1.8V 0.18um CMOS Novel Successive Approximation ADC
With Variable Sampling Rate

Abstract

With the increased sophistication of System-on-Chip (SOC)
architectures comes an increased need for low power Analog to
Digital converters. These converters have many uses including
Built-in-Self-Test (BIST) applications. In this paper, we present a
novel Successive Approximation ADC. We show how one can
utilize an existing DAC structure on an SOC to realize an effective
Analog-to-Digital converter for self-testing applications. The
achieved ADC operates at 125 MSamples/s consuming only 3.8
mW of power. The design is implemented in 0.18um 1.8-V CMOS
technology.

1. Introduction

With the increased density of deep submicron
technologies come further integration techniques,
combining many mixed signal applications with
digital circuitry. With process variation it is
necessary to ensure proper functionality of analog
circuitry. In order to reduce the cost of testing, BIST
methodologies have been proposed [1]. In addition
with the highly integrated nature of modern devices,
it is desirable to implement these BIST devices with
the least amount of area and power overhead
possible. To reduce cost, the reuse of existing
circuitry is highly desirable.

In this paper, we present a methodology of
constructing an analog to digital converter
appropriate for testing low frequency signals. In the
particular application considered, high resolution is
not required as we are only trying to ensure basic
functional characteristics of the signal generators.
However, the criteria requires that the full operating
range of the signal generator is valid and that the
signal shape is correct and is free of large signal
noise often associated with digital circuits in close
proximity.

The design considered will take advantage of
preexisting structures common on SOC applications.
DACs are often used in Mixed Signal SOC designs,
and with a minimal amount of additional circuitry,
we are able to build a Successive Approximation
ADC. While these ADC’s are inherently slow, we
demonstrate a novel algorithm that enables us to get
changing output values every other clock cycle under

“ideal” conditions (see Section 4). Other converter
designs that enable output values to be achieved
every cycle are Flash, Folding, and Pipeline designs.
However, Flash and Folding in particular tend to
have high power consumption [7]. Pipeline
converters are difficult to implement in low voltage
operating conditions due to there extensive analog
design requirements [8].

2. Architecture

The Successive Approximation ADC is
composed of 3 major parts. These are: a DAC, a
Comparator and a Successive Approximation register
[3, 4]. As shown in Figure 1, we see that this ADC
functions by iterating through values, via the
Successive Approximation Register, until the DAC
and input are equal [5].

ANALOA A0S
IWPUIT, REF ERENCE,
n ¢—‘ YreF
D
B
DI TAL
CUTPUT
SUCCESSIVE
APFROEMATION
CLOTK | FEGISTER AND CONTROL

Figure 1 — Block Diagram of basic Successive
Approximation ADC.

This type of converter is algorithmic in nature
and as such, the implementation of the register
dictates the performance limitation of the converter.
Typically, the register implements a divide and
conquer style algorithm to find the value of the input
voltage [2]. This is done by iteratively dividing the
operating range in two until the voltage in question is

found. In our design, we implemented a new
algorithm that has many advantages over the
conventional algorithm. This new algorithm is
optimized for near continuous signals. This is
achieved by assuming that the next value will be
close to the previous value, rather than searching the
extreme values first. To realize this, we take a
modified Delta converter methodology, where by
rather than doing incremental changes in the direction
of change, we do exponential incremental changes.
A base-two power increment in rate of change is
done until the voltage value is matched or passed. If
the voltage is passed, the power of the exponent is
reset to 0 and the voltages are reduced in the same
iterative process (See Figure 2 for an example). This
insures convergence provided that boundary
conditions are appropriately handled. To deal with
the boundary conditions, we simply do not allow the
value of the register to overflow/underflow, but
rather overflow/underflow conditions set the register
to the Max/Min values of the register respectively.
The convergence of this algorithm can be better
understood, if one considers the following:

The device increments by

2°42'4+2% . 42" where by the exponential term n
increments by 1 for each iteration until

jZ">Xoer"=X (D
=0

k=0

7Rl

where X is the desired value and “j” is the iteration
limit (determined by the maximum exponent used, or

when the conditions are met)
J

if E 2" > X)

k=0

then “k” is reset to 0 and the result is decremented by
J J J

22" until 22" <Xor 22" =X 03

k=0 k=0 k=0

J
if E 2" < X &)
=0
then the result is incremented as shown in formula 1.

Thus the entire behavior can be described as

. where j>>m... (5)

This sequence converges since each summations
bounds must be smaller then the previous, and can
never be negative thus eventually this upper bounds
will be 0 and hence a finite end to the sequence. The
worst case can be found if we consider formula 5 and
note that the maximum number of iterations would be
when 7, “1”, “m”, etc would be maximum numbers.

Thus we would have

P
E n cycles where p is the resolution in bits.
=1

An additional cycle is required in our design for
the sample and hold to fetch the data. Hence the real
time is

P
1+ E n cycles (6)

=1
For 6 bits this is 22 cycles.

Thus, we see that this algorithm leads to
solutions to the voltage in a best case of one cycle
(when the voltage hasn’t changed), and a worst case
of 22 cycles for a 6-bit ADC. However, this worst
case can be easily avoided, as it only occurs when the
data changes rapidly and goes to extremes of the
device. This can be seen if we consider the Pseudo
code below describing the behavior of the converter.

Pseudo-code:

//initialize converter at midpoint
x=31

/ly is some input voltage value (between 0-63)
//that is a function of clock cycle t

:Loop
t=t+1 //new clock cycle every iteration
y=Input Value[t] //Sample and hold
/lupward cycle

while x<>y do begin //until the value is found do...
if x<>y then begin

n=1 //initialize increment to 1

while x<y do begin
X=x-+n /lincrement comparison value by n
n=n*2 /lincrease size of increment by factor
t=t+1 //increment clock as

/levery iteration takes a clock cycle
end //while statement

end //if statement
//[downward cycle
if x<>y then begin

n=1 //initialize increment to 1

while x>y do begin
X=X-N //decrement comparison value by n
n=n*2 /lincrease size of increment by factor
t=t+1 //increment clock as

/levery iteration takes a clock cycle

end //while statement
end //if statement
end // main while statement
Goto Loop //repeat for all time

We see in the pseudo code that if the input “y” is
equal to the search value “x” then we fall through all
the code and iterate to the next fetch of data. If the
data is only out one position either up or down, it
only takes one cycle, as we only operate in one loop
for an additional clock cycle.

Though this large variation leads to a worst-case
overall performance, however, it has ideal best-case
performance. In addition, the worst-case
performance is still nearly 3 times better than a pure
delta converter, which has a worst case of 63 cycles.
While the data can be high frequency, it is the large
rapid voltage changes that result in worst-case
performance of this converter. To limit the impact of
the worst-case scenario, we implemented the device
asynchronously. This leads to a variable sampling
rate. While a variable sampling rate is a non-typical
feature of an analog to digital converter, it has several
advantages over a typical fixed rate converter. This
type of interface returns more data points when run
under conditions where the data doesn’t change
dramatically. If the data isn’t returned every clock
cycle (in the case of suddenly changing voltages for
example), the number of cycles can be used to
reconstruct data points using any number of
interpolation techniques.

Operating Characteristics

0 2000 4000 6000 8000
Frequency in KH

Figure 2. The upper graph reflects worst-case sampling time in
clock cycles, the bottom graph indicates the average sampling
time in clock cycles, and both graphs are for a full amplitude
sine wave at the frequencies indicated.

In order to better understand the behavior of this
converter, the algorithm was implemented in an
object-oriented language. This program was then
used to simulate the performance for a given input
signal type and frequency. In Figure 2 is the average
number of cycles required to find a data point for a

given frequency of a sine wave that operated over the
full range of the converter (lower plot). Also plotted
is the worst case time (upper plot). This occurs at the
most rapidly changing voltage point (See Figure 2).
Under these conditions we see that the worst case
performance is better than the conventional algorithm
up to a frequency of approximately 1.8 MHz
(assuming a 125 MHz clock speed) and then the
sampling rate is lower then the standard 8 cycles per
sample of a conventional Successive Approximation
ADC of this resolution. However, if we examine
Chart 2 we observe that for signals that are half the
amplitude, but same frequency, that the converter
maintains the average sampling time to less than 8
cycles per sample up to approximately 3.6 MHz, and
never exceeds a worst case of 16 cycles, which can
be calculated from formula 6 assuming an initial
value of 5 for “p”. From this we can determine that
if the data points never shift more then 32 points in a
sample period that the worst sampling time will be 16
cycles, rather than 22 cycles (see Figure 3).

Operating Characteristics

. L

4 T u‘u‘ T

o N & o ® o

=
=
i:c

E:

s =
==

5|

e

0 200 40 6000 8000
Frequency inKHz

Figure 3. The upper graph reflects worst-case sampling time in
clock cycles, the bottom graph indicates the average sampling
time in clock cycles, and both graphs are for a half of max
amplitude sine wave at the frequencies indicated.

3. Application to BIST

The intended purpose of this device is to test on
chip signal generators. With this architecture, we can
utilize the asynchronous interface as a means to
determine, to a functional degree, if the data is valid.
A long duration of the asynchronous data line being
low indicates that the converter is having difficulty
converging on the signal. This would be the case of a
rapidly changing signal, such as a very noisy source.
If the converter sets the signal line high on every
cycle this indicates that the data isn’t changing at all,
and is characteristic of a dc source. In this way, we
can obtain a basic amount of information about a
particular signal. Thus, we can use this line with a
minimal amount of digital circuitry to determine an

immediate fail situation for our testing application.
Meanwhile if we get positive results over regular
intervals, we can determine the finer characteristics
of our signal generator, via the digital output of the
converter. Various waveforms also have a
characteristic asynchronous ready rate, which is
dependent upon the frequency and shape of the
signal. Thus, to create a basic testing device, one
only has to monitor the asynchronous line to
determine if the signal is valid with this architecture.
While this technique alone may not provide sufficient
information, it can be utilized to reduce the
complexity of circuitry required for further analysis
of the signal. As amplitude and frequency
information is reflected in the modulation rate of the
Asynchronous data ready line.

4. Hardware Implementation

To implement our algorithm in hardware, we
used a 3-bit counter, 3-bit decoder, and a 6-bit up-
down accumulator. The 3 bit counter increments the
power of the next step increment, while the decoder
implements the exponential function (power) that is
fed into the accumulator. The accumulator stores the
previous value and increments the stored value by the
amount fed into it. When an overflow/underflow
occurs, the accumulator value is set to 111111 or
000000 respectively.

This Register controls the values that are
compared to the input via a DAC. The feedback
from the 2 comparators dictates whether the counter
increments, or holds, and whether the accumulator
adds or subtracts the value that is received from the

_=: DataRsady

decoder. It should be noted that when the counter
goes into a hold mode, all the data lines on the
decoder drop to 0 and the accumulator is set so that
no data change occurs. The hold mode line is
activated when the data point is between the two
DAC output lines. The operation of the accumulator
is determined by the state of the upper DAC line in
relation to the input. If the input is below the
current DAC value, a subtraction operation occurs.
This is achieved by connecting the top comparator to
the accumulator’s subtraction line. By using this
methodology, a minimal amount of digital logic is
required and enables this device to operate as a low
power converter.

During the operation of the proposed circuit, the
location of a data value forces the asynchronous data
ready line, this in turn causes the sample and hold
circuit to fetch a new value. Within one cycle, the
converter determines if the value is the same, and
within 2 cycles, it determines if the value has
changed either up or down one bit level. This leads
to the sampling rate of one half the clock rate of the
circuit (what we refer to as the ideal operation rate
for this converter). If the data point moved more
than one bit level either up or down, one has to use
the algorithm to determine the number of cycles
required. Basic operation of this circuit can be seen
in Figure 4. The two DAC output lines are
successively adjusted until the Sample signal is
between them (see Figure 4 between 600 and 650ns).
When the signal is between them the Data Ready
Line is set active (upper waveform of Figure 4). This
intern causes a new sample to be fetched (Figure 4 at
670ns).

time (s 3

Figure 4 — This figure demonstrates the Successive Approximation ADC synchronizing to the input
sample and then fetching a new sample. Valid data is indicated by the top waveform, which is the
Asynchronous data ready line. On the bottom you can see the 2 DAC outputs syncing up with the input

sample.

4. Results

The Successive Approximation ADC was able to
achieve 125MSamples/s and its performance is
limited by the speed of the feedback loop. Due to
gate propagation delay, the counter doesn’t respond
fast enough to the hold signal and overshoots if the
speed is increased. This device performed well with
a low power consumption of 3.8mW and with a
maximum sampling rate of 125 MSamples/s. It
should be noted that due to the asynchronous nature
of the device, the sampling rate could slow down to
as low as 5.7 MSamples per second under worst-case
conditions.

While this converter is slow, its efficiency is
higher than other converters. When operating on low
frequency signals, the converter consumes
approximately 3.8mW, versus 30mW for the device
built by C. Lin et. al; in addition this device has
greater accuracy, with better INL and DNL
performance [6]. While we recognize that the
processes are different as well as the supply voltages,
and operating speed the power consumption is still
considerably lower even accounting for these
differences. Table 1 below summarizes the
performance of this device.

Table I. SAR ADC performance summary

C.Linet. al Current
Technology 0.35u CMOS | 0.18u CMOS
Max. Sampling | 250 Msample | 5.7-125
Rate MSamples
Resolution 6 Bits 6 Bits
INL 0.65 LSB 0.3 LSB
DNL 1 LSB 0.3 LSB
Power 30 mW 3.8 mW
Consumption
Power Supply 3.3V 1.8V

5. Conclusion

In summary, we presented a Successive
Approximation Analog to Digital converter utilizing
a new algorithm that tracks the input signal, and can

produce output values every cycle. The performance
of 125 MSamples/s, and low power consumption, of
just 3.8mW, of this converter makes it suitable for the
analysis of low frequency signals. In addition this
device was developed with a minimal amount of
additional circuitry as we were able to reuse a
preexisting DAC structure.

6. References

[1] F. Corsi, C. Marzocca, G. Matarrese “Defining A
BIST-Oriented signature for Mixed-Signal
Devices” IEEE Proceedings of Southwest
Symposium of Mixed Signal Design, pp.202-
207, 2003.

[2] A. Rossi and G. Fucili, “Non-redundant
successive approximation register for A/D
converters” Electron. Lett.,, Vol. 32, NO. 12,
pp.1055-1057, June 1996.

[3] Paul. G.A. Jespers. Integrated Converters D to A
and A to D Architectures, Analysis, and
Simulation. Oxford: New York, 2001.

[4] Alfi Moscovici. High Speed A/D Converters
Understanding Data Converters Through Spice.
Kluwer Academic Publishers: Massachusetts,
2001.

[5] R. Jacob Baker, Harry W. Li, and David E.
Boyce. CMOS' Circuit Design, Layout, and
Simulation. IEEE Press: New York, 1998.

[6] C. Lin and B. Liu. “A New Successive
Approximation Architecture for Low-Power
Low-Cost CMOS A/D Converter,” IEEE Journal
of Solid-State Circuits, Vol. 38, NO. 1, pp.54-62,
January 2003.

[71 Robert M. Senger, Paul M. Walsh, and Jerome
Le Ny. “A 150 Msamples/s Folding and Current
Mode Interpolating ADC in 0.35pm CMOS.”
EECS 598-02 Analog to Digital Integrated
Circuits, 1-7, 2002.

[8] B. Vaz, N. Paulino, J. Goes, R. Costa, R.
Tavares, and a. Steiger-Garcao, “Design of Low-
Voltage CMOS Pipelined ADC’s using 1 pico-
Joule of Energy per Conversion” IEEE Journal
of Solid-State Circuits, No.1, pp.921-924, 2002.

