tasks into one uniform easy to use system.
• Common data management
• Standard open busses such as Ethernet, PROFIBUS, MPI, AS-interface
connect all components to each other, from the management level to the

Rashad Alkakkali EEE422 ADVANCED PLC Page 27

Hardware and software needed

 PC, operating system Windows 2000 Professional starting with SP4 /XP

 Professional starting with SP1/Server 2003 with 600 MHz and 512 RAM,

 Free hard disk memory approx. 650 to 900 MB, MS Internet Explorer 6.0

2 Software: STEP7 V 5.4

3 MPI interface for the PC (e.g. PC adapter for USB)

4 SIMATIC S7-300 PLC with the CPU 314C-2DP

 Configuration example:

 - Power supply unit: PS 307 2A

 - CPU: CPU 314-2DP

1 PC

2 STEP7

4 S7-300 with

CPU 314C-2DP

3 PC Adapter
USB

Rashad Alkakkali EEE422 ADVANCED PLC Page 28

NOTES ON THE USE OF THE CPU 314C-2DP

The CPU 314C-2DP is shipped with an integrated PROFIBUS DP interface and

integrated inputs/outputs.

The following PROFIBUS protocol profiles are available for the CPU 314C-2DP:

- DP interface as master according to EN 50170.

- DP interface as slave according to EN 50170.

PROFIBUS-DP (decentralized peripherals) is the protocol profile for connecting

decentralized peripherals/field units with very fast reaction times.

The addresses of the input and output modules of this CPU can be

parameterized.

Due to the following performance data, this CPU is especially suitable for training

purposes:

- 48 kByte RAM, load memory in the form of a plug-in MicroMemoryCard (MMC),

64 kByte to 4 MByte

- 8192 bytes DI/DO, including 992 bytes central

- 512 bytes AI/AO, including 248 bytes central

- 0.1 ms / 1 K commands

- 256 counters

- 256 timers

- 256 clock memory bytes

- 24 DIs, including 16 which can be used for integrated functions; all can be used

as alarm inputs as well

- 16 DOs, integrated; 4 of which are fast outputs

- 4 AIs for current/voltage, 1 AI resistor integrated

- 2 AOs for current/voltage, integrated

- 4 pulse outputs (2.5 kHz)

- 4-channel counting and measuring with 24 V (60 kHz) incremental encoders

- Integrated positioning function

Rashad Alkakkali EEE422 ADVANCED PLC Page 29

OPERATING THE CPUS 31XC

Operator control and display elements

The following illustration shows the operator control and display elements of a

CPU 31xC.

The arrangement and number of elements in some CPUs differ from this

illustration.

The following illustration shows the digital and analog inputs/outputs integrated

on the CPU.

The figures show the following
CPU elements:
(1) Status and error displays
(2) Slot for the Micro Memory Card
(MMC), incl. the ejector
(3) Connections of the integrated
I/O.
(4) Power supply connection
(5) 1st interface X2 (PtP or DP)
(6) 1st interface X1 (MPI)
(7) Mode selector switch

The figure shows the
following
 integrated I/Os:
(1) Analog I/Os
(2) each with 8 digital inputs
(3) each with 8 digital outputs
(4) Front connectors (front
doors are open)

  

Rashad Alkakkali EEE422 ADVANCED PLC Page 30

Status and fault/error displays

The CPU has the following LED displays:

Slot for the SIMATIC Micro Memory Card (MMC)

 A SIMATIC Micro Memory Card (MMC) is used as a memory module for the

CPU 31xC. The MMC can be used as a load memory and as a transportable

data carrier. The MMC must be plugged in before the CPU can be operated

because the CPUs 31xC do not have an integrated load memory.

Mode selector

The mode selector can be used to choose the current operating mode of the

CPU. The mode selector is designed as a toggle switch with 3 positions.

Positions of the mode selector

The positions of the mode selector are explained in the same sequence as they

occur on the CPU:

Position Description Comments

RUN RUN mode The CPU is processing the user program

STOP STOP mode The CPU is not processing a user program

MRES Memory

Reset

Button position of the operating mode switch

for a memory reset of the CPU. A CPU

memory reset requires a specific operating

sequence (refer to the Installation Manual,

Chapter Commissioning)

Rashad Alkakkali EEE422 ADVANCED PLC Page 31

MEMORY AREAS OF THE CPU 31XC

Introduction

The memory of the CPU 31xC can be divided into three areas:

Note

Only with the MMC plugged in is it possible to load user programs and

therefore operate the CPU 31xC

Load memory

The load memory is located on a SIMATIC Micro Memory Card (MMC). Its size is

exactly the same as that of the MMC. It is used for storing code blocks and data blocks as

well as system data (configuration, connections, module parameters, etc.).

Blocks that are marked as not being relevant to program execution are

exclusively stored in the load memory. In addition, the complete planning data for

a project can be stored on the MMC.

RAM

The RAM is integrated on the CPU and cannot be expanded. It is used for

processing the code and processing the data of the user program. The program

is executed exclusively in the RAM and the system memory. Once the MMC has

been plugged in, the RAM of the CPU is retentive.

System memory

The system memory is integrated on the CPU and cannot be expanded. It

contains

- the operands area for clock memories, timers and counters

- the process images of the inputs and outputs

- the local data

Rashad Alkakkali EEE422 ADVANCED PLC Page 32

Retentivity

Your CPU 31xC has retentive memory. Retentivity is implemented on the MMC

and on the CPU. Due to this retentivity, the contents of the retentive memory are

retained even after the mains supply has been switched off and the CPU has

been restarted (warm restart).

Load memory

You program in the load memory (MMC) is always retentive. During loading, it is

stored on the MMC, is powerfail-proof and cannot be cleared.

Work memory (RAM)

Your data in the work memory are backed up on the MMC in the event that the

mains supply is switched off. The contents of data blocks are therefore always

retained.

System memory

With regard to clock memories, timers and counters, you configure (properties of

the CPU, Retentivity tab) which parts are to be retentive and which are to be

initialized with "0" when the system is restarted (warm restart).

The diagnostic buffer, MPI address (and baud rate) as well as the runtime meter

are generally stored in the retentive memory area on the CPU. The retentive area

for the MPI address and the baud rate ensure that your CPU is still able to

communicate after a power failure, a complete memory reset or loss of the

communication parameters (because the MMC was removed, or the

communication parameters were deleted).

Retention of the memory objects

The following table shows which memory objects are retained when transitions

between operating modes occur.

Memory Object Operating Mode Transition

 PowerOn/Off STOP  RUN Memory Reset

User Program/User Data (load

memory)

X X X

Actual values of the DBs X X -

Flags, timers and counters

configured as retentive

X X -

Diagnostic buffer, hours run meter X X X

MPI address, baud rate X X X

 X = retentive; - = not retentive

Rashad Alkakkali EEE422 ADVANCED PLC Page 33

S7-300 Modules

Features
• Modular small control system for the lower performance range
• Performance-graded range of CPUs
• Extensive selection of modules
• Expandable design with up to 32 modules
• Backplane bus integrated in the modules
• Can be networked with - Multipoint interface (MPI),
- PROFIBUS or
- Industrial Ethernet.
• Central PG/PC connection with access to all modules
• No slot restrictions
• Configuration and parameter setting with the help of the "HWConfig" tool.

Signal Modules

 (SM) • Digital input modules: 24 VDC, 120/230 VAC
 • Digital output modules: 24 VDC, Relay
 • Analog input modules: Voltage, current, resistance, and
 thermocouple
 • Analog output modules: Voltage, current

Interface Modules The IM360/IM361 and IM365 make multi-tier configurations
possible.
 (IM) the interface modules loop the bus from one tier to the next.

Dummy Modules The DM 370 dummy module reserves a slot for a signal module
 (DM) whose parameters have not yet been assigned. A dummy
 module can also be used, for example, to reserve a slot for
 Installation of an interface module at a later date.

Function Modules Perform "special functions":
 (FM) - Counting
 - Positioning
 - Closed-loop control.

Rashad Alkakkali EEE422 ADVANCED PLC Page 34

Communication Provide the following networking facilities:
Processors (CP) - Point-to-Point connections
 - PROFIBUS
 - Industrial Ethernet.
Accessories Bus connectors and front connectors

Mode Selector MRES = Memory reset function (Module Reset)

 STOP = Stop mode, the program is not executed.
 RUN = Program execution, read-only access possible from PG.
 RUN-P = Program execution, read/write access possible from PG.

Status Indicators SF = Group error; internal CPU fault or fault in module with diagnostics
 (LED’s) capability.

 BATF = Battery fault; battery empty or non-existent.
 DC5V = Internal 5 VDC voltage indicator.
 FRCE = FORCE; indicates that at least one input or output is forced.
 RUN = Flashes when the CPU is starting up, then a steady light in Run mode.
 STOP = Shows a steady light in Stop mode.
 Flashes slowly for a memory reset request,
 Flashes quickly when a memory reset is being carried out,
 Flashes slowly when a memory reset is necessary because a memory card
 has been inserted.
Memory Card A slot is provided for a memory card. The memory card saves the program

 contents in the event of a power outage without the need for a battery.
Battery Compartment There is a receptacle for a lithium battery under the cover. The battery

 provides backup power to save the contents of the RAM in the event of a
 power outage.
MPI Connection Connection for a programming device or other device with an MPI interface.

DP Interface Interface for direct connection of distributed I/Os to the CPU.

Rashad Alkakkali EEE422 ADVANCED PLC Page 35

Slot Numbers The slot numbers in the rack of an S7-300™ simplify addressing in the
 S7-300™ environment. The position of the module in the rack determine the
 First address on a module.

Slot 1 Power supply. This is the first slot by default.
 A power supply module is not absolutely essential. An S7-300™ can also be
 supplied with 24V directly.

Slot 2 Slot for the CPU.

Slot 3 Logically reserved for an interface module (IM) for multi-tier configurations
 using expansion racks. Even if no IM is installed, it must be included for
 addressing purposes.
 You can physically reserve the slot (such as for installing an IM at a later date) if
 you insert a DM370 dummy module.

Slots 4-11 Slot 4 is the first slot that can be used for I/O modules, communications
 processors (CP) or function modules (FM).

 Addressing examples:

 • A DI module in slot 4 begins with the byte address 0 .
 • The top LED of a DO module in slot 6 is called Q8.0 .

Note Four byte addresses are reserved for each slot. When 16-channel DI/DO
 modules are used, two byte addresses are lost in every slot!

Rashad Alkakkali EEE422 ADVANCED PLC Page 36

Multi-Tier The slots also have fixed addresses in a multi-tier configuration.
Configurations

 Examples:
 • Q7.7 is the last bit of a 32-channel DO module plugged into slot 5 of rack 0.
 • IB105 is the second byte of a DI module in slot 6 of rack 3.
 • QW60 is the first two bytes of a DO module in slot 11 of rack 1.
 • ID80 is all four bytes of a 32-channel DI module in slot 8 in rack 2.

Rashad Alkakkali EEE422 ADVANCED PLC Page 37

Blocks
The programmable logic controller provides various types of blocks in which the user program
and the related data can be stored. Depending on the requirements of the process, the program
can be structured in different blocks.

Organization
Organization blocks (OBs) form the interface between the operating system and Block the user
program. The entire program can be stored in OB1 that is cyclically OB called by the operating
system (linear program) or the program can be divided and stored in several blocks (structured
program).

Function
A function (FC) contains a partial functionality of the program. It is possible to FC, SFC program
functions so that they can be assigned parameters. As a result, functions are also suited for
programming recurring, complex partial functionalities such as calculations.
System functions (SFC) are parameter-assignable functions integrated in the CPU‘s operating
system. Both their number and their functionality are fixed. More information can be found in the
Online Help.

Function Block
Basically, function blocks offer the same possibilities as functions. In addition, FB, SFB function
blocks have their own memory area in the form of instance data blocks. As a result, function
blocks are suited for programming frequently recurring, complex functionalities such as closed-
loop control tasks.
System function blocks (SFB) are parameter-assignable functions integrated in the CPU‘s
operating system. Both their number and their functionality are fixed. More information can be
found in the Online Help.

Rashad Alkakkali EEE422 ADVANCED PLC Page 38

Data Blocks
Data blocks (DB) are data areas of the user program in which user data are DB managed in a
structured manner.

Permissible Operations
You can use the entire operation set in all blocks (FB, FC and OB).

Linear Program
The entire program is found in one continuous program block. This model
resembles a hard-wired relay control that was replaced by a programmable logic
controller. The CPU processes the individual instructions one after the other.

Partitioned Program
The program is divided into blocks, whereby every block only contains the
program for solving a partial task. Further partitioning through networks is
possible within a block. You can generate network templates for networks of the
same type. The OB 1 organization block contains instructions that call the other
blocks in a defined sequence.

Structured Program
A structured program is divided into blocks. The code in OB1 is kept to a
minimum with calls to other blocks containing code. The blocks are parameter
assignable. These blocks can be written to pass parameters so they can be used
universally. When a parameter assignable block is called, the programming
editor lists the local variable names of the blocks. Parameter values are assigned
in the calling block and passed to the function or function block.

Rashad Alkakkali EEE422 ADVANCED PLC Page 39

Example:
• A "pump block" contains instructions for the control of a pump.

• The program blocks, which are responsible for the control of special pumps, call
the "Pump block" and give it information about which pump is to be controlled
with which Parameters.

• When the "pump block" has completed the execution of its instructions, the
program returns to the calling block (such as OB 1), which continues processing
the calling block‘s instructions.

Introduction
The CPU checks the status of the inputs and outputs in every cycle. There are
specific memory areas in which the module‘s binary data are stored: PII and PIQ.
The program accesses these registers during processing.

PII
The Process-Image Input table is found in the CPU‘s memory area. The signal
state of all inputs is stored there.

PIQ
The Process-Image Output (Q) table contains the output values that result from
the program execution. These output values are sent to the actual outputs (Q) at
the end of the cycle.

Rashad Alkakkali EEE422 ADVANCED PLC Page 40

User Program
When you check inputs in the user program with, for example, A I 2.0, the last
state from the PII is evaluated. This guarantees that the same signal state is
always delivered throughout one cycle.

Note
Outputs can be assigned as well as checked in the program. Even if an output is
assigned a state in several locations in the program, only the state that was
assigned last is transferred to the appropriate output module.

Starting
The CPU carries out a complete restart (with OB100) when switching on or when
switching from STOP --> RUN. During a complete restart, the operating system:
• deletes the non-retentive bit memories, timers and counters.
• deletes the interrupt stack and block stack.
• resets all stored hardware interrupts and diagnostic interrupts.
• starts the scan cycle monitoring time.

Scan Cycle
The cyclical operation of the CPU consists of three main sections, as shown in
the diagram above. The CPU:
• checks the status of the input signals and updates the process-image input
table.
• executes the user program with the respective instructions.
• writes the values from the process-image output table into the output modules.

Rashad Alkakkali EEE422 ADVANCED PLC Page 41

Introduction
There are several programming languages in STEP 7 that can be used
depending on preference and knowledge. By adhering to specific rules, the
program can be created in Statement List and later converted into another
programming language.

LAD
Ladder Diagram is very similar to a circuit diagram. Symbols such as contacts
and coils are used. This programming language often appeals to those who have
a drafting or electrical background.

STL
The Statement List consists of STEP 7 instructions. You can program fairly freely
with STL. This programming language is preferred by programmers who are
already familiar with other programming languages.

FBD
The Function Block Diagram uses “boxes” for the individual functions. The
character in the box indicates the function (such as & --> AND Logic
Operation).This programming language has the advantage that even a “non-
programmer” can work with it. Function Block Diagram is available as of Version
3.0 of the STEP7 Software.

Rashad Alkakkali EEE422 ADVANCED PLC Page 42

Absolute Addressing
In absolute addressing, you specify the address (such as input I 1.0) directly. In
this case you don‘t need a symbol table, but the program is harder to read.
Symbolic Addressing
In symbolic addressing, you use symbols (such as MOTOR_ON) instead of the
absolute addresses. You store the symbols for inputs, outputs, timers, counters,
bit memories and
blocks in the symbol table.
Note
When you enter symbol names, you don‘t have to include quotation marks. The
Program Editor adds these for you.

Rashad Alkakkali EEE422 ADVANCED PLC Page 43

Configuration of S7-314C-2DP at the LAB

NEW PROJECT CREATION USING SIMATIC MANAGER

Procedure to run the Simatic manager and How to create a new project
To run the simatic manager, follow the procedure illustrated below.
Click on simatic Manager under Simatic on the start up menu.

The following screen will appear.

Rashad Alkakkali EEE422 ADVANCED PLC Page 44

Click on Next button and in the following screen choose the CPU 314C-2DP

Leave MPI address as it is 2

Rashad Alkakkali EEE422 ADVANCED PLC Page 45

Click on next again and Choose block OB1 from the list

For the programming language select LAD for Ladder

Rashad Alkakkali EEE422 ADVANCED PLC Page 46

Click on next

Type the name of the new project  choose S7_proj-1

Rashad Alkakkali EEE422 ADVANCED PLC Page 47

Click Finish button, Simatic Manager will create the project S7_proj-1.

This part is aimed to introduce you to the new projects and related files, follow
the procedure below to take a tour and learn more about the Simatic Manager.

If you highlighted S7_proj-1 you will see 2 entities

Click on Simatic 300 station

Rashad Alkakkali EEE422 ADVANCED PLC Page 48

Show what is under CPU314C-2DP

Under S7 program  sources Blocks symbols

OB1 is the block where we need to write our ladder program

Rashad Alkakkali EEE422 ADVANCED PLC Page 49

Hardware configuration

Go back to click on Simatic 300 station to see the hardware configuration.
Remember that the system is already configured for you.

Double click on Hardware icon

Rashad Alkakkali EEE422 ADVANCED PLC Page 50

Using the mouse Enlarge the screen inside to see more details
The following screen shows the hardware configuration, profile side menu shows
more Hardware that can be added.

Double Click on CPU314C-2DP(1) icon and select Cycle/Clock Memory card

Rashad Alkakkali EEE422 ADVANCED PLC Page 51

Creating a small Ladder diagram

Symbol table:
We begin with the symbol table to Click on S7 program icon first and then click
on Symbols

The following screen will appear

Start typing in the symbols and their addresses as below.

Now click on Blocks and then double click on OB1 to start typing your program.

Rashad Alkakkali EEE422 ADVANCED PLC Page 52

The following screen will appear, follow the procedure correctly to enter your first
program in Ladder. The program is to control the start and stop of a motor.

Click on the drawing area under Network-1

Step-1 When the mouse is in the drawing area click on open contact -] [-

Rashad Alkakkali EEE422 ADVANCED PLC Page 53

Step-2 Click again for another NO contact -] [-

Step-3 Click for the Coil -()-

Step-4 Now for parallel contact you have to position the cursor in the
beginning of
 the rung and click on  as show below.

Rashad Alkakkali EEE422 ADVANCED PLC Page 54

Step-5 click on the NO contact -] [- and then click on ^ to close the branch

Now you can start editing the address on top of the ??.?

Click on the for contact for Start PB I124.0

As soon as you press "I" the symbol table will appear

Rashad Alkakkali EEE422 ADVANCED PLC Page 55

Double Click on start to select it

Do the same for the rest till you complete all.

The symbols will appear only if you have saved the OB1

Rashad Alkakkali EEE422 ADVANCED PLC Page 56

Downloading and running the program

Note : Don’t forget to put STOP switch in the on position (NC)

Now you need to download and run your program in the PLC. Also you can
simulate the program using PLCSIM

Skip the following steps (between the  marks) if you are not using the
PLCSIM.

   Skip here if not using PLCsim   

Then the next screen will appear

Click ok

Rashad Alkakkali EEE422 ADVANCED PLC Page 57

Select and highlight MPI adr: 2 (not networked) then press ok

Now this the screen where you need to change the inputs and see the outputs
after you download the program.

   Continue below   

Now make sure that your PLC is in the STOP mode and then click on Download
on the Program screen.

Rashad Alkakkali EEE422 ADVANCED PLC Page 58

Then click on monitor under Debug menu.

You need to watch the important information on screen. Change in color of the
top line to indicate the monitoring is active. Red color in the bottom line to show
that the CPU is in STOP mode.

Switch the CPU to the RUN position.

The green solid line means that the contact is in True state “ON”, and a dot
line in the blue means that the contact is in False state “OFF”

Rashad Alkakkali EEE422 ADVANCED PLC Page 59

Switch “start” on and then back to off, the output “Motor” will be on.

Rashad Alkakkali EEE422 ADVANCED PLC Page 60

PART THREE

NUMBER SYSTEM AND CODES

Rashad Alkakkali EEE422 ADVANCED PLC Page 61

TYPES OF SIGNALS IN CONTROL SYSTEM TECHNOLOGY

The electrical signals which are applied at the inputs and outputs can be, in

principle, divided into two different groups:

BINARY SIGNAL

Binary signals can take the value of 2 possible states. They are as follows:

Signal state “1“ = voltage available = e.g. Switch on

Signal state “0“ = voltage not available = e.g. Switch off

In control engineering, a frequent DC voltage of 24V is used as a “control supply

voltage“ A voltage level of + 24V at an input clamp means that the signal status

is “1“ for this input. Accordingly 0V means that the signal status is “0“. In

addition to a signal status, another logical assignment of the sensor is important.

It’s a matter of whether the transmitter is a “normally closed” contact or a

“normally open” contact. When it is operated, a “normally closed” contact

supplies a signal status of “0“ in the “active case“. One calls this switching

behavior “active 0“ or “active low“. A “normally open” contact is “active 1”/“active

high“, and supplies a “1“ signal, when it is operated.

In closed loop control, sensor signals are “active 1“. A typical application for an

“active 0“ transmitter is an emergency stop button. An emergency stop button is

always on (current flows through it) in the non actuated state (emergency stop

button not pressed). It supplies a signal of “1“(i.e. wire break safety device) to

the attached input. If operation of an emergency stop button is to implement a

certain reaction (e.g. all valves close), then it must be triggered with a signal

status of “0“

Equivalent binary digits:

A binary signal can only take the two values (signal statuses) “0“ or “1“. Such a

binary signal is also designated as an equivalent binary digit and receives the

designation of “Bit“ in the technical language book. Several binary signals result

in a digital signal after a certain assignment (code). While a binary signal only

provides a grouping of a bivalent size/e.g. for door open/door close), one can

form e.g. a number or digit as digital information by the bundling of equivalent

binary digits.

The summarization of n-equivalent binary digits allows the representation of 2n

different combinations.

Rashad Alkakkali EEE422 ADVANCED PLC Page 62

One can show 4 different types of information with e.g. 2 equivalent binary digits

2x2:

0 0 Configuration 1 (e.g. Both switches open)

0 1 Configuration 2 (Switch 1 closed / Switch 2 open)

1 0 Configuration 3 (Switch 1 open / Switch 2 closed)

1 1 Configuration 4 (both switches closed)

ANALOG SIGNAL

Contrary to a binary signal that can accept only signal statuses („Voltage

available +24V“ and “Voltage available 0V“, there are similar signals that can

take many values within a certain range when desired. A typical example of an

analog encoder is a potentiometer. Depending upon the position of the rotary

button, any resistance can be adjusted here up to a maximum value.

Examples of analog measurements in control system technology:

 Temperature -50 ... +150°C

 Current flow 0 ... 200l/min

 Number of revolutions 500 ... 1500 R/min

 Etc.

These measurements, with the help of a transducer in electrical voltages, are

converted to currents or resistances. E.g. if a number of revolutions is collected,

the speed range can be converted over a transducer from 500... 1500 R/min into

a voltage range from 0... +10V. At a measured number of revolutions of 865

R/min, the transducer would give out a voltage level of + 3.65V.

365

1000 R/min

10V

10V: 1000 R/min = 0.01 V/R/min

365 R/min x 0.01 V/R/min = 3.65V

0 V +10V

500 865 1500 R/min

If similar measurements are processed with a PLC, then the input must be

converted into digital information to a voltage, current or resistance value. One

calls this transformation analog to digital conversion (A/D conversion). This

Rashad Alkakkali EEE422 ADVANCED PLC Page 63

means, that e.g. a voltage level of 3.65V is deposited as information into a set of

equivalent binary digits. The more equivalent binary digits for the digital

representation will be used, in order for the resolution to be finer. If one would

have e.g. only 1 bit available for the voltage range 0... +10V, only one statement

could be met, if the measured voltage is in the range 0.. +5V or +5V....+10V.

With 2 bits, the range can be partitioned into 4 single areas, (0... 2.5/2.5... 5/5...

7.5/7.5... 10V).

Usually in control engineering, the A/d converter is changed with the 8th or 11th

bit. 256 single areas are normally provided, but with 8 or 11 bits, you can have

2048 single areas.

11 Bit

10V: 2048 = 0,0048828

 Voltages with

differences <5mV can be

identified
0 2048

0A/0V 20mA/10V

Rashad Alkakkali EEE422 ADVANCED PLC Page 64

NUMBER SYSTEMS

For the processing of the addresses of memory cells, inputs, outputs, times, bit

memories etc. by a programmable controller, the binary system is used instead

of the decimal system.

DECIMAL SYSTEM

In order to understand the binary number system, it is first necessary to consider

the decimal system. Here the number of 215 is to be subdivided. Thereby the

hundreds represent the 2, the 1 stand for the tens and the 5 for the ones.

Actually, one would have to write 215 in such a way: 200+10+5. If one writes

down the expression 200+10+5, with the help of the powers of ten as explained

earlier, then one states that each place is assigned a power of ten within the

number.

Each number within the decimal system is assigned a power of ten.

Rashad Alkakkali EEE422 ADVANCED PLC Page 65

BINARY SYSTEM

The binary number system uses only the numbers 0 and 1, which are easily

represented and evaluated in data processing. Thus it is called a binary number

system. The values of a dual number are assigned the power-of-two numbers,

as represented below.

Each number assigned within the binary number system is a power-of-two.

BCD - CODE (8-4-2-1-CODE)

In order to represent large numerical values more clearly, the BCD code (binary

coded decimal number) is frequently used. The decimal numbers are

represented with the help of the binary number system. The decimal digit with

the highest value is the 9. One needs to demonstrate the 9 with power-of-two

numbers until 23, thus using 4 places for the representation of the number.

Because the representation of the largest decimal digit requires 4 binary places,

a four-place unit called a tetrad, is used for each decimal digit. The BCD code is

thus a 4-Bit-Code

Rashad Alkakkali EEE422 ADVANCED PLC Page 66

Each decimal number is coded individually. The number of 285 consists e.g. of

three decimal digits. Each decimal digit appears in the BCD code as a four-place

unit (tetrad).

2 8 5

001

0

100

0

010

1

Each decimal digit is represented by an individually coded tetrad.

HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system belongs to the notational systems because

value powers of the number 16 are used. The hexadecimal number system is

thus a sixteen count system. Each place within a hexadecimal number is

assigned a sixteenth power. One needs altogether 16 numbers, including the

zero. For the numbers 0 to 9 one uses the decimal system, and for the numbers

10 to 15 the letters A, B, C, D, E and F are used.

Each digit within a hexadecimal number system is assigned a power of the

number 16.

DEMONSTRATION OF THE NUMBER SYSTEMS

Rashad Alkakkali EEE422 ADVANCED PLC Page 67

CONVERSION RULES

The transformation of the different number systems is based on simple rules.

These rules should be controlled by the PLC users, since they are often used in

handling this technology. For the use of a number system on which a given

number is based, an index sign is placed at the end of a number. Here “D“

stands for decimal, “B“ for binary, and “H“ for hexadecimal. This marking is often

necessary to identify a number system because in each system, different values

can be obtained when the same number is used. (e.g.. “111“ in the decimal

system has the value 111D (one hundred eleven). In the binary system it would

be 111B ,which is the decimal value 7 (1x20 + 1x 21 + 1x22). As a hexadecimal

number, 111H would be the decimal value 273 (1x160 + 1x161 + 1x 162).

Converting decimal  binary

Integral decimal numbers are divided by the base 2 until the result of zero is

obtained. The remainder obtained with the division (0 or 1) results in a binary

number. One needs to also consider the direction that the “remainders“ are

written in. The remainder of the first division is the first right bit (low order width

unit bit).

e.g.: The decimal number 123 is to be changed into an appropriate dual number.

Pattern:

 1 1 1 1 0 1 1

 1x26 + 1x25 + 1x24 + 1x23 + 0x22 + 1x21 + 1x20

 64 + 32 + 16 + 8 + 0 + 2 + 1 =

 123

Rashad Alkakkali EEE422 ADVANCED PLC Page 68

Converting decimal  hexadecimal

This transformation is performed exactly like the decimal  binary

transformation. The only difference is that instead of using base 2, we use base

16. Thus the number must be divided by 16 rather than by 2.

E.g. The decimal number 123 is to be changed into the appropriate hex number.

Pattern:

 7 B

 7x161 + 11x160

 112 + 11 = 123

Converting binary  hexadecimal

For the transformation of a dual number into a Hex number, one could first

determine the decimal value of the binary number (addition of the priorities). This

decimal number could then be changed into a hexadecimal number with the help

of the division:16. In addition, there is the possibility of determining the

associated hex value directly from the binary number. First of all, the binary

number is divided from the right beginning in the quadripartite groups. Every one

of the determined quadripartite groups results in a number of the hexadecimal

number system. If necessary, fill the missing bits on the left hand side with zeros

e.g. The binary number 1111011 is to be changed directly into a hex number.

1 1 1 1 0 1 1 B

1 0 1 1 0 1 1 1

0x2 3 + 1x2 2 + 1x2 1 + 1x2 0
 1x2 3 + 0x2 2 + 1x2 1 + 1x2 0

7 B H

Rashad Alkakkali EEE422 ADVANCED PLC Page 69

TERMS FROM COMPUTER SCIENCE

In connection with programmable controllers, terms such as BIT, BYTE and

WORD are frequently used in the explanation of data and/or data processing.

BIT

Bit is the abbreviation for binary digit. The BIT is the smallest binary (bivalent)

information unit, which can accept a signal status of “1“or “0“.

0 No voltage
 available

24 V

0 V

 1Voltage
 available

BYTE

For a unit of 8 binary characters, the term BYTE is used. A byte has the size of 8

bits.

WORD

A word is a sequence of binary characters, which is regarded as a unit in a

specific connection. The word length corresponds to the number from 16 binary

characters. With words, the following can be represented:

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1W O R D

1 Byte 1 Byte

Signal state

A word also has the size of 2 bytes or 16 bits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 70

DOUBLE-WORD

A double-word corresponds to the word length of 32 binary characters.

A double-word also has the size of 2 words, 4 bytes, or 32 bits.

Further units are kilo-bit or kilo-byte, which stand for 210, or 1024 bits, and the

mega-bit or mega-byte which stands for 1024 kilo-bits.

BIT ADDRESS

So that individual bits can be addressed within a byte, each individual bit is

assigned a bit location. In each byte the bit gets the bit location 7 on the leftmost

side and the bit location 0 on the rightmost side.

BYTE ADDRESS

The individual bytes also receive numbers called byte displacements.

Additionally, the operand is still marked, so that e.g. IB 2 stands for input byte 2

and QB4 stands for output byte 4. Individual bits are clearly addressed by the

combination of bit and byte displacement. The bit location is separated from the

byte displacement by one point. The bit location stands to the right of the point,

and the byte displacement to the left.

WORD ADDRESS

The numbering of words results in a word address.

Note: The word address is always the smallest address of the two pertinent

bytes when using words, e.g. input word(IW),output word(QW), bit memory

word(MW), etc. (e.g. With a word that comes from IB2 and IB3, the address is

IW2).

Rashad Alkakkali EEE422 ADVANCED PLC Page 71

Note: During word processing it is to be noted that e.g. the input word 0 and the
input word 1 are in a byte overlap. In addition, when counting bits, one begins at
the rightmost bit. For example the bit0 from IW1 is the bit of I2.0, bit1 is I2.1....
bit7 is I 2.7, bit8 is I1.0.... bit15 ois I1.7. A jump exists between the bits 7 and 8.

DOUBLE-WORD ADDRESS

The numbering of double-words results in a double-word address.

Note: When using double-words e.g. ID, QD, MD etc. the double-word address

is the smaller word address of the two pertinent words.

ID0 Double word
address IW0 IW2

IB0 IB1 IB2 IB3

IW1

IW0 IW2

IB0 IB1 IB2 IB3

IW1

Word address

Rashad Alkakkali EEE422 ADVANCED PLC Page 72

Data Types

Integer Data Type
An Integer data type value is a whole number value, that is, a value without a
(16-Bit Integer) decimal point. SIMATIC® S7 stores Integer data type values with
sign in 16 bit code. This results in the value range shown in the slide above. As
well, SIMATIC® S7 provides arithmetic operations for processing Integer values.
Decimal
STEP7 uses the Decimal (not BCD!) display format to specify the constants of
the Integer data type. That is, with sign and without explicit format description.
The use of constant Integer values in the Binary and Hexadecimal display
formats is possible in principle, but because of the poor legibility, they are more
or less not suitable. For this reason, the syntax of STEP7 provides the
specification of Integer values only in the decimal display format.
Binary
In a digital computer system, all values are stored in a binary-coded form. Only
the digits 0 and 1 are available in the binary number system. Base 2 of this
numbers system results from the number of available digits. Accordingly, the
value of every position of a binary number results from a power of Base 2. This is
also expressed in the format specification 2#.... .

Negative values are represented as binary numbers in twos complement. In this
representation, the most significant bit (bit no. 15 for the Integer data type) has
the value - 215. Since this value is greater than the sum of all residual values,
this bit also has the sign information. That is, if this bit = 0, then the value is
positive; if the bit is = 1, then the value is negative. The conversion of a binary
number into a decimal number is made by adding the values of the positions that
have a 1 (see slide).

Rashad Alkakkali EEE422 ADVANCED PLC Page 73

Specifying constants in the binary display format is not only used for specifying
Integer values, but more often to specify bit patterns (such as in digital logic
operations) in which the Integer value represented by the bit pattern is of no
interest. The number of specifiable bits is variable from 1 to 32. Missing bits are
filled with leading zero digits.

Double Integer
SIMATIC® S7 stores Double Integer data type values with sign as 32 bit code.
(32-Bit Integer) This results in the value range shown in the slide above. As well,
SIMATIC® S7
provides arithmetic operations for processing DINT values.

Decimal
STEP7 uses a decimal number (not BCD!) to specify a constant of the Double
Integer data type. That is, with sign and the format L# for "long" (double word, 32
bit). When a value smaller than -32768 or greater than 32767 is specified, the
format L# is automatically added. For negative numbers smaller than -32768, the
user must specify the format as L# - (for example: L# -32769). This is imperative
if the value is to be further processed arithmetically as a double integer.
Otherwise you would work with false values (value + sign!)!

Hexadecimal
The hexadecimal numbers system provides 16 different digits (0 to 9 and A to F).
This results in Base 16 of this numbers system. Accordingly, the value of every
position of a hexadecimal number results from a power of Base 16. Hexadecimal
numbers are specified with the format W# for the dimension (W = word = 16 bit)
or DW# (DW = double word = 32 bit) and 16# for identifying the basic numbering
system. The number of specifiable bits is variable from 1 to 8. Missing bits are
filled with leading zero digits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 74

The digits A to F correspond to the decimal values 10 to 15. The value 15 is the
last value that can be binary-coded - without sign - with 4 bits.

This connection results in the simple conversion of a binary number in a
hexadecimal number and vice versa. Four binary bits make up one digit of a
hexadecimal number.

Constants in the hexadecimal format are therefore not used for specifying integer
values. They are used instead of binary numbers for specifying bit patterns in
which the integer value represented by the bit pattern is of no interest.

Real
The previously described INT and DINT data types are used to store whole
number values with sign. Accordingly, only operations that supply a whole
number value as the result can be performed with these data types.
In cases where analog process variables such as voltage, current, and
temperature have to be processed, it becomes necessary to use Real values
(real numbers, "decimal numbers"). In order to be able to represent such values,
binary digits have to be defined whose value is less than 1 (power of base 2 with
negative exponent).

Real Format
In order to be able to form the greatest possible value range within a defined
memory capacity (for SIMATIC® S7: double word, 32 bit) (see slide), you must
be able to select the decimal point position. Early on, IEEE defined a format for
floating-point numbers. This format was laid down in IEC 61131 and was
included in STEP 7. This format makes it easy to process a variable decimal
point position.

Rashad Alkakkali EEE422 ADVANCED PLC Page 75

In a binary coded floating-point number, a portion of the binary digits contain the
mantissa and the rest contain the exponent and the sign of the floating-point
number.
When you specify real values, you do so without specifying the format. After you
enter a constant real value (for example: 0.75), the Editor automatically makes a
conversion (for example: 7.5000e-001).

Application
Floating-point numbers are used for "analog value processing", among others. A
great advantage of floating-point numbers is in the number of operations possible
with such numbers. These include, in addition to the standard operations such
as: +, -, * , / also instructions such as sin, cos, exp, ln, etc, that are used mainly in
closed-loop control algorithms.

Origin
In the past, the specification and visualization of whole numbers was done
exclusively using simple, mechanical thumbwheel buttons and digital displays.
These thumbwheel buttons and digital displays were connected to the PLC‘s
digital input and output modules through parallel wiring. The structure could also
be cascaded, without having to change the mechanical coding of a digit.

BCD Code
Each digit of a decimal number is encoded in four bit positions. Four bits are
used because the highest decimal digit, 9, requires at least four bit positions in
binary code. Decimal No. BCD Code Decimal No. BCD Code
0 0000 6 0110
1 0001 7 0111
2 0010 8 1000
3 0011 9 1001
4 0100 10 ... 15 not allowed
5 0101

Rashad Alkakkali EEE422 ADVANCED PLC Page 76

Negative Numbers
So that negative numbers can also be specified using a BCD thumbwheel button,
STEP 7 codes the sign in the most significant bit of the most significant digit (see
slide). A sign bit = 0 indicates a positive number. A sign bit = 1 indicates a
negative number. STEP 7 recognizes 16-bit-coded (sign + 3 digits) and 32-bit-
coded (sign + 7 digits) BCD numbers.

Data Formats
There is no data format for specifying BCD-coded values in STEP 7. You can,
however, specify the decimal number whose BCD code is to be given, as a HEX
number. The binary code of the HEX number and that of the BCD-coded decimal
number is identical.
As you can see in the slide, the DEC data format is not suitable for specifying
BCD coded numbers!

Gray Code:

 The Gray code is a special type of binary code that does not use position

weighting.

 It is set up so that as we progress from one number to the next, only one

bit changes.

 For this reason, the Gray code is considered to be an error-minimizing

code.

 Because only one bit changes at a time, the speed of transition for the

Gray code is considerably faster than that for codes such as BCD

 Gray codes are used with position encoders for accurate control of the

motion of robots, machine tools, and servomechanisms.

Typical Encoder Disk:

The encoder disk is attached to

a rotating shaft and outputs a

digital Gray Code signal that is

used to determine the position

of the shaft.

Rashad Alkakkali EEE422 ADVANCED PLC Page 77

ASCII Code:

 ASCII stands for American Standard Code for Information Interchange.

 It is an alphanumeric code because it indicates letters as well as numbers.

The keystrokes on the keyboard of a

computer are converted directly into

ASCII for processing by the

computer.

Parity Bit:

 Some PLC communications systems use a parity bit to check the

accuracy of data transmission.

 For example, when data are transferred between PLC’s, one of the binary

bits may accidentally change states

 Parity is a system where each character transmitted contains one

additional bit known as a parity bit.

 The bit may be binary 0 or binary 1, depending on the number of 1 's and

O's in the character itself

 Two systems of parity are normally used: odd and even

 Odd parity means that the total number of binary 1 bits in the character,

including the parity bit, is odd

 Even parity means that the total number of binary 1 bits in the character,

including the parity bit, is even

 Even Odd

 Character Parity Bit Parity Bit

0000 01

0001 10

0010 10

0011 01

0100 10

0101 01

0110 01

0111 10

1000 10

1001 01

Rashad Alkakkali EEE422 ADVANCED PLC Page 78

PART FOUR

BASICS OF PLC PROGRAMMING

Rashad Alkakkali EEE422 ADVANCED PLC Page 79

BASICS OF PLC PROGRAMMING

BASIC PROGRAMMING INSTRUCTIONS

The following programming instructions are sufficient for the basics of

programming. This is however not a complete listing of all instructions.

Information for further instructions in LAD/FBD/STL can be found in the manuals

or in the on-line help under the point of language description LAD, FBD and/or

STL.

ASSIGNMENT

The assignment (=) copies the logical operation result (RLO) of the preceding

operation and assigns it to the following operand. An operation chain can be

locked by an assignment.

=I 0.0

Q 0.0

()
I 0.0 Q0.0

LAD

FBD

STL

A I 0.0
= Q 0.0

| |

AND - OPERATION

The AND -Operation corresponds to a series connection of contacts in the circuit

diagram. At the output Q 0.0, the signal status 1 appears if all inputs exhibit a

signal status 1 at the same time. If one of the inputs exhibits a signal status 0,

the output remains in a signal status 0.

&
I 0.0

I 0.1

Q 0.0

| | | | ()
I 0.0 I 0.1 Q 0.0

LAD

FBD

STL

A I 0.0
A I 0.1
= Q 0.0

=

Rashad Alkakkali EEE422 ADVANCED PLC Page 80

OR - OPERATION

The OR -Operation corresponds to a parallel connection of contacts in the circuit

diagram. At the output Q 0.1, a signal status 1 appears if at least one of the

inputs exhibits a signal status 1. Only if all inputs exhibit a signal status 0, will

the signal status at the output remain on 0.

I 0.2

I 0.3

Q 0.1

| |

| |

()
I 0.2

I 0.3

Q 0.1

LAD

FBD

STL

>1

O I 0.2
O I 0.3
= Q 0.1

=

AND - BEFORE OR - OPERATION

The AND- before -OR -Operation corresponds to a parallel set-up of several

contacts in the circuit diagram.

With these branches from rows and parallel circuits aligned together, the output

0.1 is fed the signal status 1, if in at least one branch of all contacts switched in

the row are closed (have a signal status 1).

The AND before OR- Operations are programmed without parentheses in the

STL representation, however the parallel circuit branches must be separated by

the input of the character O (OR function). First the AND functions are edited

and from their results the result of the OR function is formed. The first AND

function (I 0,0, I 0,1) becomes separated by the second AND function (I 0,2, I

0,3) through the single O (OR function).

FBD

&

I 0.2

I 0.3

&

>1

Q 0.1

I 0.0

I 0.1
| | | | ()

I 0.0 I 0.1

LAD

| | | |

Q 0.1

I 0.2 I 0.3

STL

A I 0.0
A
U

I 0.1
O
A I 0.2
A I 0.3
= Q 0.1=

The AND- Operations have priority and will always execute before the OR- Operations.

Rashad Alkakkali EEE422 ADVANCED PLC Page 81

OR - BEFORE AND - OPERATION

The OR – before -AND operation corresponds to a series connection of several

contacts joined in parallel in the circuit diagram.

With these branches from the rows and parallel circuits aligned together, the

output 1.0 is fed the signal status 1, if in both branches at least one of the

contacts switched in the row is closed (have a signal status 1).

FBD

&

>1
| | | | ()

LAD

| | | |

STL

>1

I 1.0

I 1.1

I 1.2

I 1.3

Q 1.0
Q 1.0I 1.0

I 1.1

I 1.2

I 1.3

A(
O I 1.0
O I 1.1
)

A(
O I 1.2

O I 1.3
)
= Q 1.0

=

 Parenthesis must be used on the OR- Operations so that they will have a higher

priority than the AND- Operations.

QUERY ON SIGNAL STATE 0

The debugging for the signal status 0 corresponds in a contact-afflicted circuit to

an open contact and is realized in the connection AND NOT (AN), OR NOT (ON)

and EXCLUSIVE OR NOT (XN).

Example of an OR NOT - Operation:

I 0.2

I 0.3

Q 0.1

| |

|/|

()
I 0.2

I 0.3

Q 0.1

LAD

FBD

STL

>1

O I 0.2
ON I 0.3
= Q 0.1

=

Rashad Alkakkali EEE422 ADVANCED PLC Page 82

EXCLUSIVE - OR - OPERATION

The circuit shows an exclusive-OR operation (X), with which the output 1.0 is

switched on (signal status 1) if only one of the inputs exhibits a signal status of 1.

In an contact-afflicted circuit, this can be realized only with normally open and

closed contacts.

FBD

| |

| |

()

LAD STL

Q 1.0I 1.0

|/|

|/|
I 1.0

I 1.1

I 1.1
X I 1.0
X I 1.1
= Q 1.0

I 1.0

I 1.1 Q 1.0
XOR

Caution: The exclusive- OR- Operation should only be used with exactly two inputs.

QUERY OF OUTPUTS

For the switching on of the outputs Q 1.0 and Q 1.1, different conditions apply. In

these cases a current path and/or an operation symbol must be planned for each

output. There the automation equipment can query not only the signal status of

inputs, outputs, bit memories, etc. It will also query the outputs Q 1.1 and Q 1.0

from the AND operation.

I 1.0

I 1.1

I 1.2

&

&

Q 1.0

Q 1.1

FBD

Q 1.0

Q 1.0

I 1.2

I 1.0 I 1.1

STL

A I 1.0
A I 1.1
= Q 1.0
A Q 1.0
A I 1.2
= Q 1.1

| | | | ()

| | ()| |
Q 1.0 Q 1.1

LAD

=

=

Rashad Alkakkali EEE422 ADVANCED PLC Page 83

R - S – STORAGE FUNCTIONS

According to DIN 40900 and DIN 19239, an R-S memory function is represented

as a rectangle with the set input S and the reset input R. A signal status 1 at the

set input S sets the memory function. A signal status 1 at the reset input R

results in the resetting of the memory function. A signal status 0 at the inputs R

and S does not change the previously set condition. Should a signal status 1 be

applied to both inputs R and S simultaneously, the function will be set or reset.

This priority resetting or setting must be considered with programming.

RESET DOMINANT

I 1.1

| |

| | ()

(R)

(S)

Q 2.0I 1.1

| |

| |

R Q

Q 2.0

S

LAD(1) STL

FBD

A I 1.1
S Q 2.0
A I 1.0
R Q 2.0

SR

S Q

R

Q 2.0I 1.0

I 1.1

I 1.0

Q 2.0

LAD(2)

I 1.0 =

Q 2.0
Q 2.0

The last operations programmed are worked on by the control with priority. In

the example the set operation is first implemented; the output Q 2.0 is again

reset and remains reset for the remainder of program processing.

This brief setting of the output is accomplished only in the process image. A

signal status on the pertinent I/O rack is not affected during program processing.

Rashad Alkakkali EEE422 ADVANCED PLC Page 84

SET DOMINANT

The exit Q 2.1 in this example is set with priority.

I 1.1

| |

| | ()

(S)

(R)

Q 2.1I 1.1

| |

| |

S Q

R

LAD(1) STL

FBD

A I 1.1
R Q 2.1
A I 1.0
S Q 2.1

RS

R Q

S

Q 2.1I 1.0

I 1.1

I 1.0

Q 2.1

LAD(2)

I 1.0

Q 2.1

=

Q 2.1Q 2.1

EDGE OPERATIONS

The edge (flank) operations collect in contrary to a static signal status "0" and "1"

the signal change e.g. of a input. The program of an edge operation corresponds

to an edge-recognizing contact in a relay circuit.

POSITIVE EDGE (FP)

If a rising (positive) edge (change from “0“ to “1“) is recognized by I 0.2, then Q

4.0 for a OB1-Cycle is set to “1“. This output can be again used e.g. to set a

memory bit. A rising edge is recognized, as the automation system stores the

RLO, which supplied the operation A, in the edge memory bit M 2.0 and

compares it with the RLO of the preceding cycle.

The advantage of the second type of representation in LAD/FBD is that logical

operations can also be present at the input of the edge operation.

STL

A I 0.2

FP M 2.0

= Q 4.0

LAD/FBD

POS

Q

M_BITM 2.0

I 0.2

()

Q 4.0

 or:

()

M 2.0

P

Q 4.0

I 0.2

Rashad Alkakkali EEE422 ADVANCED PLC Page 85

12119 1087654321

Signal state chart

I 0.2

M 2.0

Q 4.0

OB1-Cycle

1
0
1
0
1
0

NEGATIVE EDGE (FN)

If a falling (negative) edge (change of “1“ to “0“) is recognized by I 0.2, then Q

4.0 for a OB1-Cycle is set to “1“. This output can be used again e.g. to set a

memory bit. A falling edge is recognized, as the automation system stores the

RLO, which supplied the operation A in the edge memory bit M 2.0, and

compares it with the RLO of the preceding cycle. The advantage of the second

type of representation in LAD/FBD is that logic operations can also be present at

the input of the edge operation.

STL

A I 0.2

FN M 2.0
= Q4.0

LAD/FBD

NEG

A

M_BITM 2.0

I0.2

()

Q 4.0

 or:

12119 1087654321

Signalstate chart

I 0.2

M 2.0

Q 4.0

OB1-Cycle

1
0
1
0
1
0

()

M 2.0

N

Q 4.0

I 0.2

Rashad Alkakkali EEE422 ADVANCED PLC Page 86

Binary Operation:

Logic Table:

Rashad Alkakkali EEE422 ADVANCED PLC Page 87

Logic table:

Rule
The following rule is valid for the logic operation of two addresses after XOR: the
output has signal state "1", when one and only one of the two checks is fulfilled.

Careful! This rule cannot be generalized to "one and only one of n" ! for the logic
operation of several addresses after XOR !! As of the third XOR instruction, the
old RLO is gated with the new result of check after XOR.

Rashad Alkakkali EEE422 ADVANCED PLC Page 88

Process
The use of normally open or normally closed contacts for the sensors in a
controlled process depends on the safety regulations for that process.
Normally closed contacts are always used for limit switches and safety switches,
so that dangerous conditions do not arise if a wire break occurs in the sensor
circuit.
Normally closed contacts are also used for switching off machinery for the same
reason.

Symbols
In LAD, a symbol with the name "NO contact" is used for checking for signal
state "1" and a symbol with the name "NC contact" to check for signal state "0".
It makes no difference whether the process signal "1" is supplied by an activated
NO contact or a non-activated NC contact.

Example
If an NC contact in the machine is not activated, the signal in the process image
table will be "1". You use the NO contact symbol in LAD to check for a signal
state of "1".

General:
The "NC contact" symbol delivers the result of check "1" when the checked
address state or status is "0".

Rashad Alkakkali EEE422 ADVANCED PLC Page 89

Exercise
Complete the programs above to obtain the following functionality: When switch
S1 is activated and switch S2 is not activated, the light should be ON in all three
cases.

Note !
The terms "NO contact" and "NC contact" have different meanings depending on
whether they are used in the process hardware context or as symbols in the
software.

Rashad Alkakkali EEE422 ADVANCED PLC Page 90

Signal State
A logic operation is made up of a series of instructions to check the states of
signals (inputs (I), outputs (Q), bit memories (M), timers (T), counters (C) or data
bits (D)) and instructions to set Q,M,T,C or D.

Result of Check
When the program is executed, the result of check is obtained. If the check
condition is fulfilled, the result of check is “1”. If the check condition is not fulfilled,
the result of check is “0”.

First Check
The first check that follows an RLO limiting operation (such as S, R, CU, =) or
the first check in a logic string is called a First Check (FC) since the result of this
check - regardless of the last RLO - is accepted as the new RLO.

Result of Logic Operation
When the next check instructions are executed, the result of logic operation is
gated with the result of check and a new RLO is obtained. When the last check
instruction in a logic operation has been executed, the RLO remains the same. A
number of instructions using the same RLO can follow.

Note
The result of the first check is stored without being subjected to a logic operation.
Therefore, it makes no difference whether you program the first check with an
AND or an OR instruction in STL. To convert your program to one of the other
programming languages, you should, however, always program using the correct
instruction.

Rashad Alkakkali EEE422 ADVANCED PLC Page 91

Assignment
An assignment passes the RLO on to the specified address (Q, M, D). When the
RLO changes, the signal state of that address also changes.

Set
 If RLO= "1", the specified address is set to signal state "1" and remains set until
another instruction resets the address.

Reset
If RLO= "1", the specified address is reset to signal state "0" and remains in this
state until another instruction sets the address again.

Rashad Alkakkali EEE422 ADVANCED PLC Page 92

Flip Flop
A flip flop has a Set input and a Reset input. The memory bit is set or reset,
depending on which input has an RLO=1. If there is an RLO=1 at both inputs at
the same time, the priority must be determined.

Priority
In LAD and FBD there are different symbols for Dominant Set and Dominant
Reset memory functions. In STL, the instruction that was programmed last has
priority.

Note
If an output is set with a set instruction, the output is reset on a complete restart
of the CPU. If M 5.7 in the example above has been declared retentive, it will
remain in the set state after a complete restart of the CPU, and the reset output
Q 9.3 will be assigned the set state again.

Rashad Alkakkali EEE422 ADVANCED PLC Page 93

Midline Output Coil
The midline output coil exists only in the LAD and FBD graphic languages. It is
an intermediate assignment element with assignment function that assigns the
current RLO at a specified address (M5.7 in the slide). The midline output coil
provides this same address in the same network for subsequent gating. In the
STL language, this is equivalent to

= M 5.7
A M 5.7

In the LAD language, when connected in series with other elements, the "midline
output coil" instruction is inserted in the same way as a contact.

Rashad Alkakkali EEE422 ADVANCED PLC Page 94

NOT
The NOT instruction inverts the RLO.

CLR
The CLEAR instruction sets the RLO to "0" without pre-conditions (available only
in STL at present !). The CLR instruction completes the RLO, thus the next scan
becomes a first check.

SET
The SET instruction sets the RLO to "1" without pre-conditions (available only in
STL at present !). The SET instruction completes the RLO, thus the next scan

becomes a first check.

Rashad Alkakkali EEE422 ADVANCED PLC Page 95

RLO Edge Detection
An "RLO edge" detection is when the result of a logic operation changes from "0"
to "1" or from "1" to "0".

Positive Edge
(Positive RLO Edge Detection) detects a signal change in the address (M1.0)
from "0" to "1", and displays it as RLO = "1" after the instruction (such as at M
8.0) for one cycle.
To enable the system to detect the edge change, the RLO must be saved in an
FP bit memory (such as M 1.0), or a data bit.

Negative Edge
(Negative RLO Edge Detection) detects a signal change in the address (M1.1)
from "1" to "0" and displays it as RLO = "1" after the instruction (such as at M 8.1)
for one cycle.
To enable the system to detect the edge change, the RLO must be saved in an
FN bit memory (such as M 1.1), or a data bit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 96

Signal Edge Example
A "signal edge" is when a signal changes its state. Input I 1.0 acts as a static
enable. Input I 1.1 is to be monitored dynamically and every signal change is to
be detected.

Positive Edge
When the signal state at I 1.1 changes from "0" to "1", the "POS" check
instruction results in signal state "1" at output Q for one cycle, provided input I 1.0
also has signal state "1" (as in the example above). To enable the system to
detect the edge change, the signal state of I 1.1 must also be saved in an M_BIT
(bit memory or data bit) (such as M 1.0).
Negative Edge
When the signal state at I 1.1 changes from "1" to "0", the "NEG" check
instruction results in signal state "1" at output Q for one cycle, provided input I 1.0
has signal state "1" (as in the example above). To enable the system to detect
the edge change, the signal state of I 1.1 must also be saved in an M_BIT (bit
memory or data bit) (such as M 1.1).

Rashad Alkakkali EEE422 ADVANCED PLC Page 97

PART FIVE

PROGRAMMING TIMERS

Rashad Alkakkali EEE422 ADVANCED PLC Page 98

Timers:

There are very few industrial control systems that do not need at least one or two

timed functions. They are used to activate or de-activate a device after a preset

interval of time.

Time delay relays and solid-state timers are used to provide a time delay. They

may have displays, pots or other means of operator interface for time settings

and electromechanical or solid state outputs.

Rashad Alkakkali EEE422 ADVANCED PLC Page 99

On-Delay Timing Relay:

Non-timed contacts are controlled

directly by the timer coil, as in a

general-purpose control relay.

When the coil is energized, the

timed contacts are prevented from

opening or closing until the time

delay period has elapsed.

However, when the coil is de-

energized, the timed contacts

return instantaneously to their

normal state..

Rashad Alkakkali EEE422 ADVANCED PLC Page 100

Rashad Alkakkali EEE422 ADVANCED PLC Page 101

On-Delay Relay Timer Circuit (NOTC Contact):

Sequence of Operation

S1 open, TD de-energized, TD1

open, L1 is off.

S1 closes, TD energizes, timing

period starts, TD1 still open, L1

is still off.

After 10 s, TD1 closes, L1 is

switched on.

S1 is opened, TD de-energizes,

TD1 opens instantly, L1 is

switched off.

On-Delay Relay Timer Circuit (NCTO Contact):

 Sequence of Operation

S1 open, TD de-energized, TD1

closed, L1 is on.

S1 close, TD energizes, timing period

starts, TD1 is still closed, L1 is still

on.

After 10 s, TD1 opens, L1 is switched

off.

Off-Delay Relay Timer

Rashad Alkakkali EEE422 ADVANCED PLC Page 102

Circuit (NOTO Contact):

Sequence of Operation

S1 open, TD de-energized, TD1 open, L1 is off.

S1 closes, TD energizes, RD1 closes instantly,

L1 is switched on.

S1 is opened, TD de-energizes, timing period

starts, TD1 is still closed, L1 is still on.

After 10 s, TD1 opens, L1 is switched off.

Off-Delay Relay Timer Circuit (NCTC Contact):

Sequence of Operation

S1 open, TD de-energized, TD1 closed, L1 is

on.

S1 closes, TD energizes, TD1 opens

instantly, L1 is switched off.

S1 is opened, TD de-energizes, timing

period starts, TD1 is still off.

After 10 s, TD1 closes, L1 is switched on.

Rashad Alkakkali EEE422 ADVANCED PLC Page 103

Programmed Timer Instructions:

PLC timers are output instructions that provide the same functions as timing

relays and solid state timers.

Some advantages of PLC timers:

 Their settings can be altered easily.

 The number of PLC timers used can

be increased or decreased by

programming changes without wiring

changes.

 Timer accuracy and repeatability are

extremely high.

Step7 Timer Commands:

Simatic S7 has 5 types of timers

Pulse Timer

Extended Pulse Timer

On-Delay Timer

Retentive On-delay Timer

Off-Delay Timer
Pulse Timer coil

Extended Pulse Timer coil

On-Delay Timer coil

Retentive On-delay Timer coil

Off-Delay Timer coil

Rashad Alkakkali EEE422 ADVANCED PLC Page 104

Start
The timer starts when the RLO at the Start input "S" changes from "0" to "1". The
timer starts with the time value specified at the Time Value "TV" for as long as
the signal state at input "S" =1.
Reset
When the RLO at the Reset input "R" changes from "0" to "1", the current time
value and the time base are deleted and the output "Q" is reset.
Digital Outputs
The current time value can be read as a binary number at the "BI" output and as
a BCD number at the "BCD" output. The current time value is the initial value of
"TV" minus the value for the time that has elapsed since the timer was started.
Binary Output
The signal at the "Q" output changes to "1" when the timer has expired without
error and input "S" has signal state "1". If the signal state at the "S" input changes
from "1" to "0" before the timer has expired, the timer stops running and output
"Q" has a signal state "0".
Note
In STEP 7, you can also implement IEC conforming timers using SFBs. The use
of system function blocks is dealt with in an advanced programming course.

Rashad Alkakkali EEE422 ADVANCED PLC Page 105

Start
The stored-on-delay timer starts when the RLO at the "S" input changes from "0"
to "1". The timer runs starting with the time value specified at input "TV" and
continues to run even if the signal at input "S" changes back to "0" during that
time. If the signal at the start input changes from "0" to "1" again while the timer is
still timing down, the timer starts again from the beginning.

Reset
When the RLO at reset input "R" changes from "0" to "1", the current time value
and the time base are deleted and output "Q" is reset.

Binary Output
The signal state at output "Q" changes to "1" when the timer has expired without
error, regardless of whether the signal state at input "S" is still "1".

Rashad Alkakkali EEE422 ADVANCED PLC Page 106

Start
The pulse timer starts when the RLO at the "S" input changes from "0" to "1".
Output "Q" is also set to "1".

Reset
Output "Q" is reset when:
• the timer has expired, or
• the start "S" signal changes from "1" to "0", or
• the reset input "R" has a signal state of "1".

Rashad Alkakkali EEE422 ADVANCED PLC Page 107

Start
The extended pulse timer starts when the RLO at the "S" input changes from "0"
to "1". Output "Q" is also set to "1". The signal state at output "Q" remains at "1"
even if the signal at the "S" input changes back to "0". If the signal at the start
input changes from "0" to "1" again while the timer is running, the timer is
restarted.

Reset
Output "Q" is reset when:
• the timer has expired, or
• the reset input "R" has a signal state of "1".

Rashad Alkakkali EEE422 ADVANCED PLC Page 108

Start
The off-delay timer starts when the RLO at the "S" input changes from "1" to "0".
When the timer has expired, the signal state at output "Q" changes to "0". If the
signal state at the "S" input changes from "0" to "1" while the timer is running, the
timer stops. The next time the signal state at the "S" input changes from "1" to
"0", it starts again from the beginning.

Reset
When the RLO at reset input "R" is "1", the current time value and the time base
are deleted and output "Q" is reset. If both inputs (S and R) have signal states of
"1", output "Q" is not set until the dominant reset is deactivated.

Binary Output
Output "Q" is activated when the RLO at the "S" input changes from "0" to "1". If
input "S" is deactivated, output "Q" continues to have signal state of "1" until the
programmed time has expired.

Rashad Alkakkali EEE422 ADVANCED PLC Page 109

Bit Instructions
All timer functions can also be started with simple bit instructions. The similarities
and differences between this method and the timer functions discussed so far are
as follows:

• Similarities:
- Start conditions at the "S" input
- Specification of the time value
- Reset conditions at the "R" input
- Signal response at output "Q"

• Differences (for LAD and FBD):
- It is not possible to check the current time value (there are no "BI"
and "BCD" outputs).

Rashad Alkakkali EEE422 ADVANCED PLC Page 110

PULSE TIMER S_PULSE

The output Q124.0 is activated by the closure of input I124.0 and
deactivated 5 seconds later. If the input is reopened during this period
of time, the output is immediately deactivated.

Time diagram of the pulse timer

The operation of the pulse timer is shown in the time diagram above. The first
line represents the input signal and the second line its output.
The program ladder has been designed using a timer S_PULSE activated by the
NO contact of I124.0, with a time constant equal to 5 seconds and the output
connected to the coil of Q124.0.

PULSE TIMER COIL -(SP)-

Rashad Alkakkali EEE422 ADVANCED PLC Page 111

EXTENDED PULSE TIMER S_PEXT

The output Q124.2 is activated when inputI124.2 is closed and deactivated 5
seconds later, irrespective of whether the input is opened again during this period
of time.

The operation of the pulse timer is shown in the time diagram above. The first
line represents the input signal and the second line its output.
The program ladder has been designed using a timer S_PEXT (extended pulse)
activated by the NO contact of I124.2 , with a time constant equal to 5 seconds
and the output connected to the coil of Q124.2.

EXTENDED PULSE TIMER COIL -(SE)-

Rashad Alkakkali EEE422 ADVANCED PLC Page 112

ON-DELAY TIMER S_ODT

The output Q124.0 is activated 5 seconds after input I124.0 is closed. When the
input is reopened, the output is deactivated.

The operation of the pulse timer is shown in the above time diagram. The first
line represents the input signal and the second line is the corresponding output.
The program ladder has been designed using a timer S_ODT (delayed
activation) activated by the NO contact of I124.0, with a time constant equal to 5
seconds and the output connected to the coil of Q124.0.

ON-DELAY TIMER COIL -(SD)-

Rashad Alkakkali EEE422 ADVANCED PLC Page 113

RETENTIVE ON-DELAY TIMER S_ODTS

Output Q124.0 is activated 5 seconds after input I124.0 is closed (even though
this input is opened again during this time) and deactivated with the closure of
input

The operation of the retentive On-delay timer with reset can be obtained by comparing
the first two lines and the last line of the above time diagram. The first two lines
represent the input signals, and the last line is the resulting output.
The program ladder has been designed using a timer S_ODTS (retentive On-delay)
activated by the NO contact of I124.0, with a time constant equal to 5 seconds, the reset
connected to a NO contact of I124.4 and the output to the coil of Q124.0.

RETENTIVE ON-DELAY TIMER COIL –(SS)-

Rashad Alkakkali EEE422 ADVANCED PLC Page 114

OFF-DELAY TIMER S_OFFDT

Output Q124.0 should activate when input I124.0 is closed and deactivate itself 5
seconds after it is reopened.

The operation of the Off-delay timer is shown in the time diagram. The first line
represents the input signal and the second line is the corresponding output.
The program ladder has been designed using a S_OFFDT (Off-delay timer)
activated by the NO contact of I124.0, with a time constant equal to 5 a second
and the output connected to the coil of Q124.0.

OFF-DELAY TIMER -(SF)-

Rashad Alkakkali EEE422 ADVANCED PLC Page 115

PART SIX

TIMER APPLICATIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 116

FLASHING USING PULSE TIMERS

One of the most important applications of timers is to produce flashing signals. It
is possible to obtain a flashing signal of the rate of one second using two pulse
timers as shown below. This way of linking the two pulse timers can start the
flashing automatically as soon as the CPU is in the RUN mode.

T1

T2

T2'

T1'

Rashad Alkakkali EEE422 ADVANCED PLC Page 117

To control the flashing we can add a pushbutton with SR block to enable the
timers. The following diagram illustrates that; please note the nature of the
different timers when using them in the applications (refer to previous chapter).

Rashad Alkakkali EEE422 ADVANCED PLC Page 118

Flashing for a certain amount of time

To obtain flashing for a certain amount of time like a flashing for 10 second, an
extra timer will be added to the above ladder diagram. This additional timer will
act as a Master timer and the other two timer works as a slave.

Rashad Alkakkali EEE422 ADVANCED PLC Page 119

Flashing using on-delay timers

Similarly, two on delay timer can be used to obtain flashing for 1 second interval.
The following ladder diagram illustrates flashing using on-delay timers.

T1

T2'

delay

delay

T2

delay

Rashad Alkakkali EEE422 ADVANCED PLC Page 120

Sequence of operations using timers

Automatic Sequential Control System:

Timers are often used as part of automatic sequential control systems. The

following schematic shows how a series of motors can be started automatically

with only one start/stop control station.

According to the relay ladder schematic, lube-oil pump motor started coil M1 is

energized when the start pushbutton PB2 is momentarily actuated. As a result,

M1-1 control contact closes to seal in M1, and the lube-oil pump motor starts.

When the lube-oil pump builds up sufficient oil pressure, the lube-oil pressure

switch PS1 closes. This in turn energizes coil M2 to start the main drive motor

and energizes coil 1TD to begin the time-delay period. After the preset time-delay

period of 15 s, 1TD-1 contact closes to energize coil M3 and start the feed motor.

The ladder logic program shows how the circuit could be programmed using a

PLC.

Relay Ladder Schematic Diagram

Rashad Alkakkali EEE422 ADVANCED PLC Page 121

Rashad Alkakkali EEE422 ADVANCED PLC Page 122

Applications using On-Delay timers

On-Delay timer with instantaneous output:

Timers may or may not have an instantaneous output (also known as the enable

bit) signal associated with them. If an instantaneous output signal is required

from timer and it is not provided as part of the timer instruction, an equivalent

instantaneous contact instruction can be programmed using an internally

referenced relay coil.

The following figure shows an application of this technique. According to relay

ladder schematic diagram, coil M is to be energized 5 s after the start pushbutton

is pressed. Contact 1TD-1 is the instantaneous contact, and contact 1TD2 is the

timed contact.

The Ladder logic program shows that a contact instruction referenced to an

internal relay is now used to operate the timer. The instantaneous contact is

referenced to the internal relay coil, whereas the time-delay contact is referenced

to the timer output coil.

Rashad Alkakkali EEE422 ADVANCED PLC Page 123

 S7_timer-applic-01
Start-up Warning Signal Circuit:

 The schematic below shows the application of an on-delay timer that uses an

NCTO contact. This circuit is used as a warning signal when moving equipment,

such as a conveyor motor, is about to be started. According to the relay ladder

schematic diagram, coil CR1 is energized when the start pushbutton PB1 is

momentarily actuated. As a result, contact CR1-1 closes to seal in CR1, contact

CR1-2 closes to energize timer coil 1TD, and contact CR1-3 closes to sound the

horn. After a 10-s time delay period, timer contact 1TD-1 opens to automatically

switch the horn off. The ladder logic diagram shows how the circuit could be

programmed using a PLC.

Rashad Alkakkali EEE422 ADVANCED PLC Page 124

 S7_timer-applic-02a

Rashad Alkakkali EEE422 ADVANCED PLC Page 125

Applications using OFF-Delay timers

Off-Delay Timer Used to Switch Motors Off at a 5 s intervals:
Closing the sw-1 immediately turns on motors M1, M2, and M3. When the switch
is opened, motors M1, M2, and M3 turns off at 5-s intervals.

Rashad Alkakkali EEE422 ADVANCED PLC Page 126

Annunciator flasher program

Two timers can be interconnected to form an oscillator circuit. The oscillator logic
is basically a timing circuit programmed to generate periodic output pulses of any
duration. They can be used as part of an annunciator system to indicate an alarm
condition.

The oscillator circuit output is programmed in series with the alarm
condition. If the alarm condition is true, the appropriate output indicating
light will flash.

Rashad Alkakkali EEE422 ADVANCED PLC Page 127

Application “Tank filling system”

Suppose that you have a Tank Filling System. Design a Ladder Program for the
system with the following conditions:

i) When the START push button is pressed, the Pump starts to fill the
tank until the HIGH level is reached. Then Pump stops.

ii) Then, STEAM valve opens, raising the temperature, until the
temperature switch I124.5 is activated.

iii) Ten minutes after the desired temperate is reached the Steam
shuts off and the Drain1 valves open.

iv) After the Tank is Empty and water level reaches LOW LEVEL
sensor, the Drain1 valve also shuts off.

v) The process can be stopped whenever by pressing the STOP push
button.

Rashad Alkakkali EEE422 ADVANCED PLC Page 128

Solution

Rashad Alkakkali EEE422 ADVANCED PLC Page 129

Application “Traffic light of one street”

Rashad Alkakkali EEE422 ADVANCED PLC Page 130

SOLUTION

Rashad Alkakkali EEE422 ADVANCED PLC Page 131

Application “Traffic light of two streets”

Rashad Alkakkali EEE422 ADVANCED PLC Page 132

PART SEVEN

PROGRAMMING COUNTERS - I

Rashad Alkakkali EEE422 ADVANCED PLC Page 133

PROGRAMMING COUNTERS I

Counters:

Common applications of counters include keeping track of the number of items

moving past a given point, and determining the number of times a given action

occurs.

 A preset counter can control an external circuit

when its counted total matches the user-entered

preset limits.

Mechanical Counters:

Programmed counters can serve the same functions as

mechanical counters.

Every time the actuating lever is moved over the counter

adds one number, while the actuating lever returns

automatically to its original position. Resetting to zero is

done with a pushbutton located on the side of the unit.

Electronic Counters:

Electronic counters can count up, count down, or be combined to count up and

down. They are dependent on external sources, such as parts traveling past a

sensor or actuating a limit switch for counting.

Rashad Alkakkali EEE422 ADVANCED PLC Page 134

Step 7 Counters

COUNTER OPERATIONS

In control engineering, counter functions are needed for collecting the number of

items or pulses and for the evaluation of times and distances. In the SIMATIC

S7, counters are already integrated in the CPU. These counters possess their

own reserved storage area. The range of the count value lies between 0 and

999. The following functions can be programmed with a counter:

RELEASE COUNTER (FR) ONLY IN STL

A positive edge change (of “0“ to “1“) in the logical operation of the operation

release (FR) releases a counter.

A counter release is not needed for setting a counter or for normal counting

operations. However, if one wants to set a counter without a rising edge before

the appropriate counting operation (CU, CD or S), then this can take place with a

release. This is however possible only if the RLO bit before the appropriate

operation (CU, CD or S) has a signal status “1“.

COUNTER UP (CU)

The value of the addressed counter is increased by 1. The function becomes

effective only with a positive edge change of the logical operation programmed

before CU. If the count value achieves the upper limit of 999, it is no longer

increased. (a carry is not generated!)

The operation release (FR) only exists in the
programming language STL.

UP/Down Counter
UP Counter
Down Counter
Set Counter Value
Up Counter coil
Down Counter coil

Rashad Alkakkali EEE422 ADVANCED PLC Page 135

COUNTER DOWN (CD)

The value of the addressed counter is reduced by 1. The function becomes

effective only with a positive edge change of the logical operation programmed

before CD. If the count value achieves the lower limit 0, it is no longer reduced.

(Only positive counter values!)

SET COUNTER (S)

In order to set a counter, you must insert three operations into its STL program:

 Query a signal status

 Load a count value

 Set a counter with the loaded count of the function.

 This function is only edited by a positive edge change of the query.

COUNTER VALUE (CV)

If a counter is set, then the contents of ACCU 1 are used as the count. There is a

possibility to code the count value either as binary or BCD code. The following

operands are possible:

- Input word IW ..

- Output word QW ..

- Memory bit word MW ..

- Data word DBW/DIW ..

- Local data word LW ..

- Constant C#5, 2#...etc.

RESET COUNTER (R)

The counter is set to zero (to reset) with RLO 1. The counter remains

unchanged with RLO 0. Resetting a counter works statically. During a satisfied

resetting condition, a counter can be neither set nor counted.

LOAD COUNTER (L/LC)

A count is stored in a counter word binary code. The value in the counter can be

loaded as a dual number (DU) or as BCD number (DE) into the ACCU and be

transferred from there into other operand ranges. With STL programming, you

have the choice between L C1 for the query of the dual number and LC C1 for

the query of the BCD number.

e.g.:

A I 2.3

L C#5

S C1

Rashad Alkakkali EEE422 ADVANCED PLC Page 136

QUERY SIGNAL STATE OF COUNTER (Q)

A counter can be tested for its signal status. The meaning of the signal states

are:

Signal state 0 = Counter stays on the value 0;

Signal state 1 = Counter runs, i.e. it is count ready.

Signal statuses can be queried with A C1, AN C1, ON C1, etc.... and can be

used for further logical operations.

COUNTER
CU

CD

S CV

PV CV_BCD

R Q

C1

I0.0

C#5

I0.3

QW2

QW4

Q 0.0

FBD STL

A I 0.7 Release (only in STL)

FR C1

A I 0.0

CU C1 Count up

A I 0.1

CD C1 Count down

A I 0.2

L C#5 Load counter with default value

S C1 Set counter with default value

A I 0.3

R C1 Rest counter C1

L C1 Load counter C1 DUAL-coded

T QW2

LC C1 Load counter C1 BCD-coded

T QW4

A C1 Query of the counter C1

= Q 0.0

COUNTER
CU Q

CD

S

PV CV

R CV_BCD

C1

I0.0

C#5

I0.2

QW2

QW4

Q 0.0

LAD

  ()

I0.1

I0.1

I0.3

I0.2

 Signal state chart:

FR

CU

CD

S

R

Q 0.0

0

5

Rashad Alkakkali EEE422 ADVANCED PLC Page 137

Counter Value
A 16-bit word is reserved for each counter in the system data memory. This word is used for
storing the counter’s value (0 to 999) in binary code.

Count Up
 When the RLO at the "CU" input changes from "0" to "1", the counter’s current value is
incremented by 1 (upper limit = 999).

Count Down
When the RLO at the "CD" input changes from "0" to "1", the counter’s current value is
decremented by 1 (lower limit = 0).

Set Counter
When the RLO at the "S" input changes from "0" to "1", the counter is set to the value at the "PV"
input.

Reset Counter
When the RLO at the Reset changes from "0" to "1", the counter’s value is set to zero. If the reset
condition is fulfilled (stays "high"), the counter cannot be set and counting in either direction is not
possible.

PV The preset value (0 to 999) is specified in BCD format at the "PV" input as:

• As a constant (C#...)
• A BCD format through a data interface.

CV / CV_BCD
The counter value can be loaded as a binary number (CV) or BCD number (CV_BCD) into
accumulator 1 and then transferred to other addresses.

Q The signal state of the counter can be checked at output "Q":

• Count = 0 -> output Q = 0
• Count >< 0 -> output Q = 1

Types of Counters
• S_CU = Up counter (counts up only)
• S_CD = Down counter (counts down only)
• S_CUD = Up/Down counter.

Rashad Alkakkali EEE422 ADVANCED PLC Page 138

Notes
When the counter reaches its maximum value (999), the next count up signal
does not affect the counter. Likewise, when the counter reaches its minimum
value (0), the next count down signal does not affect the counter. The counters
do not count above 999 of lower than zero. If an up count and a down count
signal occur at the same time, the count remains the same.

Rashad Alkakkali EEE422 ADVANCED PLC Page 139

Bit Instructions
All counter functions can also operate with simple bit instructions. The similarities
and differences between this method and the counter functions discussed so far
are as follows:
• Similarities:

- Setting conditions at the "SC" input
- Specification of the counter value
- RLO change at the "CU" input
- RLO change at the "CD" input

• Differences:
- It is not possible to check the current counter value since there are no
Binary
 (CV) or BCD (CV_BCD) outputs.
- There is no binary output Q in the graphical representation.

Note
IEC-compliant counters can also be implemented in STEP 7. The use of system
function blocks for implementing IEC counters is dealt with in an advanced
programming course.

Rashad Alkakkali EEE422 ADVANCED PLC Page 140

Simple Up-Counter Program:

This simple up counter is designed to turn the red pilot light on and the green

pilot light off after an accumulated count of 7. Operating pushbutton PB1

provides the off-to-on transition pulses that are counted by the counter. [Unlike

the other plc’s Siemens counter requires the use of a comparator to check

for the preset value]. In this case the counter preset value is 7. PB2 pushbutton

is used to reset the counter value.

 S7_counter-applic-01

Rashad Alkakkali EEE422 ADVANCED PLC Page 141

Rashad Alkakkali EEE422 ADVANCED PLC Page 142

PART EIGHT

PROGRAMMING COUNTERS - II

Rashad Alkakkali EEE422 ADVANCED PLC Page 143

PROGRAMMING COUNTERS II

One-Shot, or Transitional, Contact Program:

The transitional or one shot contact program can be used to automatically clear

or reset a counter. The program is designed to generate an output pulse that,

when triggered, goes on for the duration of one program scan and then goes off.

The transitional or one shot contact program can be used to automatically clear

or reset a counter. The program is designed to generate an output pulse that,

when triggered, goes on for the duration of one program scan and then goes off.

Rashad Alkakkali EEE422 ADVANCED PLC Page 144

Types of Transitional Contacts:

Conveyor Motor Circuit That Uses a Programmed

 One-Shot Reset Circuit:

Sequential Task:

The start button is pressed to

start the conveyor motor.

Cases move pass the proximity

switch and increment the

accumulated value.

After a count of 50, the conveyor

motor stops automatically and the

counters accumulated value is

reset to zero.

The conveyor motor can be stopped or started manually at anytime without loss

of the accumulated count.

Rashad Alkakkali EEE422 ADVANCED PLC Page 145

Conveyor Motor Circuit That Uses a Programmed One-Shot
Reset Circuit:

Rashad Alkakkali EEE422 ADVANCED PLC Page 146

Counter Cascading:

Note the use of CV_BCD

Rashad Alkakkali EEE422 ADVANCED PLC Page 147

Down-Counter:

The down-counter output instruction will count down or decrement by 1 each time

the counted event occurs. Each time the down-count event occurs, the

accumulated value is decremented. Normally the down-counter is used in

conjunction with the up counter to form an up/down counter.

Simple down counter in simatic s7

 S7_down_counter

Rashad Alkakkali EEE422 ADVANCED PLC Page 148

Up/Down Counter Timing Diagram:

Rashad Alkakkali EEE422 ADVANCED PLC Page 149

Parking Garage Counter Program:

 As a car enters, it triggers the up-counter output instruction and

increments the accumulated count by 1.

 As a car leaves, it triggers the down-counter output instruction and

decrements the accumulated count by 1.

 Since both the up- and down-counters have the same address, the

accumulated value will be the same in both.

 Whenever the accumulated value equals the preset value, the counter

output is energized to light up the Lot Full sign.

Parking Garage Counter Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 150

Counting Beyond the Maximum Count

Rashad Alkakkali EEE422 ADVANCED PLC Page 151

Counter Speed:

The maximum speed of transitions you can count is determined by your

program's scan time. Any counter input signal must be fixed for one scan time to

be counted reliably.

Combining Counter and Timer Functions:

When the start button is pressed,

conveyor M1 begins running.

After 15 plates have been stacked,

conveyor M1 stops and conveyor M2

begins running.

After conveyor M2 has been operated

for 5 s, it stops and the sequence is

repeated automatically.

The done bit of the timer resets the

timer and counter, and provides a

momentary pulse to Automatic

Stacking Process automatically

restart conveyor.

If the input changes faster than

one scan period, the count

value will become unreliable

because' counts will be missed.

When this is the case you need

to use a high-speed counter.

Rashad Alkakkali EEE422 ADVANCED PLC Page 152

Automatic Stacking Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 153

Product Flow Rate Program:

This program is designed to indicate how many

parts per minute pass a given process point.

When the start switch is closed, both the counter

and timer are enabled.

The counter is pulsed for each part passing the

sensor.

The counting begins and the timer starts timing through its 1-min time interval.

At the end of 1 min, the timer done bit causes the counter rung to go false.

Sensor pulses continue but do not affect the PLC counter. The number of parts

for the past minutes is represented by the accumulated value of the counter.

Product Flow Rate Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 154

Example:
 Write a program to operate a light according to the following sequence:

 A momentary switch is pressed to start the sequence -The light is

switched on and remains on for 2 s.

 The light is then switched off and remains off for 2 s -A counter is

incremented by 1 after this sequence.

 The sequence then repeats for a total of 4 counts.

 After the fourth count, the sequence will stop and the counter will

be reset to zero.

Rashad Alkakkali EEE422 ADVANCED PLC Page 155

 PART NINE

PROGRAM CONTROL INSTRUCTION

Rashad Alkakkali EEE422 ADVANCED PLC Page 156

PROGRAM CONTROL INSTRUCTIONS

 Program control instructions are

used to alter the program scan

from its normal sequence.

 Sometimes referred to as

override scan instructions, they

provide a means of executing

sections of the control logic if

certain conditions are met.

 They allow for greater program

flexibility and greater efficiency in

the program scan.

Hardwired Master Control Relay Circuit:

Rashad Alkakkali EEE422 ADVANCED PLC Page 157

MCR Instruction:

 The master control reset (MCR) instruction can be programmed to control an

entire circuit or to control only selected rungs of a circuit.

 When the MCR instruction is false, or de-energized, all non-retentive (non-

latched) rungs below the MCR will be de-energized even if the programmed

logic for each rung is true.

 All retentive rungs will remain in their last state.

 The MCR instruction establishes a zone in the user program in which all non-

retentive outputs can be turned off simultaneously.

 Therefore, retentive instructions should not normally be placed within an

MCR zone because the MCR zone maintains retentive instructions in the last

active state when the instruction goes false.

In SIMATIC S7, the following instructions have to be in the sequence below. You

may have more than one MCR zone.

(MCRA) Master Control Relay Activate

 (MCR<) Master Control Relay On

 (MCR>) Master Control Relay Off

(MCRD) Master Control Relay Deactivate

Rashad Alkakkali EEE422 ADVANCED PLC Page 158

MCR functionality is activated by the MCRA rung. It is then possible to create up

to eight nested MCR zones. In the example above there is only one MCR zone.

MCR Instruction Programmed To Control a Fenced Zone:

The Master Control Reset Activate (MCRA) and

Master Control Reset Deactivate (MCRD)

instruction are used in pairs to disable or enable

a zone within a ladder program and has no

address. You program the first zone (MCR<)

with input instructions in the rung and the ending

the zone by (MCR>) without any other

instructions in the rung.

Rashad Alkakkali EEE422 ADVANCED PLC Page 159

Try to use both retentive and non-retentive timers to see the effect of

controlled zone.

Rashad Alkakkali EEE422 ADVANCED PLC Page 160

Rashad Alkakkali EEE422 ADVANCED PLC Page 161

Jump Instruction

As in computer programming, it is sometimes desirable to be able to jump over

certain program instructions. The jump instruction (JMP) is an output instruction

used for this purpose. The advantages to the jump instruction include:

 The ability to reduce the processor scans time by jumping over

instructions not pertinent to the machines operation at that instant.

 The PLC can hold more than one program and scan only the program

appropriate to operator requirements

 Sections of a program can be jumped when a production fault occurs.

Jump Operation:

By using the jump instruction, you can branch or skip to different portions of a

program and freeze all affected outputs in their last state.

Jumps are normally allowed

in scan both the forward and

backward directions.

Jumping over counters and

timers will stop them from

being incremented.

Description

With Siemens PLC, You can use logic control instructions in all logic blocks:

organization blocks (OBs), function blocks (FBs), and functions (FCs).

There are logic control instructions to perform the following functions:

· ---(JMP)--- Unconditional Jump

· ---(JMP)--- Conditional Jump

· ---(JMPN)--- Jump-If-Not

Rashad Alkakkali EEE422 ADVANCED PLC Page 162

Label as Address

The address of a Jump instruction is a label. A label consists of a maximum of

four characters. The first character must be a letter of the alphabet; the other

characters can be letters or numbers (for example, SEG3). The jump label

indicates the destination to which you want the program to jump.

Label as Destination

The destination label must be at the beginning of a network. You enter the

destination label at the beginning of the network by selecting LABEL from the

ladder logic browser. An empty box appears. In the box, you type the name of

the label.

LABEL Label

Description

LABEL is the identifier for the destination of a jump instruction.

The first character must be a letter of the alphabet; the other characters can be

letters or numbers (for example, CAS1).

A jump label (LABEL) must exist for every ---(JMP) or ---(JMPN).

Rashad Alkakkali EEE422 ADVANCED PLC Page 163

Example

If I0.0 = "1", the jump to label CAS1 is executed. Because of the jump, the

instruction to reset output Q4.0 is not executed even if there is a logic "1" at I0.3.

---(JMP)--- Unconditional Jump

Symbol

<label name>

---(JMP)

Description

---(JMP) (jump within the block when 1) functions as an absolute jump when

there is no other Ladder element between the left-hand power rail and the

instruction (see example).

A destination (LABEL) must also exist for every ---(JMP).

All instructions between the jump instruction and the label are not executed.

Status word

 BR CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - - - - - -

Rashad Alkakkali EEE422 ADVANCED PLC Page 164

Example

The jump is always executed and the instructions between the jump instruction

and the jump label are missed out.

---(JMP)--- Conditional Jump

Symbol

<label name>

---(JMP)

Description

---(JMP) (jump within the block when 1) functions as a conditional jump when

the RLO of the previous logic operation is "1".

A destination (LABEL) must also exist for every ---(JMP).

All instructions between the jump instruction and the label are not executed.

If a conditional jump is not executed, the RLO changes to "1" after the jump

instruction.

Status word

 BR CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - - 0 1 1 0

Rashad Alkakkali EEE422 ADVANCED PLC Page 165

Example

If I0.0 = "1", the jump to label CAS1 is executed. Because of the jump, the

instruction to reset output Q4.0 is not executed even if there is a logic "1" at I0.3.

Rashad Alkakkali EEE422 ADVANCED PLC Page 166

Jump-To-Label from Two Locations:

Avoid jumping backwards in the program too many times as this may increase

the scan beyond the maximum allowable time. The processor has a watchdog

timer that sets the maximum time for a total program scan. If this time is

exceeded, the processor will indicate a fault and shut down.

You should never jump into an MCR zone. Instructions that are programmed

within the MCR zone starting at the LBL instruction and ending at the end MCR

instruction will always be evaluated as though the MCR zone is true, without

consideration to the state of the start MCR instruction.

Rashad Alkakkali EEE422 ADVANCED PLC Page 167

CALL Subroutine:

Another valuable tool in PLC programming is to be able to escape from the main

program and go to a program subroutine to perform certain functions and then

return to the main program.

SIEMENS Subroutine-Related Instructions:

The CALL instruction causes the scan to jump to the program file designated in

the instruction. It is the only parameter entered in the instruction.

When rung conditions are true for this output instruction, it causes the processor

to jump to the targeted subroutine file.

Rashad Alkakkali EEE422 ADVANCED PLC Page 168

The RET instruction is an output instruction that marks the end of the subroutine

file. It causes the scan to return to the main program at the instruction following

the JSR instruction where it exited the program.

The scan returns from the end of the file if there is no RET instruction. The rung

containing the RET instruction may be conditional if this rung precedes the end of

the subroutine. In this way, the processor omits the balance of a subroutine only

if its rung condition is true.

Flashing Pilot Light Subroutine:

If the weight on the conveyor exceeds a preset value, the solenoid is de-

energized and the alarm light will begin flashing.

"'.

. .

Rashad Alkakkali EEE422 ADVANCED PLC Page 169

Flashing Pilot Light Subroutine Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 170

Fault Routine:

PLC controllers allow you to design a subroutine file as a fault routine. If used, it

determines how the processor responds to a programming error.

There are two kinds of major faults that result in a processor fault: recoverable

and non-recoverable faults.

When there is a fault routine, and the fault is recoverable, the fault routine is

executed.

If the fault is non-recoverable, the fault routine is scanned once and shuts down.

Either way, the fault routine allows for an orderly shutdown.

Rashad Alkakkali EEE422 ADVANCED PLC Page 171

PART TEN

FPRCING EXTERNAL IO ADDRESSES

Rashad Alkakkali EEE422 ADVANCED PLC Page 172

Forcing External I0 Addresses

Forcing External I0 Addresses:

The forcing capability of a PLC allows the user to turn an external input or output

"on" or "off" from the keyboard of the programmer.

Forcing Inputs:

Overriding of physical inputs on conventional relay control systems can be

accomplished by installing hardwire jumpers. With PLC control this is not

necessary as the input data table values can be forced to an "on" or "off" state.

Forcing inputs manipulates the input image table file bits and thus affects all

areas of the program that uses those bits.

Rashad Alkakkali EEE422 ADVANCED PLC Page 173

Forcing an Input Address On:

Rashad Alkakkali EEE422 ADVANCED PLC Page 174

Forcing Outputs:

Forcing outputs affects only the addressed output terminal. When we force an

output address; we are forcing only the output terminal to an on or off state.

The output image table file bits are unaffected; therefore, your program will be

unaffected. The forcing of outputs is done just before the output image table file

is updated.

By forcing outputs "off" you can prevent the controller from energizing those

outputs, even though the ladder logic, which normally controls them, may be true.

Forcing an Output Address On:

Rashad Alkakkali EEE422 ADVANCED PLC Page 175

Forcing an Output Address On:

Forcing outputs affects only the addressed output terminal.

Using Forcing Functions:

The Force functions can be applied when the processor is in the run mode.

An understanding of the potential effect that forcing given inputs or outputs will

have on the machine operation is essential to avoid possible personal injury and

equipment damage.

Most programming terminals provide some visible means of alerting

the user that a force is in effect.

Rashad Alkakkali EEE422 ADVANCED PLC Page 176

SIEMENS PLC

Force in/Force out

Step 1: Enter program

Step 2: Download program and monitor ON
Step 3: To, Activate forcing on: GOTO PLC – DISPLAY FORCE VALUES

Rashad Alkakkali EEE422 ADVANCED PLC Page 177

Step 4: Enter values in table for address and force value.

Step 5: GOTO VARIABLE and press FORCE: Observe Output

Rashad Alkakkali EEE422 ADVANCED PLC Page 178

Step 6: Observe program, because of forcing input, both outputs are HIGH

Step 7: To UNDO forcing, press STOP FORCING, both OUTPUTS will be low

Rashad Alkakkali EEE422 ADVANCED PLC Page 179

Step 7: To make forcing OFF, switch on outputs manually from inputs. Turn ON
the outputs and then in the variable table, enter the inputs and FORCE VALUE –
0, it will turn off the outputs.

Rashad Alkakkali EEE422 ADVANCED PLC Page 180

Wiring of Stop Push Buttons:

The wiring of stop buttons is another important safety consideration. A stop

button is generally considered a safety function as well as an operating function.

As such, it should be wired using

a NC contact and programmed to

examine for an on condition.

Using a NO contact programmed

to examine for an off condition

will produce the same logic,

however, this is not preferred and

is considered to be not as safe.

Rashad Alkakkali EEE422 ADVANCED PLC Page 181

PART ELEVEN

SHIFT & ROTATE INSTRUCTIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 182

Rashad Alkakkali EEE422 ADVANCED PLC Page 183

Rashad Alkakkali EEE422 ADVANCED PLC Page 184

Rashad Alkakkali EEE422 ADVANCED PLC Page 185

Rashad Alkakkali EEE422 ADVANCED PLC Page 186

Rashad Alkakkali EEE422 ADVANCED PLC Page 187

Rashad Alkakkali EEE422 ADVANCED PLC Page 188

Rashad Alkakkali EEE422 ADVANCED PLC Page 189

Rashad Alkakkali EEE422 ADVANCED PLC Page 190

Rashad Alkakkali EEE422 ADVANCED PLC Page 191

Rashad Alkakkali EEE422 ADVANCED PLC Page 192

Rashad Alkakkali EEE422 ADVANCED PLC Page 193

Rashad Alkakkali EEE422 ADVANCED PLC Page 194

Rashad Alkakkali EEE422 ADVANCED PLC Page 195

Rashad Alkakkali EEE422 ADVANCED PLC Page 196

Application s of shift operations

The program of figure 12-26 illustrates a spray-painting operation controlled by a
shift register. Each file bit location represents a station on the line, and the status
of the bit indicates whether or not a part is present at that station.

The bit address, I 1.0, detects whether a part has come on the line. The shift
register’s function is used to keep track of the items to be sprayed. A bit shift left
instruction is used to indicate a forward motion of the line. As the parts pass
along the production line, the shift register bit patterns represent the items on the
conveyor hangers to be painted. LS1 is used to detect the hanger and LS2
detects the part. The logic of this operation is such that when a part to be painted
and a part hanger occur together (indicated by the simultaneous operation of LS1
and LS2), a logic 1 is input into the shift register.
The logic 1 will cause the undercoat spray gun to operate, and five steps later,
when a 1 occurs in the shift register, the topcoat spray gun is operated. Limit
switch 3 counts the parts as they exit the oven. The count obtained by limit
switch 2 and limit switch 3 should be equal at the end of the spray-painting run
(PL1 is energized) and is an indication that the parts commencing the spray-
painting run equal the parts that have completed it. A logic 0 in the shift register
indicates that the conveyor has no parts on it to be sprayed, and it therefore
inhibits the operation of the spray guns.

Rashad Alkakkali EEE422 ADVANCED PLC Page 197

The Solution using Siemens S7

Rashad Alkakkali EEE422 ADVANCED PLC Page 198

PART TWLEVE

MATH INSTRUCTIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 199

MATH INSTRUCTIONS

PLC math instructions allow you to perform arithmetic functions on values stored in

memory words.

For example, assume you are using a counter to keep track of the numbers of parts

manufactured and you would like to display how many more must be produced in order

to reach a certain quota. This would require the data in the accumulated value of the

counter to be subtracted from the quota required.

SIEMENS STEP7 MATH ICTIONS

Rashad Alkakkali EEE422 ADVANCED PLC Page 200

ADD Instruction:

The ADD instruction is an output instruction that performs the addition of two values

stored in the referenced memory locations.

When the rung is true, the value stored at the MW0 address, MW0=(25), is added to the

value stored at the MW2 = (50), and the answer (75) is stored at the destination

address, MW10.

Rashad Alkakkali EEE422 ADVANCED PLC Page 201

Counter Program That Uses the ADD Instruction:

The program of the following slide shows how the ADD instruction can be used to add

the accumulated counts of two up-counters. This application requires a light to come on

when the sum of the counts from the two counters is equal to or greater than 350.

Input1 of the ADD instruction is addressed to store the accumulated value of counter

C1, while input2 is addressed to store the accumulated value of counter C2.

The value at MW8 is added to the value at MW10 and the result (answer) is stored at

destination address MW12. Input 1 of the GREATER THAN OR EQUAL instruction is

addressed to store the value of the destination address MW12, while Input 2 contains

the constant value of 350. Therefore the GREATER THAN OR EQUAL instruction will

be logic true whenever the accumulated values in the two counters are equal to or

greater than the constant value 350. A reset button is provided to reset the accumulated

count of both counters to zero.

Rashad Alkakkali EEE422 ADVANCED PLC Page 202

SUBTRACT Instruction:

The SUBTRACT instruction is an output instruction that subtracts one value from

another and stores the result in the destination address.

When rung conditions are true, the subtract instruction subtracts IN2 from IN1 and

stores the result in the destination.

When the rung is true, the value stored at the IN2 address, MW2 (322), is subtracted

from the value stored at the IN1 address, MW0 (520), and the answer (198) is stored at

the destination address, MW10.

Rashad Alkakkali EEE422 ADVANCED PLC Page 203

Overfill Alarm Program:

The program of the following side shows how the SUBTRACT function can be used to

indicate a vessel overfill condition. This application requires an alarm to sound when a

supply system leaks 5 Ib or more of raw material into the vessel after a preset weight of

500 Ib. has been reached. When the start button is pressed, the fill solenoid (rung 1)

and filling indicating light (rung 2) are turned on and raw material is allowed to flow into

the vessel. The vessel has its weight monitored continuously by the PLC program (rung

3) as it fills. When the weight reaches 500 Ib, the fill solenoid is de-energized and the

flow is cut off. At the same time, the filling pilot light indicator is turned off and the full

pilot light indicator (rung 3) is turned on. Should the fill solenoid leak 5 Ib or more of raw

material into the vessel, the alarm (rung 5) will energize and stay energized until the

overflow level is reduced below the 5 Ib overflow limit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 204

Rashad Alkakkali EEE422 ADVANCED PLC Page 205

MULTIPLY Instruction:

The MULTIPLY instruction is an output instruction that multiplies two values and stores

the result in the destination address.

When rung conditions are true, the multiply instruction multiplies IN1 by IN2 and stores

the result in the destination “OUT”.

When the rung is true, the data in IN1 (the constant, 20) will be multiplied by the data in

IN2 (the accumulated value of counter C5), with the result being placed in the

destination MW10

As with previous math instructions, IN1 and IN2 can be values (constants) or addresses

that contain values.

Rashad Alkakkali EEE422 ADVANCED PLC Page 206

Simple MULTIPLY Program:

Oven Temperature Control Program:

The program of the following side shows how the MULTIPLY instruction is used as part

of an oven temperature control program. In this program, the PLC calculates the upper

and lower dead band or off/on limits about the set point. The upper and lower limits are

set automatically at  1 % regardless of the set-point value. The set-point temperature is

adjusted by means of the thumbwheel switch. An analog thermocouple interface module

is used to monitor the current temperature of the oven. In this example, the set-point

temperature is 400F. Therefore, the electric heaters will be turned on when the

temperature of the oven drops to less than 396F and stay on until the temperature

rises above 404 F. If the set-point is changed to 100F, the dead band remains at 

1%, with the lower limit being 99 of and the upper limit being 101°F. The number stored

in word MD4 represents the upper temperature limit, while the number stored in word

MD12 represents the lower limit.

Rashad Alkakkali EEE422 ADVANCED PLC Page 207

Temperature Control

Program

Rashad Alkakkali EEE422 ADVANCED PLC Page 208

DIVIDE Instruction:

The DIVIDE instruction divides the value in IN1 by the value in IN2 and stores the result

in the destination OUT and math register.

When the rung is true, the data in MW2 will be divided by the data in MW4, with the

result being placed in the destination MW8

Simple DIVIDE Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 209

Converting °C to F Program:

The program of the following side shows how the DIVIDE instruction is used as part of a

program to convert Celsius temperature to Fahrenheit. In this application, the

thumbwheel switch connected to the input module indicates Celsius temperature. The

program is designed to convert the recorded Celsius temperature in the data table to

Fahrenheit values for display. The formula: F = (9/5 x C) + 32 forms the basis for the

program. In this example, a current temperature reading of 60 °C is assumed. The

MULTIPLY instruction multiplies the temperature (60°C) by 9 and stores the product

(540) in address N7:0. Next, the DIVIDE instruction divides 5 into the 540 and stores

the answer (108) in address N7:1. Finally, the ADD instruction adds 32 to the value of

108 and stores the sum (140) in address O:13. Thus 60°C = 140°F.

Converting °C to °F Program:

Rashad Alkakkali EEE422 ADVANCED PLC Page 210

Square Root (SQRT) Instruction:

The Square Root (SQRT) instruction is an output instruction that determines the square

root of a number.

When rung conditions are true, the square root instruction calculates the square root of

the number stored at IN and places the answer in the OUT.

Square Root (SQR) Instruction:

When the rung is true, the square root of the number in IN, MD2 (144), will be

calculated and the answer (12) placed in the destination OUT, MD8.

Rashad Alkakkali EEE422 ADVANCED PLC Page 211

Negate Instruction (NEG):

The Negate (NEG) instruction is an output instruction that negates (changes the sign of)

of a value.

When rung conditions are true, the negate instruction changes the sign of IN and stores

the result in the destination OUT.

Negate Instruction (NEG)

When the rung is true, the sign of the number IN, MW8 (101), will be changed and the

result (-101) placed in the destination OUT, MW10.

Positive numbers will be stored in straight binary format, and negative numbers will be

stored in two's complement.

Rashad Alkakkali EEE422 ADVANCED PLC Page 212

Convert Integer to BCD Instruction:

The convert to I_BCD output instruction is used to convert 16-bit integers into binary

coded decimal (BCD) values.

When rung conditions are true, the I_BCD instruction converts the 16-bit integer stored

at IN to BCD and places the answer in the destination OUT. This instruction could be

used when transferring data from the processor (which stores data in binary format) to

an external device, such as an LED display, that functions in BCD format.

When input A is true, the I_BCD instruction will convert the binary bit pattern at the IN

address, MW2, into a BCD bit pattern of the same decimal value at the destination

address MW4

Rashad Alkakkali EEE422 ADVANCED PLC Page 213

The IN displays the value 10, which is the correct decimal value; however, the

destination OUT displays the value 16. Since the processor interprets all bit patterns as

binary, the value 16 is the binary interpretation of the BCD bit pattern. The bit pattern for

10 BCD is the same as the bit pattern for 16 binary.

Rashad Alkakkali EEE422 ADVANCED PLC Page 214

Convert From BCD to Integer Instruction:

The convert from BCD_I output instruction is used to convert binary coded decimal

(BCD) values to integer values.

When rung conditions are true, the BCD_I instruction converts the BCD value to the

equivalent integer value and stores the converted value in the destination. This

instruction could be used to convert data 'from a BCD external source, such as a BCD

thumbwheel switch, to the binary format in which the processor operates.

When input A is true, the BCD_I instruction will convert the BCD bit pattern stored at the

source address, MW4, into a binary bit pattern of the same decimal value at the

destination address, MW8.

Rashad Alkakkali EEE422 ADVANCED PLC Page 215

REFRENCES

Text Books:

Programmable Logic Controllers By: Frank D. Petruzella

McGrawHill

ISBN 0-07-829852-0

Lab Manual for Programmable Logic Controllers with LogixPro

PLC simulator By: Frank D. Petruzella

SIEMENS Manuals:

Ladder Logic (LAD) for S7-300 S7-400 Programming Manuals

Siemens CTRAIN Documents.

