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Overview

* More on matrix types

* Matrix determinants

* Matrix inversion

* Eigenanalysis

e Singular value decomposition
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Orthogonal/Orthonormal vectors

X U
A=y B=|v
7 W

AB=0 = xu+w+zw=0

* Two vectors are orthogonal if they are perpendicular to one another
— AB=0

— A vector that is perpendicular to a plane is orthogonal to every vector on the
plane

 Two vectors are orthonormal if
— They are orthogonal
— The length of each vectoris 1.0

— Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
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Orthogonal matrices

Jo5 o125 03T

Jos  Jo125  —40.375
0 075 05

* Orthogonal Matrix : AA"= ATA = |

The matrix is square
All row vectors are orthonormal to one another

* Every vector is perpendicular to the hyperplane formed by all other vectors
All column vectors are also orthonormal to one another

Observation: In an orthogonal matrix if the length of the row vectors
is 1.0, the length of the column vectors is also 1.0

Observation: In an orthogonal matrix no more than one row can
have all entries with the same polarity (+ve or —ve)
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Orthogonal and Orthonormal Matrices

* Orthogonal matrices will retain the length and relative
angles between transformed vectors

— Essentially, they are combinations of rotations, reflections and
permutations

— Rotation matrices and permutation matrices are all orthonormal

* If the vectors in the matrix are not unit length, it cannot
be orthogonal
— AATI=1, ATAl=|
— AA' = Diagonal or A'A = Diagonal, but not both
— If all the entries are the same length, we can get AAT = ATA = Diagonal, though

* A non-square matrix cannot be orthogonal
— AA'=| or ATA = |, but not both
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Matrix Rank and Rank-Deficient Matrices

\‘\\\lllll /]

i y

reutl =

P * Cone =

* Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
5 Sep 2013
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Matrix Rank and Rank-Deficient Matrices

Pz =

1.0000 a o
] 0.z500 —-0.4330 o.5000 -0.250a0 0.4330
] -0.4330 0.7500 -0.z500 o.1z50 -0.2165
0.4330 -0.21a5 0.3750
‘0‘5""
’ ) b — 05 U_E. ) - s
45 FTS
Rank = 2 Rank =1

 Some matrices will eliminate one or more dimensions during
transformation
— These are rank deficient matrices

— The rank of the matrix is the dimensionality of the transformed
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms
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= P=W (W'W)!WT; Projected Spectrogram = P*M
= The original spectrogram can never be recovered
o Pisrank deficient

= P explains all vectors in the new spectrogram as a mixture of

only the 4 vectors in W
o There are only a maximum of 4 independent bases

o RankofPis4

5 Sep 2013 11-755/18-797 8



MLSP
Non-square Matrices

X XN

(8 9] o
Xl X2 XN 1 .9 Yl YZ YN
Yi Y2 - - Yn -6 0] ER ay
X = 2D data P = transform PX =3D, rank 2

* Non-square matrices add or subtract axes

— More rows than columns = add axes
' But does not increase the dimensionality of the data

5 Sep 2013 11-755/18-797 9



MLSP
Non-square Matrices

X X .. X 50 5
b " 31 2 IR
i Y2 Yn 1 Y2 - - Y
5 1 1
| 4, Zy |
X = 3D data, rank 3 P = transform PX = 2D, rank 2

* Non-square matrices add or subtract axes

— Fewer rows than columns = reduce axes

* May reduce dimensionality of the data
5 Sep 2013 11-755/18-797 10



8 9]
1.9
6 0

The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

The matrix can never increase dimensions
— Cannot convert a circle to a sphere or a line to a circle

The rank of a matrix can never be greater than the lower of its two
dimensions
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= Projected Spectrogram =P * M
o Every vector in it is a combination of only 4 bases
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= The rank of the matrix is the smallest no. of bases required to

describe the output

o E.g.if note no. 4 in P could be expressed as a combination of notes 1,2

and 3, it provides no additional information

o Eliminating note no. 4 would give us the same projection

o The rank of P would be 3!

5 Sep 2013 11-755/18-797
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Matrix rank is unchanged by transposition
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* |f an N-dimensional object is compressed to a
K-dimensional object by a matrix, it will also
ne compressed to a K-dimensional object by
the transpose of the matrix
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Matrix Determinant

Fi+r3

F1+r24r3

(r2) la+c,b+d) (r1+r2)
fc.dl

4 = [ﬂ- b] (1) A=
) ¢ df (2

(2.b) (r1)

The determinant is the “volume” of a matrix

Actually the volume of a parallelepiped formed from its
row vectors

— Also the volume of the parallelepiped formed from its column
vectors

Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective

Volume=Vv, Volume =V,

08 0 o071 “
10 08 08 °

0.7 09 07

=
\‘, g

* The determinant is the ratio of N-volumes
— If V, is the volume of an N-dimensional object “O” in N-dimensional

space
* Ois the complete set of points or vertices that specify the object

— If V, is the volume of the N-dimensional object specified by A*O,
where A is a matrix that transforms the space

- IAl =V2/V1
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Matrix Determinants

* Matrix determinants are only defined for square matrices

— They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

 Rank deficient matrices have determinant O

— Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

* E.g.a 3-Dsphereinto a 2-D ellipse: The ellipse has 0 volume (although it
does have area)

e Conversely, all matrices of determinant 0 are rank deficient

— Since they compress full-volumed N-dimensional objects into
zero-volume objects
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Multiplication properties

* Properties of vector/matrix products
— Associative

A-(B-C)=(A-B)-C
— Distributive
A-B+C)=A-B+A-C
— NOT commutative!ll
A-B=B-A

* left multiplications # right multiplications
— Transposition

(A-B) =BT -AT

5 Sep 2013 11-755/18-797
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Determinant properties

Associative for square matrices ‘A B- C‘ — ‘A‘ . ‘B‘ . ‘C‘

— Scaling volume sequentially by several matrices is equal to scaling
once by the product of the matrices

Volume of sum != sum of Volumes ‘(B + C)‘ —+ ‘B‘ + ‘C‘

Commutative
— The order in which you scale the volume of an object is irrelevant

A-B|=[B-Al=|A[B]

5 Sep 2013 11-755/18-797
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Matrix Inversion

A matrix transforms an
N-dimensional object to a
different N-dimensional

object Ca 0k o
K T=|1.0 0.8
0.7 0.9

What transforms the new o
object back to the original? Q{_, ) ?}Tl

. . 2 7 9
— The inverse transformation Cor

The inverse transformation is
called the matrix inverse

5 Sep 2013 11-755/18-797 19



MLSP

Matrix Inversion

T-4T*D=D & TIiT=|

* The product of a matrix and its inverse is the
identity matrix

— Transforming an object, and then inverse
transforming it gives us back the original object

T*THD=D D TTL=|

5 Sep 2013 11-755/18-797 20
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Inverting rank-deficient matrice

“f1 0 0
0 25 —0.433
0 -0433 075

* Rank deficient matrices “flatten” objects

— In the process, multiple points in the original object get mapped to the same
point in the transformed object

* |tis not possible to go “back” from the flattened object to the original
object
— Because of the many-to-one forward mapping

* Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares

* Projection computes a least squared error estimate
* For each vector V in the music spectrogram matrix

— Approximation: V, ., =a*notel + b*note2 + c*note3..

d
0|0
T=||g|gE V. =T|b
888 approx
C

— ErrorvectorE= V-V, .,

— Squared error energy for V. e(V) = norm(E)?
* Projection computes V., for all vectors such that Total error is
minimized
* But WHAT ARE “a” “b” and “c”?

5 Sep 2013 11-755/18-797 22



The Pseudo Inverse (PINV)

Vv

approx —

T

a
b
c

) VT

a
b
c

=)

b
C

= PINV (T)*V

 We are approximating spectral vectors V as the

transformation of the vector [a b c]’

— Note — we’re viewing the collection of bases in T as a

transformation

 The solution is obtained using the pseudo inverse

— This give us a LEAST SQUARES solution

* If T were square and invertible Pinv(T) = T, and V=V

5 Sep 2013
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M = :
N X =PINV(W)*M
"%I_ m\fkvé.\*._ﬂ-&__nv‘ P~ J\-ﬂ___l{:,./— ( )
1 == - * =
w=| :
Recap P=W (WTW) T\WT PrOJected Spectrogram P*M -

m  Approximation: M = W*X

=  The amount of W in each vector = X = PINV(W)*M

= W*Pinv(W)*M = Projected Spectrogram

o W*Pinv(W) = Projection matrix!!
5 Sep 2013 11-755/18-797
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Explanatlon W|th

MLSP
uItlpIe notes
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= X = Pinv(W)*M; Projected matrix = W*X = W*Pinv(W)*M
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How about the other way?

-

0000000

E u=

s WV =M  W=MPinv(V) U=WV
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Pseudo-inverse (PINV)

* Pinv() applies to non-square matrices
* Pinv ( Pinv (A)))=A
* A*Pinv(A)= projection matrix!

— Projection onto the columns of A

If A=K x N matrix and K> N, A projects N-D vectors
into a higher-dimensional K-D space

— Pinv(A) = NxK matrix
— Pinv(A)*A =1 in this case
 Otherwise A * Pinv(A) =1
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Matrix inversion (division)

* The inverse of matrix multiplication
— Not element-wise division!!

* Provides a way to “undo” a linear transformation
— Inverse of the unit matrix is itself
— Inverse of a diagonal is diagonal
— Inverse of a rotation is a (counter)rotation (its transpose!)
— Inverse of a rank deficient matrix does not exist!
e But pseudoinverse exists

* For square matrices: Pay attention to multiplication side!

A-B=C, A=C-B’, B=A"-C
* If matrix is not square use a matrix pseudoinverse:

A-Bx=C, A=C-B", B=A"-C
 MATLAB syntax: inv(a), pinv(a)
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Eigenanalysis

* If something can go through a process mostly
unscathed in character it is an eigen-something

— Sound example: @ @ @ @

* Avector that can undergo a matrix multiplication and
keep pointing the same way is an eigenvector
— Its length can change though

* How much its length changes is expressed by its
corresponding eigenvalue

— Each eigenvector of a matrix has its eigenvalue

* Finding these “eigenthings” is called eigenanalysis

5 Sep 2013 11-755/18-797 29
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EigenVectors and EigenValues

Black '5 :
1 M| 15 -07] .
vectors L// ~0.7 1.0
are 0 i;> : 0 _

eigen
vectors

* Vectors that do not change angle upon
transformation
— They may change length

MV = AV

— V = eigen vector

— A =eigen value
5 Sep 2013 30
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Eigen vector example
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Matrix multiplication revisited

1.0 —-0.07 | -5
A=
-11 1.2 i

* Matrix transformation “transforms” the space

— Warps the paper so that the normals to the two
vectors now lie along the axes
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A stretching operation

’ \

1.4 0.8

e Draw two lines

* Stretch / shrink the paper along these lines by factors A,
and A,

— The factors could be negative — implies flipping the paper
* The resultis a transformation of the space

5 Sep 2013 11-755/18-797 33
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A stretching operation

m Draw two lines

m Stretch / shrink the paper along these lines by factors A,
and A,

o The factors could be negative — implies flipping the paper
= The result is a transformation of the space

5 Sep 2013 11-755/18-797 34
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Physical interpretation of eigen vector

* The result of the stretching is exactly the same as transformation by a
matrix

* The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

* The EigenVectors and EigenValues convey all the information about the
matrix
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Physical interpretation of eigen vector

V=V, V]
|4 0
A‘_o A
M =VAV ™

* The result of the stretching is exactly the same as transformation by a
matrix

* The axes of stretching/shrinking are the eigenvectors
— The degree of stretching/shrinking are the corresponding eigenvalues

* The EigenVectors and EigenValues convey all the information about the
matrix

5 Sep 2013 11-755/18-797 36



Eigen Analysis

* Not all square matrices have nice eigen values and
vectors

— E.g. consider a rotation matrix

— This rotates every vector in the plane
* No vector that remains unchanged

* In these cases the Eigen vectors and values are complex

5 Sep 2013

4

B cos@ -—sin@
“|sin@ cos@

i\

< 6
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Singular Value Decomposition

1.0 -0.07
A=
-11 1.2

* Matrix transformations convert circles to ellipses

* Eigen vectors are vectors that do not change direction in the
process

* There is another key feature of the ellipse to the left that carries
information about the transform

— Can you identify it?
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Singular Value Decomposition

1.0 -0.07
A=
-11 1.2

||||||||||||

 The major and minor axes of the transformed ellipse
define the ellipse

— They are at right angles

* These are transformations of right-angled vectors on
the original circle!

5 Sep 2013 11-755/18-797 39
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Singular Value Decomposition

s U | { 1.0 —0.07} |
158¢ — A: 15
| -11 1.2 |
i A=USVT I
matlab:
[U,SV]=svd(A) "7

1 1 1 1 1 1 1 1 1 1
256 2 415 1 DA o 04 1 15 2 25 -2.I5 2I -1 .I5 1I -D.IS 0 D.IS 1I 1.I5 2I 2.I5

e UandV are orthonormal matrices
— Columns are orthonormal vectors

* Sisadiagonal matrix

* The right singular vectors in V are transformed to the left singular vectors

in U
— And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

* The left and right singular vectors are not the same

— If A'is not a square matrix, the left and right singular vectors will
be of different dimensions

 The singular values are always real

* The largest singular value is the largest amount by which a
vector is scaled by A

— Max (|Ax]| / |x]) = S;a

* The smallest singular value is the smallest amount by which
a vector is scaled by A
— Min (JAx| / [x])
— This can be O (for low-rank or non-square matrices)

= Smin

5 Sep 2013 11-755/18-797 41
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The Singular Values

18r \J
72| 1 1 1 1 1 1 1 1 1
2A -2 -148 -1 04 ] 0s 1 14 2 25

e Square matrices: product of singular values = determinant of the matrix

— This is also the product of the eigen values

— l.e. there are two different sets of axes whose products give you the area of
an ellipse

* For any “broad” rectangular matrix A, the largest singular value of any
square submatrix B cannot be larger than the largest singular value of A

— An analogous rule applies to the smallest singular value
— This property is utilized in various problems, such as compressive sensing
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SVD vs. Eigen Analysis

a2l L L L L L L L L L
25 -2 -1.5 -1 05 ] 05 1 15 2 28

Eigen analysis of a matrix A:

— Find two vectors such that their absolute directions are not changed by the
transform

SVD of a matrix A:

— Find two vectors such that the angle between them is not changed by the
transform

For one class of matrices, these two operations are the same
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A matrix vs. its transpose

* Multiplication by matrix A:

— Transforms right singular vectors in V to left singular
vectors U

* Multiplication by its transpose A':
— Transforms left singular vectors U to right singular vector V

« AA" : Converts V to U, then brings it back to V
— Result: Only scaling

5 Sep 2013 11-755/18-797 44



Symmetric Matrices

* Matrices that do not change on transposition
— Row and column vectors are identical

* The left and right singular vectors are identical
- U=V
— A=USUT

 They are identical to the Eigen vectors of the matrix

* Symmetric matrices do not rotate the space
— Only scaling and, if Eigen values are negative, reflection

5 Sep 2013 11-755/18-797
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Symmetric Matrices

* Matrices that do not change on transposition

— Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values are
always real

* Eigen vectors are always orthogonal
— At 90 degrees to one another
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Symmetrlc Matrices

15 -07
=07 1

* Eigen vectors point in the direction of the
major and minor axes of the ellipsoid resulting
from the transformation of a spheroid

— The eigen values are the lengths of the axes

5 Sep 2013 11-755/18-797 47
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Symmetric matrices

e Eigen vectors V, are orthonormal

TN — -
e Listing all eigen vectors in matrix form V
— VT= VI
— VIiv=]
— VVIi=]
d M Vi = }\/Vl

* Inmatrixform : MV =V A
— A is a diagonal matrix with all eigen values

M=V AV!
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Square root of a symmetric matrix

C=VAV'
Sqrt(C) =V.Sqrt(A) V'
Sqrt(C).Sqrt(C) =V.Sqrt(A)V 'V.Sqrt(A) V'
=V.Sgrt(A).Sgrt(A)V' =VAV' =C

* The square root of a symmetric matrix is easily
derived from the Eigen vectors and Eigen values

— The Eigen values of the square root of the matrix are the
square roots of the Eigen values of the matrix

— For correlation matrices, these are also the “singular
values” of the data set
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Definiteness..

e SVD: Singular values are always positive!
* Eigen Analysis: Eigen values can be real or imaginary

— Real, positive Eigen values represent stretching of the space along
the Eigen vector

— Real, negative Eigen values represent stretching and reflection
(across origin) of Eigen vector

— Complex Eigen values occur in conjugate pairs

* Asquare (symmetric) matrix is positive definite if all Eigen
values are real and positive, and are greater than O
— Transformation can be explained as stretching and rotation
— If any Eigen value is zero, the matrix is positive semi-definite
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Positive Definiteness..

* Property of a positive definite matrix: Defines
inner product norms

— xTAx is always positive for any vector x if A is
positive definite

* Positive definiteness is a test for validity of
Gram matrices
— Such as correlation and covariance matrices

— We will encounter other gram matrices later
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The Correlation and Covariance Matrices
A \

1T —

(I/N)Ziak,iak,j

e

>[Il

* Consider a set of column vectors ordered as a DxN matrix A

e The correlation matrix is
— C=(1/N) AAT

* If the average (mean) of the vectors in A is subtracted out of all vectors,
Cis the covariance matrix

* covariance = correlation + mean * mean’
* Diagonal elements represent average of the squared value of
each dimension

— Off diagonal elements represent how two components are related

* How much knowing one lets us guess the value of the other
5 Sep 2013 11-755/18-797 52
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Square root of the Covariance Matrix

* The square root of the covariance matrix
represents the elliptical scatter of the data

 The Eigenvectors of the matrix represent the
major and minor axes

— “Modes” in direction of scatter
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The Correlation Matrix

Any vector V = a,,, * eigenvecl + a,,, *eigenvec2 + ..

Zy ay; = eigenvalue(i)

* Projections along the N Eigen

vectors with the largest Eigen
values represent the N greatest
“energy-carrying” components of the matrix

* Conversely, N “bases” that result in the least square
error are the N best Eigen vectors

5 Sep 2013 11-755/18-797 54



* The spectrogram has 974 vectors of dimension

1025

e The covariance matrix is size 1025 x 1025

1000

An audio example

200 | e Ee b . RS Lo

800 f—+
=

FOO — .

S00

SO0 — =~

42400

300 —

200 [ — A

100

* There are 1025 eigenvectors

5 Sep 2013
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Eigen Reduction

M = spectrogram  1025x1000
C=M.M" 1025x1025
V = 1025x1025 [V,L]=eig(C)

reduced [Vl - V25] 1025x25
M lowdim — Pinv (Vreduced)M 25x1000

M =V M lowdim 1025x1000

reconstrudted reduced

* Compute the Correlation
 Compute Eigen vectors and values

* Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen
values

 Compute the weights of the 25 eigenvectors

* To reconstruct the spectrogram — compute the projection on the 25 Eigen
vectors
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Eigenvalues and Eigenvectors

M = spectrogram

* Left panel: Matrix with 1025 eigen vectors

* Right panel: Corresponding eigen values
— Most Eigen values are close to zero

* The corresponding eigenvectors are “unimportant”

5 Sep 2013 11-755/18-797

C=MMT
[V.L]=eig(C)
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\\\\\\\\

H Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvecs ...

e S o= e o e ]

 The vectors in the spectrogram are linear combinations of all
1025 Eigen vectors
 The Eigen vectors with low Eigen values contribute very little

— The average value of a, is proportional to the square root of the
Eigenvalue

— lIgnoring these will not affect the composition of the spectrogram

5 Sep 2013 11-755/18-797 58



An audio examele

reduced_[vl - V25]
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M lowdim — PinV (Vreduced) M

| | | B [ I158 § B E N LI | e | |m im EIEEN | 1l i) ey (= | i B |
100 200 300 400 S00 S00 TOO S00 D00

* The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values

— Only the 25-dimensional weights are shown

* The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram
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reduced

M M

reconstruded — lowdim

Eigen vectors with the highest Eigen values

— Looks similar

* The same spectrogram constructed from only the 25

MLSP

* With 100 Eigenvectors, it would be indistinguishable from the original

— Sounds pretty close

— But now sufficient to store 25 numbers per vector (instead of

1024)

11-755/18-797

60



MLSP

With only 5 eigenvectors
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 The same spectrogram constructed from only

the 5 Eigen vectors with the highest Eigen

values

— Highly recognizable
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Correlation vs. Covariance Matrix

e Correlation:

— The N Eigen vectors with the largest Eigen values represent the
N greatest “energy-carrying” components of the matrix

— Conversely, N “bases” that result in the least square error are
the N best Eigen vectors

* Projections onto these Eigen vectors retain the most energy

e Covariance:

— the N Eigen vectors with the largest Eigen values represent the
N greatest “variance-carrying” components of the matrix

— Conversely, N “bases” that retain the maximum possible
variance are the N best Eigen vectors
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Eigenvectors, Eigenvalues and
Covariances/Correlations

* The eigenvectors and eigenvalues (singular
values) derived from the correlation matrix
are important

* Do we need to actually compute the
correlation matrix?

— No

* Direct computation using Singular Value
Decomposition

5 Sep 2013 11-755/18-797

MLSP

Vichielzaming for SaraProcessing Gt

63



MLSP

SVD vs. Eigen decomposition

e Singular value decomposition is analogous to the Eigen
decomposition of the correlation matrix of the data

— SVD: D=USVT
— DD'= USVTVSU" =US?UT

* The “left” singular vectors are the Eigen vectors of the
correlation matrix

— Show the directions of greatest importance

* The corresponding singular values are the square roots of
the Eigen values of the correlation matrix

— Show the importance of the Eigen vector
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Thin SVD, compact SVD, reduced SVD
NX

N MxM
VT

NxM

>
-

NxM

e SVD can be computed much more efficiently than Eigen
decomposition

 Thin SVD: Only compute the first N columns of U
— All that is required if N < M

 Compact SVD: Only the left and right singular vectors corresponding to
non-zero singular values are computed
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Why bother with Eigens/SVD

* (Can provide a unique insight into data

— Strong statistical grounding E

— Can display complex interactions -
between the data ———

— Can uncover irrelevant parts of the i E

data we can throw out

e Can provide basis functions E !
— A set of elements to compactly — N =

describe our data Lf =]

— Indispensable for performing E E

compression and classification

* Used over and over and still perform | IIE_igelﬂfacesf f
amazingly well Using a linear transform o

the above “eigenvectors” we
can compose various faces
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Trace
A -
@) % % % Tr(A)=ay +a, +ay; +a,
— T\
Ay [ Ay a
A |G G2 /23 24
d3; 8y \\asﬁﬁ A3y Tr(A) = Z a;
o x/ "\\ :
2 B 8o (B

e The trace of a matrix is the sum of the
diagonal entries

* |tis equal to the sum of the Eigen values!

Tr(A) =2 a;,=> 4



* Often appears in Error formulae

dll

D =

E-D_C error:ZEfj
]
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23

33
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Trace
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w
=

41

error =Tr(EE")

* Useful to know some properties..
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Properties of a Trace

* Linearity: Tr(A+B)=Tr(A) + Tr(B)
Tr(c.A)=c.Tr(A)

* Cycling invariance:

— Tr (ABCD) = Tr(DABC) = Tr(CDAB) =
Tr(BCDA)
— Tr(AB) = Tr(BA)

* Frobenius norm F(A) = X, a;> = Tr(AA")
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* Square A: LU decomposition

Decompositions of matrices
— Decompose A =L U

— Lis a lower triangular matrix - k

* All elements above diagonal are O

— Ris an upper triangular matrix
* All elements below diagonal are zero

— Cholesky decomposition: A is symmetric, L = UT"

* QR decompositions: A = QR

— Qis orthgonal: QQ" = | _
— Ris upper triangular -

* Generally used as tools to
compute Eigen decomposition or least square solutions

5 Sep 2013 11-755/18-797 70



MLSP
Making vectors and matrices in MATLAB

* Make a row vector:

a = [1 2 3]
e Make a column vector:
a = [1;2;3]

* Make a matrix:

A= [12 3;45 6]
* Combine vectors

A = [b c] or A = [b;c]
 Make a random vector/matrix:

r = rand(m,n)
* Make an identity matrix:
I = eye(n)

 Make a sequence of numbers

c = 1:100rc = 1:0.5:100rc = 100:-2:50
* Make aramp

c = linspace( 0, 1, 100)
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Indexing

* To get the i-th element of a vector
a (1)

* To get the i-th j-th element of a matrix
A(i,3)

* To get from the i-th to the j-th element
a(i:73)

* To get a sub-matrix
A(1:73,k:1)

* To get segments
a([i1:73 k:1 m])

5 Sep 2013 11-755/18-797

MLSP

72



MLSP

Arithmetic operations

e Addition/subtraction
C =A+ BorC =A - B
* Vector/Matrix multiplication
C =A *B
— Operant sizes must match!
* Element-wise operations
— Multiplication/division
C=2A .*BorC=2A./2B
— Exponentiation
C =A."B
— Elementary functions
C = sin(A) orC = sgrt(A), ..
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Linear algebra operations

Transposition

CcC = A’

— If A is complex also conjugatesuse C = A.’ to avoid that
Vector norm

norm (x) (also works on matrices)
Matrix inversion

C = inv (A) if Aissquare

C = pinv (A) if A is not square

— A might not be invertible, you‘ll get a warning if so
Eigenanalysis

[u,d] = eig(A)

— u is a matrix containing the eigenvectors

— dis a diagonal matrix containing the eigenvalues
Singular Value Decomposition

[u,s,v] = svd(A) or[u,s,v] = svd(A,0)

— “thin” versus regular SVD

— s is diagonal and contains the singular values
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Plotting functions

* 1-d plots
plot (x)

* if x is a vector will plot all its elements

* If x is a matrix will plot all its column
vectors

bar (x)
 Ditto but makes a bar plot

e 2-d plots
imagesc (x)
* plots a matrix as an image

0
123456782910

surf (x)
* makes a surface plot
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Getting help with functions

* Thene1lp function

— Type help followed by a function name
* Things to try

help help

help +

help eig

help svd

help plot

help bar

help i1magesc

help surf

help ops

help matfun
* Also check out the tutorials and the mathworks site
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