CHAPTER

13

TRANSMISSION
LINES

Transmission lines are used to transmit electric energy and signals from one
point to another, specifically from a source to a load. This may include the
connection between a transmitter and an antenna, connections between compu-
ters in a network, or between a hydroelectric generating plant and a substation
several hundred miles away. Other familiar examples include the interconnects
between components of a stereo system, and the connection between a cable
service provider and your television set. Examples that are less familiar include
the connections between devices on a circuit board that are designed to operate
at high frequencies.

What all of the above examples have in common is that the devices to be
connected are separated by distances on the order of a wavelength or much
larger, whereas in basic circuit analysis methods, connections between elements
are of negligible length. The latter condition enabled us, for example, to take for
granted that the voltage across a resistor on one side of a circuit was exactly in
phase with the voltage source on the other side, or, more generally, that the time
measured at the source location is precisely the same time as measured at all
other points in the circuit. When distances are sufficiently large between source
and receiver, time delay effects become appreciable, leading to the delay-induced
phase differences mentioned above. In short, we deal with wave phenomena on
transmission lines, just as we did with point-to-point energy propagation in free
space or in dielectrics.

The basic elements in a circuit, such as resistors, capacitors, inductors, and
the connections between them, are considered /umped elements if the time delay
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in traversing the elements is negligible. On the other hand, if the elements or
interconnections are large enough, it may be necessary to consider them as
distributed elements. This means that their resistive, capacitive, and inductive
characteristics must be evaluated on a per-unit-distance basis. Transmission
lines have this property in general, and thus become circuit elements in them-
selves, possessing impedances that contribute to the circuit problem. The basic
rule is that one must consider elements as distributed if the propagation delay
across the element dimension is on the order of the shortest time interval of
interest. In the time-harmonic case, this condition would lead to a measurable
phase difference between each end of the device in question.

In this chapter, we investigate wave phenomena in transmission lines, in
ways that are very similar to those used in the previous two chapters. Our
objectives include (1) to understand how to treat transmission lines as circuit
elements possessing complex impedances that are functions of line length and
frequency, (2) to understand the properties of different types of lines, (3) to learn
methods of combining different transmission lines to accomplish a desired objec-
tive, and (4) to understand transient phenomena on lines.

First, however, we need to show that there is a direct analogy between the
uniform transmission line and the uniform plane wave. We shall find that the
effort devoted to the uniform plane wave in the previous chapters makes it
possible to develop analogous results for the uniform transmission line easily
and rapidly. The field distributions for the uniform plane wave and for the
uniform transmission line are both known as transverse electromagnetic
(TEM) waves because E and H are both perpendicular to the direction of pro-
pagation, or both lie in the transverse plane. The great similarity in results is a
direct consequence of the fact that we are dealing with TEM waves in each case.
In the transmission line, however, it is possible and customary to define a voltage
and a current. These quantities are the ones for which we shall write equations,
obtain solutions, and find propagation constants, reflection coefficients, and
input impedances. We shall also consider power instead of power density.

13.1 THE TRANSMISSION-LINE EQUATIONS

We shall first obtain the differential equations which the voltage or current must
satisfy on a uniform transmission line. This may be done by any of several
methods. For example, an obvious method would be to solve Maxwell’s equa-
tions subject to the boundary conditions imposed by the particular transmission
line we are considering. We could then define a voltage and a current, thus
obtaining our desired equations. It is also possible to solve the general TEM-
wave problem once and for all for any two-conductor transmission line having
lossless conductors. Instead, we shall construct a circuit model for an incremental
length of line, write two circuit equations, and show that the resultant equations
are analogous to the fundamental equations from which the wave equation was
developed in the previous chapter. By these means we shall begin to tie field
theory and circuit theory together.

4| p | eTextMainMenu | Textbook Table of Contents



TRANSMISSION LINES

Our circuit model will contain the inductance, capacitance, shunt conduc-
tance, and series resistance associated with an incremental length of line. Let us
do our thinking in terms of a coaxial transmission line containing a dielectric of
permeability u (usually po), permittivity €, and conductivity o.! The inner and
outer conductors have a high conductivity o.. Knowing the operating frequency
and the dimensions, we can then determine the values of R, G, L, and C on a per-
unit-length basis by using formulas developed in earlier chapters. We shall review
these expressions and collect the information on several different types of lines in
the following section.

Let us again assume propagation in the a, direction. We therefore cut out a
section of length Az containing a resistance RAz, an inductance LAz, a conduc-
tance GAz, and a capacitance CAz, as shown in Fig. 13.1. Since the section of the
line looks the same from either end, we divide the series elements in half to
produce a symmetrical network. We could equally well have placed half the
conductance and half the capacitance at each end.

Since we are already familiar with the basic characteristics of wave propa-
gation, let us turn immediately to the case of sinusoidal time variation, and use
the notation for complex quantities we developed in the last chapter. The voltage
V' between conductors is in general a function of z and ¢, as, for example,

V(z, t) = Vycos(wt — Bz + )
We may use Euler’s identity to express this in complex notation,

V(z, 1) = Re[ Vo Pt} = Re{ Vel e /P el

1 1 1
sRAz sLAz 7L Az sRAz

o AAA— g AR
+ +
AL
; v+,
G Az == CAz
5 I 5
FIGURE 13.1

An incremental length of a uniform transmission line. R, G, L, and C are functions of the transmission-line
configuration and materials.

'In this basic circuit model, the dielectric loss mechanism is limited to its conductivity, o. As we considered
in Chapter 11, this is a specialization of the more general €” that characterizes any dielectric loss mechan-
ism (including conductivity), that would be encountered by the fields as they propagate through the line.
We retain the notation, €', for the real part of the permittivity.
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By dropping Re and suppressing /', we transform the voltage to a phasor,
which we indicate by an s subscript,

Vi(z) = VoelVe

We may now write the voltage equation around the perimeter of the circuit of
Fig. 13.1,

1 1 1 1
Vi(z) = (5 RAz +j§wLAZ)]s + (E RAz +j§wLAZ> (s + AL) + Vi + AV

or

Az 2

As we let Az approach zero, Al also approaches zero, and the second term on
the right vanishes. In the limit,

AV, 1 1
S = —(R+ jwL)I, — (—R —|—j§a)L)AIS

dvy
dz

= —(R+jolL)I; (1a)

Neglecting second-order effects, we approximate the voltage across the central
branch as V; and obtain a second equation,

Al
-=— (G + jwC)V,
Az
or
dI
— = (G +joO)V; (16)
dz

Instead of solving these equations, let us save some time by comparing them with
the equations which arise from Maxwell’s curl equations for the uniform plane
wave in a conducting medium. From

V x E; = —jouH;
we set E; = Ea, and Hy = Hya,, where E,; and H,, are functions of z only, and
obtain a scalar equation that we find to be analogous to Eq. (1a):

dE .

dz

= —jouH,; (2a)

Similarly, from

V x Hy = (0 + jwe )E;
we have, in analogy to (15):

dH,;

? - (U +jw€/)Exs (2b)
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Careful comparison of Egs. (1) and (2b) shows a direct analogy between the
following pairs of quantities: /; and H,,, G and o, C and €, and V and E.,.
Replacing the variables in one equation by the corresponding quantities produces
the other equation. The analogy is particularly strong in this pair of equations, for
the corresponding quantities are measured in almost the same units.

Carrying this same analogy over to Egs. (1a) and (2a), we see that it con-
tinues to hold and provides one additional analogous pair, L and . However,
there is also a surprise, for the transmission-line equation is more complicated
than the field equation. There is no analog for the conductor resistance per unit
length R. Although it would be good salesmanship to say that this shows that field
theory is simpler than circuit theory, let us be fair in determining the reason for
this omission. Conductor resistance must be determined by obtaining a separate
solution to Maxwell’s equations within the conductors and forcing the two solu-
tions to satisfy the necessary boundary conditions at the interface. We considered
steady current fields in conductors back in Chapter 5, and in Chapter 11, we
considered the high-frequency case under the guise of “‘skin effect””; however,
we have looked only briefly at the problem of matching two solutions at the
boundary. Thus the term that is omitted in the field equation represents the
problem of the fields within the conductors, and the solution of this problem
enables us to obtain a value for R in the circuit equation. We maintain the analogy
by agreeing to replace jou by R + jwL.?

The boundary conditions on V and E,, are the same, as are those for /; and
H,, and thus the solution of our two circuit equations may be obtained from a
knowledge of the solution of the two field equations, as obtained in the last
chapter. From

Ey = Exoeijkz
we obtain the voltage wave
Vi=Voe " 3)

where, in a manner consistent with common usage, we have replaced jk for the
plane wave with y, the complex propagation constant for the transmission line.
The wave propagates in the +z direction with an amplitude Vy = V) at z=10
(and V=V, at z=0, t =0 for y = 0). The propagation constant for the uni-

form plane wave,
Jk = Vjoulo + joe')

becomes

y=a+jB=(R+joL)G + joC) )

2When ferrite materials enter the field problem, a complex permeability o = ' — ju” is often used to
include the effect of nonohmic losses in that material. Under these special conditions wu” is analogous to
R.
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The wavelength is still defined as the distance that provides a phase shift of 2
rad; therefore,

2
r=— S
5 (5
Also, the phase velocity has been defined as
o)
v, = — (6)
"B

and this expression is valid both for the uniform plane wave and transmission
lines. For a lossless line (R = G = 0) we see that

y =jB=jovLC
Hence
1
Up = ﬁ (7

From the expression for the magnetic field intensity

Ex _j-
X0 —jkz

Hys =
we see that the positively traveling current wave

Vo _,.
I="e ®)
A
is related to the positively traveling voltage wave by a characteristic impedance Z
that is analogous to 5. Since, in a conducting medium
0= Jopr
0 + jwe

R+ joL
Zo= |— I 9
"7\ G+ joC ©)

When a uniform plane wave in medium 1 is incident on the interface with
medium 2, the fraction of the incident wave that is reflected is called the reflec-
tion coefficient, I', which for normal incidence is

we have

E;o_n2_771

CEL mA4m

Thus the fraction of the incident voltage wave that is reflected by a line with a
different characteristic impedance, say Z,, is
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Vo _ Zo—Zn

=T = =
T Ve Zon+ Zo

(10)

Knowing the reflection coefficient, we may find the standing-wave ratio,
1+
— 11
=1 (11)

Finally, when n = n3 for z > 0, and n = n, for z < 0, the ratio of E, to H, at
z=—l1s

N3 cos Bal + jn sin Bol
2 N2 cos Bal + jns sin Bal

and therefore the input impedance

Nin =1

Zo3 €08 Bal + jZ s sin Bl
Zin =7 : 12
" 02 Zy2 €08 ol + jZy3 sin Byl (12)

is the ratio of V to Iy at z = —[ when Zy = Zy; for z > 0 and is Zy, for z < 0. We
often terminate a transmission line at z = 0 with a load impedance Z; which may
represent an antenna, the input circuit of a television receiver, or an amplifier on

a telephone line. The input impedance at z = —/ is then written simply as
Z |+ jZysin Bl
Ziy = 2y LB TZ0S0 P (13)
Zycos Bl +jZ; sin Bl

Let us illustrate the use of several of these transmission line formulas with a basic
example.

IIII»Example 13.1

A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz. The
line parameters are L = 0.25 uH/m and C = 100 pF/m. Find the characteristic impe-
dance, the phase constant, the velocity on the line, and the input impedance for
Z; =100 Q.

Solution. Since the line is lossless, both R and G are zero. The characteristic impedance
is
L 0.25 x 106
20 _\/;_ 100 x 1012 ~ 0%

Since y = a +jp = /(R +joL)(G + joC) = jo/LC, we see that
B = wVIC = 27(600 x 109/(0.25 x 10-6)(100 x 10-12) = 18.85 rad/m

4| p | eTextMainMenu | Textbook Table of Contents

441



442

ENGINEERING ELECTROMAGNETICS

Also,
o 2m(600 x 10°)
’Ungzwzzx 108m/s
We now have all the necesssary information to find Z;, from (13):
7 _ 7 Zycos Bl +jZysin Bl 100 cos(18.85 x 0.8) + 750 sin(18.85 x 0.8)
=0 g cos Bl +jZrsin Bl 50cos(18.85 x 0.8) +j100sin(18.85 x 0.8)

= 60.3/35.5° =49.1 +,35.0Q

V D13.1. At an operating radian frequency of 500 Mrad/s, typical circuit values for a
certain transmission line are: R=0.2Q/m, L=025uH/m, G =10uS/m, and
C =100 pF/m. Find: (a) o; (b) B; (c) A; (d) vp; () Zo.

Ans. 2.25 mNp/m; 2.50 rad/m; 2.51 m; 2 x 10% m/sec; 50.0 — j0.0350 Q.

13.2 TRANSMISSION-LINE PARAMETERS

Let us use this section to collect previous results and develop new ones where
necessary, so that values for R, G, L, and C are available for the simpler types of
transmission lines.

Coaxial (High Frequencies)

We begin by seeing how many of the necessary expressions we already have for a
coaxial cable in which the dielectric has an inner radius « and outer radius b (Fig.
13.2). The capacitance per unit length, obtained as Eq. (46) of Sec. 5.10, is

2me

- In(b/a)

The value of permittivity used should be appropriate for the range of operating
frequencies considered.

(14)

Dielectric

; - Conductor
(0, €\ )

(@)

FIGURE 13.2
The geometry of the coaxial transmission line. A homo-
geneous dielectric is assumed.
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The conductance per unit length may be determined easily from the capa-
citance expression above by use of the current analogy described in Sec. 6.3. Thus,

270

~In(b/a)
where o is the conductivity of the dielectric between the conductors at the oper-
ating frequency.

The inductance per unit length was computed for the coaxial cable as Eq.
(50) in Sec. 9.10,

(15)

Lesi = - In(b/a) (16)
2

where p is the permeability of the dielectric between conductors, usually . This
is an external inductance, for its calculation does not take into account any flux
within either conductor. Equation (16) is usually an excellent approximation to
the total inductance of a high-frequency transmission line, however, for the skin
depth is so small at typical operating frequencies that there is negligible flux
within either conductor and negligible internal inductance. Note that
LewC=pue =1/ UIZJ, and we are therefore able to evaluate the external inductance
for any transmission line for which we know the capacitance and insulator
characteristics.

The last of the four parameters that we need is the resistance R per unit
length. If the frequency is very high and the skin depth § is very small, then we
obtain an appropriate expression for R by distributing the total current uni-
formly throughout a depth §. For a circular conductor of radius ¢ and conduc-
tivity o., we let Eq. (54) of Sec. 11.5 apply to a unit length, obtaining

1

Kimer = 2easor
c

There is also a resistance for the outer conductor, which has an inner radius 5. We
assume the same conductivity o. and the same value of skin depth §, leading to

1
2bhéo,

Since the line current flows through these two resistances in series, the total

resistance is the sum:
1 1 1
R=—([-4+- 17
2180, (a * b) a7

It is convenient to include the common expression for the characteristic
impedance of a coax here with the parameter formulas. Thus

Loy 1w b
Zy =,/ =—./=In- 18
0 C 271\/; na (18)

If necessary, a more accurate value may be obtained from (9).

Rouler =
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Coaxial (Low Frequencies)

Now let us spend a few paragraphs obtaining the parameter values at very low
frequencies where there is no appreciable skin effect and the current is assumed
to be distributed uniformly throughout the cross section.

We first note that the current distribution in the conductor does not affect
either the capacitance or conductance per unit length. Hence

2me’
- In(b/a) (14)
and
2o
~ In(b/a) (15)

The resistance per unit length may be calculated by dc methods, R = /(0.S),
where / = Im and o, is the conductivity of the outer and inner conductors. The
area of the center conductor is 7a®> and that of the outer is 7(¢> — 5?). Adding the
two resistance values, we have

I /1 1
R = 1
o <a2 + b2> (19)

Only one of the four parameter values remains to be found, the inductance per
unit length. The external inductance that we calculated at high frequencies is
the greatest part of the total inductance. However, smaller terms must be
added to it, representing the internal inductances of the inner and outer con-
ductors.

At very low frequencies where the current distribution is uniform, the
internal inductance of the center conductor is the subject of Prob. 43 in Chap.
9; the relationship is also given as Eq. (62) in Sec. 9.10:

Lol
8

The determination of the internal inductance of the outer shell is a more
difficult problem, and most of the work is requested in Prob. 7 at the end of
this chapter. There, we find that the energy stored per unit length in an outer
cylindrical shell of inner radius » and outer radius ¢ with uniform current
distribution is

Laint = (20)

wl? ) 402 c
Wy =—"1"——(0*-3 In
7= 16m(c2 — b2) ( tape "
Thus the internal inductance of the outer conductor at very low frequencies is
% ) 402 ¢
Lpe.iy = ————— [ > = 3¢° 1 21
be,int 87T(C2 _ bz) ( + b2 nb) ( )
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At low frequencies the total inductance is obtained by combining (16), (20), and

(21):
_wf, b1 1 5 4 2 c
L =5 |:1 +4+74( T ) (b 3¢ + b21 b (22)

Coaxial (Intermediate Frequencies)

There still remains the frequency interval where the skin depth is neither very
much larger than nor very much smaller than the radius. In this case, the current
distribution is governed by Bessel functions, and both the resistance and internal
inductance are complicated expressions. Values are tabulated in the handbooks,
and it is necessary to use them for very small conductor sizes at high frequencies
and for larger conductor sizes used in power transmission at low frequencies.?

Two-Wire (High Frequencies)

For the two-wire transmission line of Fig. 13.3 with conductors of radius ¢ and
conductivity o, with center-to-center separation d in a medium of permeability
W, permittivity €', and conductivity o,, the capacitance was found in Sec. 5.11 to
be

e

= 23
cosh™'(d/2a) @3)
or
3
C—m (ﬂ << d)
The external inductance may be found from L.,C = ue'. It is
Low = %cosh_l (d)2a) (24)

Cl:mductm ( )

e Dielectric e
(0, € 1)
FIGURE 13.3

d The geometry of the two-wire transmission line.

3The current distribution, internal inductance, and internal resistance of round wires is discussed (with
numerical examples) in Weeks, pp. 35-44. See the Suggested References at the end of this chapter.
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or
Lmi%mwﬁo (a << d)

The conductance per unit length may be written immediately from an inspection

of the capacitance expression,
o

G = T A~

cosh™ (d/2a)

The resistance per unit length is twice that of the center conductor of the coax,

1
R= (26)

mado,

(25)

Finally, using the capacitance and the external inductance expressions, we obtain
a value for the characteristic impedance for the lossless case (R = G = 0),

Zy = /Lm = l\/Ecosh_l(dﬂa) (27)
C naVe

Two-Wire (Low Frequencies)

At low frequencies where a uniform current distribution may be assumed, we
again must modify the L and R expressions. We therefore have the same relation-
ships for C and G:

e
C= @23 )
TToO (25)

G = TS VTN
cosh™ (d/2a)

but the inductance per unit length must be increased by twice the internal induc-
tance of a straight round wire,

L=EF+mmwwmﬂ (28)
|4

and the resistance becomes twice the dc resistance of a wire of radius a, con-
ductivity o., and unit length:
2
R= (29)

nato,

Planar (High Frequencies)

If we have the parallel-plane or planar transmission line of Fig. 13.4, with two
conducting planes of conductivity o., thickness ¢, separation d, and a dielectric
with parameters €', u, and o, then we may easily determine the circuit parameters
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i
i ¥ [ 4 1]
d Conductor (0,) < Dielectric

' (0. €.p)
f ]

: b - FIGURE 13.4

The geometry of the planar transmission line.

per unit length for a width b. It is necessary to assume either that b >> d or that
we are considering a width » of a much wider guiding system. We have

C= %b (30)
G= %b (31)
Loy =14 (32)
and

Here we have assumed a well-developed skin effect such that d << ¢, the thick-
ness of either plane.
Finally, for the lossless line,

Ley wd
Zy = = /== 4
b=y \Eb (34)

Low-frequency parameter values are unimportant since the planar transmission
line has little use there.

l/ D13.2. The dimensions of a coaxial transmission line are ¢ =4 mm, b = 17.5 mm, and
¢ =20 mm. The conductivity of the inner and outer conductors is 2 x 107 S/m, and the
dielectric properties are ug = 1, €4 = 3, and o/we’ = 0.025. Assume that the loss tan-
gent is constant with frequency. Determine: (a) L, C, R, G, and Z, at 150 MHz; (b) L
and R at 60 Hz.

Ans.0.295 nH/m, 113.1 pF/m, 0.266 2/m, 2.66 mS/m, 51.1 €2; 0.355 uH/m, 1.164 m2/m.

¢/ DI3.3. The conductors of a two-wire transmission line each have a radius of 0.8 mm
and a conductivity of 3 x 107 S/m. They are separated a center-to-center distance of 0.8
cm in a medium for which € = 2.5, ug = 1, and o = 4 x 107 S/m. If the line operates
at 60 Hz, find: (a) ; (b) C; (¢) G; (d) L; (e) R.

Ans. 1.186 cm; 30.3 pF/m; 5.48 nS/m; 1.017 uH/m; 0.0332 Q/m.
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v/ DI3.4. Parameters for the planar transmission line shown in Fig. 13.4 are » = 6 mm,
d=025mm, { =25 mm, 0. = 5.5 x 107 S/m, € =25 pF/m, 1 = 19, and o/we’ = 0.03.
If the operating frequency is 750 MHz, calculate: (a) «; (b) 8; (¢c) Zo.

Ans. 0.470 Np/m; 26.4 rad/m; 9.34/0.699° Q.

13.3 SOME TRANSMISSION-LINE
EXAMPLES

In this section we shall apply many of the results that we have obtained in the
previous two sections to several typical transmission-line problems. We shall
simplify our work by restricting our attention to the lossless line.

Let us begin by assuming a two-wire 300-2 line (Z, = 300 2), such as the
lead-in wire from the antenna to a television or FM receiver. The circuit is shown
in Fig. 13.5. The line is 2 m long and the dielectric constant is such that the velocity
on the line is 2.5 x 10® m/s. We shall terminate the line with a receiver having an
input resistance of 300 @ and represent the antenna by its Thevenin equivalent
Z, = 300 Q in series with V 7, = 60 V at 100 MHz. This antenna voltage is larger
by a factor of about 10° than it would be in a practical case, but it also provides
simpler values to work with; in order to think practical thoughts, divide currents
or voltages by 10°, divide powers by 10'°, and leave impedances alone.

Since the load impedance is equal to the characteristic impedance, the line is
matched; the reflection coefficient is zero, and the standing wave ratio is unity.
For the given velocity and frequency, the wavelength on the line is v/f = 2.5 m,
and the phase constant is 27/1 = 0.8z rad/m; the attenuation constant is zero.
The electrical length of the line is 8/ = (0.87)2, or 1.6x rad. This length may also
be expressed as 288°, or 0.8 wavelength.

The input impedance offered to the voltage source is 300 €2, and since the
internal impedance of the source is 300 €2, the voltage at the input to the line is
half of 60 V, or 30 V. The source is matched to the line and delivers the max-
imum available power to the line. Since there is no reflection and no attenuation,
the voltage at the load is 30 V, but it is delayed in phase by 1.6 rad. Thus

Vie = 30cos(2710%7) 'V

300 ©Q

300 Q
(R, of receiver)

Zy=3008,v=2.5 % 10 m/s

2m

FIGURE 13.5
A transmission line that is matched at each end produces no reflections and thus delivers maximum power
to the load.
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whereas
V. =30cos(2710% — 1.6w) V

The input current is
Vi

=" —0.1cos(2710%7) A
300 0.1 cos(2710°7)

Iin
while the load current is
I =0.1cos(2n10%7 — 1.67) A
The average power delivered to the input of the line by the source must all be
delivered to the load by the line,
Pin:PL:%X3OXO.1:1.5 W

Now let us connect a second receiver, also having an input resistance of
300 2, across the line in parallel with the first receiver. The load impedance is
now 150 2, the reflection coefficient is

_150-300 1
~ 1504300 3
and the standing wave ratio on the line is
1+
s = ? =2
I—3

The input impedance is no longer 300 €2, but is now
Z, = 7, Zcos Bl + jZsin gl _ 150 cos 288° + ;300 sin 288°
Zycos Bl + jZ; sin Bl 300 cos 288° + j150 sin 288°
= 510/-23.8° = 466 — j206 2

which is a capacitive impedance. Physically, this means that this length of line
stores more energy in its electric field than in its magnetic field. The input current
phasor is thus

60

L= __—0.0756/15.0° A
" =300 1 466 — ja06 007964150

and the power supplied to the line by the source is
|
Pin =5 % (0.0756) x 466 = 1.333 W

Since there are no losses in the line, 1.333 W must also be delivered to the
load. Note that this is less than the 1.50 W which we were able to deliver to a
matched load; moreover, this power must divide equally between two receivers,
and thus each receiver now receives only 0.667 W. Since the input impedance of
each receiver is 300 €2, the voltage across the receiver is easily found as
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AVl
0.667—2 300
Verl =20 V

in comparison with the 30 V obtained across the single load.

Before we leave this example, let us ask ourselves several questions about
the voltages on the transmission line. Where is the voltage a maximum and a
minimum, and what are these values? Does the phase of the load voltage still
differ from the input voltage by 288°? Presumably, if we can answer these ques-
tions for the voltage, we could do the same for the current.

We answered questions of this nature for the uniform plane wave in the last
chapter, and our analogy should therefore provide us with the corresponding
information for the transmission line. In Sec. 12.2, Eq. (21) serves to locate the
voltage maxima at

1
Zmax = _ﬁ(¢+2mn) (m =0, 1, 2, . )

where I = |T'|e/®. Thus, with 8 = 0.87 and ¢ = 7, we find
Zmax = —0.625 and — 1.875 m
while the minima are A/4 distant from the maxima,
Zmin =0 and — 1.25 m

and we find that the load voltage (at z =0) is a voltage minimum. This, of
course, verifies the general conclusion we reached in the last chapter: a voltage
minimum occurs at the load if Z; < Z,, and a voltage maximum occurs if
Z; > Zy, where both impedances are pure resistances.

The minimum voltage on the line is thus the load voltage, 20 V; the max-
imum voltage must be 40 V, since the standing wave ratio is 2. The voltage at the
input end of the line is

Vi = L Zin = (0.0756/15.0°)(510/—23.8°) = 38.5/—8.8°

The input voltage is almost as large as the maximum voltage anywhere on the
line because the line is about three-quarters wavelength long, a length which
would place the voltage maximum at the input when Z; < Z.

The final question we posed for ourselves deals with the relative phase of
the input and load voltages. Although we have found each of these voltages, we
do not know the phase angle of the load voltage. From Sec. 12.2, Eq. (18), the
voltage at any point on the line is

Vi= (e + TPV (35)

We may use this expression to determine the voltage at any point on the line in
terms of the voltage at any other point. Since we know the voltage at the input to
the line, we let z = —/,
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Vs,in = (ejﬂl + Fe_jﬂ[) VS_ (36)
and solve for V",

. Vim 385,88
0 — Bl + LCe—iBl - ell-6m _ %efjl.6

-=130.0/72.0° V

We may now let z =0 in (35) to find the load voltage,
Ver =1+ D)Vy =20/72° = 20/-288°

The amplitude agrees with our previous value. The presence of the reflected wave
causes V;, and V to differ in phase by about —279° instead of —288°.

IIII»Example 13.2

In order to provide a slightly more complicated example, let us now place a purely
capacitive impedance of —j300 €2 in parallel with the two 300-2 receivers. We are to find
the input impedance and the power delivered to each receiver.

Solution. The load impedance is now 150 Q in parallel with —j300 2, or
_ 150(—;300)  —j300
150 —7300 0 12
We first calculate the reflection coefficient and the standing wave ratio:
_ 120 —760 — 300  —180 — j60
7120 — 60 +300 420 — j60
140447
YT 0447
Thus, the standing wave ratio is higher and the mismatch is therefore worse. Let us next
calculate the input impedance. The electrical length of the line is still 288°, so that
(120 — j60) cos 288° + ;300 sin 288°
300 cos 288 + /(120 — j60) sin 288°

L =120 j60

=0.447/-153.4°

=2.62

Zi, =300

=755—138.5 Q

This leads to a source current of

VT/z 60
L = = N =0.0564/7.47° A
' Zm+Zin 3004755 —5138.5 0.0
Therefore, the average power delivered to the input of the line is
P, = %(0.0564)2(755) = 1.200 W. Since the line is lossless, it follows that P; = 1.200

W, and each receiver gets only 0.6 W.

IIII»Example 13.3

As a final example let us terminate our line with a purely capacitive impedance,
Z; = —j300 Q. We seek the reflection coefficient, the standing-wave ratio, and the
power delivered to the load.
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Solution. Obviously, we cannot deliver any average power to the load since it is a pure
reactance. As a consequence, the reflection coefficient is

_ —j300 —300

~ —j300 + 300
and the reflected wave is equal in amplitude to the incident wave. Hence it should not
surprise us to see that the standing wave ratio is

L+ =41
[y

—j1 = 1/-90°

and the input impedance is a pure reactance,
—j300 cos 288° + 7300 sin 288°
300 cos 288° 4 j(—;300) sin 288°

Thus, no average power can be delivered to the input impedance by the source, and
therefore no average power can be delivered to the load.

Zi, =300

= /589

Although we could continue to find numerous other facts and figures for
these examples, much of the work may be done more easily for problems of this
type by using graphical techniques. We shall encounter these in the following
section.

¢/ DI3.5. A 50-W lossless line has a length of 0.4A. The operating frequency is 300 MHz.
A load Z; =40+ ;30 Q is connected at z = 0, and the Thevenin-equivalent source at
z=—[1s 12/0° V in series with Z7;, = 50 40 Q. Find: (a) T'; (b) s; (¢) Zjy.

Ans. 0.333/90°; 2.00; 25.545.90 @

¢/ DI13.6. For the transmission line of Prob. D13.5, also find: (a) the phasor voltage at
z = —I[; (b) the phasor voltage at z = 0; (c) the average power delivered to Z;.

Ans 4.14/8.58° V; 6.32/—125.6° V; 0.320 W.

13.4 GRAPHICAL METHODS

Transmission line problems often involve manipulations with complex numbers,
making the time and effort required for a solution several times greater than that
needed for a similar sequence of operations on real numbers. One means of
reducing the labor without seriously affecting the accuracy is by using transmis-
sion-line charts. Probably the most widely used one is the Smith chart.*
Basically, this diagram shows curves of constant resistance and constant
reactance; these may represent either an input impedance or a load impedance.
The latter, of course, is the input impedance of a zero-length line. An indication
of location along the line is also provided, usually in terms of the fraction of a

4P.H. Smith, “Transmission Line Calculator,” Electronics, vol. 12, pp- 29-31, January, 1939.
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wavelength from a voltage maximum or minimum. Although they are not spe-
cifically shown on the chart, the standing-wave ratio and the magnitude and
angle of the reflection coefficient are very quickly determined. As a matter of
fact, the diagram is constructed within a circle of unit radius, using polar coor-
dinates, with radius variable |I'| and counterclockwise angle variable ¢, where
I' = |I"|e/®. Figure 13.6 shows this circle. Since |I'| < 1, all our information must
lie on or within the unit circle. Peculiarly enough, the reflection coefficient itself
will not be plotted on the final chart, for these additional contours would make
the chart very difficult to read.
The basic relationship upon which the chart is constructed is

71— Zo

= 37
ZL+ 27y 37

The impedances which we plot on the chart will be normalized with respect to the
characteristic impedance. Let us identify the normalized load impedance as z;,

ZL  Rp+jXL

Zp=r+jx= Z Z
and thus

_ZL—I
_ZL+1

or

1+T

“1-T (38)

Zr

In polar form, we have used |I'| and ¢ as the magnitude and angle of I'; let us
now select I', and I'; as the real and imaginary parts of T,

FIGURE 13.6

The polar coordinates of the Smith chart are the mag-
nitude and phase angle of the reflection coefficient; the
cartesian coordinates are the real and imaginary parts
of the reflection coefficient. The entire chart lies within
the unit circle || = 1.
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=T, +/I; (39)
Thus
14T, 4T
= 4
R 1 =T, =T} ¢“0)

The real and imaginary parts of this equation are

1-12-17
T 4D
2T
(42)

X=—F>F"-—=
(1_F1)2+F12

After several lines of elementary algebra, we may write (41) and (42) in forms
which readily display the nature of the curves on I',, I'; axes,

no " Varo (LY 43

(r_1+r>+f_(1+r) “3)
2 2

-+ (ri=1) = (5) (44)

The first equation describes a family of circles, where each circle is asso-
ciated with a specific value of resistance r. For example, if r = 0 the radius of this
zero-resistance circle is seen to be unity, and it is centered at I', = 0, I'; = 0, the
origin. This checks, for a pure reactance termination leads to a reflection coeffi-
cient of unity magnitude. On the other hand, if r = oo, then z; = co and we have
I’ = 1 4 0. The circle described by (43) is centered at I', = 1, I'; = 0 and has zero
radius. It is therefore the point I' = 1 + j0, as we decided it should be. As another
example, the circle for r = 1 is centered at I', = 0.5, I'; = 0 and has a radius of
0.5. This circle is shown on Fig. 13.7, along with circles for r = 0.5 and r = 2. All
circles are centered on the I', axis and pass through the point I" = 1 + /0.

Equation (44) also represents a family of circles, but each of these circles is
defined by a particular value of x, rather than r. If x = oo, then z; = oo, and
I' = 1+ 0 again. The circle described by (44) is centered at I' = 1 4 j0 and has
zero radius; it is therefore the point I' =14 0. If x = +1, then the circle is
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FIGURE 13.7
Constant-r circles are shown on the I',, I'; plane. The
ITI=1 radius of any circle is 1/(1 4 r).

centered at I' =1 41 and has unit radius. Only one-quarter of this circle lies
within the boundary curve || = 1, as shown in Fig. 13.8. A similar quarter-circle
appears below the I', axis for x = —1. The portions of other circles for
x=0.5, —0.5, 2, and —2 are also shown. The “‘circle” representing x =0 is
the T, axis; this is also labeled on Fig. 13.8.

The two families of circles both appear on the Smith chart, as shown in Fig.
13.9. It is now evident that if we are given Z;, we may divide by Z, to obtain z;,
locate the appropriate r and x circles (interpolating as necessary), and determine
" by the intersection of the two circles. Since the chart does not have concentric
circles showing the values of |I'|, it is necessary to measure the radial distance
from the origin to the intersection with dividers or compass and use an auxiliary
scale to find |I"|. The graduated line segment below the chart in Fig. 13.9 serves
this purpose. The angle of T" is ¢, and it is the counter-clockwise angle from the
', axis. Again, radial lines showing the angle would clutter up the chart badly, so

FIGURE 13.8

The portions of the circles of constant x lying within
|T| = 1 are shown on the I',, I'; axes. The radius of a
given circle is 1/]x|.
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=180°

FIGURE 13.9
The Smith chart contains the constant-r circles and constant-x circles, an auxiliary radial scale to deter-
mine |I'], and an angular scale on the circumference for measuring ¢.

the angle is indicated on the circumference of the circle. A straight line from the
origin through the intersection may be extended to the perimeter of the chart. As
an example, if Z; = 25 450 Q on a 50-Q2 line, z; = 0.5 + 1, and point A4 on Fig.
13.9 shows the intersection of the » = 0.5 and x = 1 circles. The reflection coeffi-
cient is approximately 0.62 at an angle ¢ of 83°.

The Smith chart is completed by adding a second scale on the circumference
by which distance along the line may be computed. This scale is in wavelength
units, but the values placed on it are not obvious. To obtain them, we first divide
the voltage at any point along the line,

Vy =V (e7% 4 1)

by the current
Yy
0

I, =2 (e77 — /)

obtaining the normalized input impedance

I/S . e_jlgz + Fe/ﬂz
Zol, e /P —Telb-

Zip =
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Replacing z by —/ and dividing numerator and denominator by ¢/, we have the
general equation relating normalized input impedance, reflection coefficient, and
line length,

14+ Te P 14 |I|e/¢—28)
| —Te2fl — 1 ||/ @260

(45)

Zin =

Note that when / = 0, we are located at the load, and z;, = (1 +T)/({ —T) = z;,
as shown by (38).

Equation (45) shows that the input impedance at any point z = —/ can be
obtained by replacing I, the reflection coefficient of the load, by I'e/*#'. That is,
we decrease the angle of T by 28/ radians as we move from the load to the line
input. Only the angle of I' is changed; the magnitude remains constant.

Thus, as we proceed from the load z; to the input impedance z;,, we move
toward the generator a distance / on the transmission line, but we move through a
clockwise angle of 28/ on the Smith chart. Since the magnitude of I' stays con-
stant, the movement toward the source is made along a constant-radius circle.
One lap around the chart is accomplished whenever 8/ changes by 7 rad, or when
[ changes by one-half wavelength. This agrees with our earlier discovery that the
input impedance of a half-wavelength lossless line is equal to the load impedance.

The Smith chart is thus completed by the addition of a scale showing a
change of 0.5A for one circumnavigation of the unit circle. For convenience, two
scales are usually given, one showing an increase in distance for clockwise move-
ment and the other an increase for counterclockwise travel. These two scales are
shown in Fig. 13.10. Note that the one marked “wavelengths toward generator”
(wtg) shows increasing values of //A for clockwise travel, as described above. The
zero point of the wtg scale is rather arbitrarily located to the left. This corre-
sponds to input impedances having phase angles of 0° and R; < Z,. We have
also seen that voltage minima are always located here.

IIII»Example 13.4

The use of the transmission line chart is best shown by example. Let us again consider a
load impedance, Z; = 25 4750 2, terminating a 50-Q2 line. The line length is 60 cm and
the operating frequency is such that the wavelength on the line is 2 m. We desire the
input impedance.

Solution. We have z; = 0.5+ /1, which is marked as 4 on Fig. 13.11, and we read
' = 0.62/82°. By drawing a straight line from the origin through 4 to the circumference,
we note a reading of 0.135 on the wtg scale. We have //A =0.6/2 =0.3, and it is
therefore 0.3A from the load to the input. We therefore find z;, on the |T'| = 0.62 circle
opposite a wtg reading of 0.135+ 0.300 = 0.435. This construction is shown in Fig.
13.11, and the point locating the input impedance is marked B. The normalized input
impedance is read as 0.28 — j0.40, and thus Z;, = 14 — j20. A more accurate analytical
calculation gives Z;, = 13.7 — j20.2.
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FIGURE 13.10
A photographic reduction of one version of a useful Smith chart (courtesy of the Emeloid Company,
Hillside, N.J.). For accurate work, larger charts are available wherever fine technical books are sold.

Information concerning the location of the voltage maxima and minima is
also readily obtained on the Smith chart. We already know that a maximum or
minimum must occur at the load when Z; is a pure resistance; if R, > Z there is
a maximum at the load, and if R; < Z there is a minimum. We may extend this
result now by noting that we could cut off the load end of a transmission line at a
point where the input impedance is a pure resistance and replace that section
with a resistance R;,; there would be no changes on the generator portion of the
line. It follows, then, that the location of voltage maxima and minima must be at
those points where Z; is a pure resistance. Purely resistive input impedances
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FIGURE 13.11

The normalized input impedance produced by a normal-
ized load impedance z;, = 0.5+ 1 on a line 0.3X long is
zip = 0.28 — j0.40.

must occur on the x = 0 line (the ', axis) of the Smith chart. Voltage maxima or
current minima occur when r > 1, or at wtg = 0.25, and voltage minima or
current maxima occur when r < 1, or at wtg = 0. In the example above, then,
the maximum at wtg = 0.250 must occur 0.250 — 0.135 = 0.115 wavelengths
toward the generator from the load. This is a distance of 0.115 x 200, or 23
cm from the load.

We should also note that since the standing wave ratio produced by a
resistive load Ry is either Ry /Ry or Ry/R., whichever is greater than unity,
the value of s may be read directly as the value of r at the intersection of the
|| circle and the r axis, r > 1. In our example this intersection is marked point C,
and r = 4.2; thus, s = 4.2.

Transmission line charts may also be used for normalized admittances,
although there are several slight differences in such wuse. We let
v = Y1/ Yy = g+ jband use the r circles as g circles and the x circles as b circles.
The two differences are: first, the line segment where g > 1 and b = 0 corre-
sponds to a voltage minimum; and second, 180° must be added to the angle of
I" as read from the perimeter of the chart. We shall use the Smith chart in this
way in the following section.

Special charts are also available for non-normalized lines, particularly 50-Q
charts and 20-mS charts.

V D13.7. Aload Z; = 80 — ;100 2 is located at z = 0 on a lossless 50-2 line. The operat-
ing frequency is 200 MHz and the wavelength on the line is 2 m. (a) If the line is 0.8 m in
length, use the Smith chart to find the input impedance. (b) What is s? (c) What is the
distance from the load to the nearest voltage maximum? (d) What is the distance from
the input to the nearest point at which the remainder of the line could be replaced by a
pure resistance?

Ans. 79 4 j99 Q: 4.50; 0.0397 m; 0.760 m
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13.5 SEVERAL PRACTICAL PROBLEMS

In this section we shall direct our attention to two examples of practical transmis-
sion line problems. The first is the determination of load impedance from experi-
mental data, and the second is the design of a single-stub matching network.

Let us assume that we have made experimental measurements on a 50-2 air
line which show that there is a standing wave ratio of 2.5. This has been deter-
mined by moving a sliding carriage back and forth along the line to determine
maximum and minimum voltage readings. A scale provided on the track along
which the carriage moves indicates that a minimum occurs at a scale reading of
47.0 cm, as shown in Fig. 13.12. The zero point of the scale is arbitrary and does
not correspond to the location of the load. The location of the minimum is
usually specified instead of the maximum because it can be determined more
accurately than that of the maximum; think of the sharper minima on a rectified
sine wave. The frequency of operation is 400 MHz, so the wavelength is 75 cm. In
order to pinpoint the location of the load, we remove it and replace it with a
short circuit; the position of the minimum is then determined as 26.0 cm.

We know that the short circuit must be located an integral number of half-
wavelengths from the minimum; let us arbitrarily locate it one half-wavelength
away at 26.0 — 37.5 = —11.5 cm on the scale. Since the short circuit has replaced
the load, the load is also located at —11.5 cm. Our data thus show that the
minimum is 47.0 — (—11.5) = 58.5 cm from the load, or subtracting one-half
wavelength, a minimum is 21.0 cm from the load. The voltage maximum is
thus 21.0 — (37.5/2) = 2.25 c¢cm from the load, or 2.25/75 = 0.030 wavelength
from the load.

Probe and Slotted
carriage S{J-Q line

Load or

= )
@ e )': short
'/ circuit

Short circuit

Relative probe voltage
(3]

47 26 11.5
Distance scale (cm)

FIGURE 13.12

A sketch of a coaxial slotted line. The distance scale is on the slotted line. With the load in place, s = 2.5,
and the minimum occurs at a scale reading of 47 cm; for a short circuit the minimum is located at a scale
reading of 26 cm. The wavelength is 75 cm.
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FIGURE 13.13
If z;, =2.5+,/0 on a line 0.03 wavelength long, then
21 = 2.1 40.8.

With this information, we can now turn to the Smith chart. At a voltage
maximum the input impedance is a pure resistance equal to sRy; on a normalized
basis, z;, = 2.5. We therefore enter the chart at z;, = 2.5 and read 0.250 on the
wtg scale. Subtracting 0.030 wavelength to reach the load, we find that the
intersection of the s = 2.5 (or |I'| = 0.429) circle and the radial line to 0.220
wavelength is at z; = 2.1 40.8. The construction is sketched on the Smith
chart of Fig. 13.13. Thus Z; = 105 + ;40 2, a value which assumes its location
at a scale reading of —11.5 cm, or an integral number of half-wavelengths from
that position. Of course, we may select the “location” of our load at will by
placing the short circuit at that point which we wish to consider as the load
location. Since load locations are not well defined, it is important to specify the
point (or plane) at which the load impedance is determined.

As a final example, let us try to match this load to the 50-2 line by placing a
short-circuited stub of length ¢, a distance d from the load (see Fig. 13.14). The
stub line has the same characteristic impedance as the main line. The lengths d
and d, are to be determined.

The input impedance to the stub is a pure reactance; when combined in
parallel with the input impedance of the length ¢ containing the load, the resul-

FIGURE 13.14
A short-circuited stub of length ),
located a distance d from a load Z; is
used to provide a matched load to the
left of the stub.
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tant input impedance must be 1 4 ;0. Since it is much easier to combine admit-
tances in parallel than impedances, let us rephrase our goal in admittance lan-
guage: the input admittance of the length d containing the load must be 1 + jb;,
for the addition of the input admittance of the stub jby,, to produce a total
admittance of 1 4 ;0. Hence the stub admittance is —jb;,. We shall therefore use
the Smith chart as an admittance chart instead of an impedance chart.

The impedance of the load is 2.1 + /0.8, and its location is at —11.5 cm. The
admittance of the load is therefore 1/(2.1 4 ;0.8), and this value may be deter-
mined by adding one-quarter wavelength on the Smith chart, since Z;, for a
quarter-wavelength line is R}/Z;, or z;, = 1/z, or yi = z;. Entering the chart
(Fig. 13.15) at z;, = 2.1 4+ 0.8, we read 0.220 on the wtg scale; we add (or sub-
tract) 0.250 and find the admittance 0.41 — j0.16 corresponding to this impe-
dance. This point is still located on the s = 2.5 circle. Now, at what point or
points on this circle is the real part of the admittance equal to unity? There are
two answers, 1 +;0.95 at wtg = 0.16, and 1 —j0.95 at wtg = 0.34, as shown in
Fig. 13.15. Let us select the former value since this leads to the shorter stub.
Hence yy,, = —j0.95, and the stub location corresponds to wtg = 0.16. Since the
load admittance was found at wtg = 0470, then we must move
(0.5—-0.47) +0.16 = 0.19 wavelength to get to the stub location.

Finally, we may use the chart to determine the necessary length of the
short-circuited stub. The input conductance is zero for any length of short-
circuited stub, so we are restricted to the perimeter of the chart. At the short
circuit, y = oo and wtg = 0.250. We find that b;, = —0.95 is achieved at wtg =
0.379, as shown in Fig. 13.15. The stub is therefore 0.379 — 0.250 = 0.129 wave-
length, or 9.67 cm long.

i/ D13.8. Standing wave measurements on a lossless 75-€2 line show maxima of 18 V and
minima of 5 V. One minimum is located at a scale reading of 30 cm. With the load
replaced by a short circuit, two adjacent minima are found at scale readings of 17 and 37
cm. Find: (a) 53 (b) A; (¢) /5 (d) I'z; (e) Zy.

!
wig ,'-*-?LI\ +;0.95 30220
f j et o A-514508
-7
: 0.250
0.41 - j0.16
725450
Uity / FIGURE 13.15
A normalized load z; =2.14,0.8 is
matched by placing a 0.129-wave-
length short-circuited stub 0.19 wave-
0.379 length from the load.
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Ans. 3.60; 0.400 m; 750 MHz; 0.704/—-33.0; 77.9 4+ j104.7 Q

v/ DI3.9. A normalized load, z; =2 — /1, is located at z = 0 on a lossless 50-2 line. Let
the wavelength be 100 cm. (a) A short-circuited stub is to be located at z = —d. What is
the shortest suitable value for d? (b) What is the shortest possible length of the stub?
Find s: (c) on the main line for z < —d; (d) on the main line for —d < z < 0; (¢) on the
stub.

Ans. 12.5 cm; 12.5 cm; 1.00; 2.62; oco.

13.6 TRANSIENTS ON TRANSMISSION LINES

Throughout this chapter, we have considered the operation of transmission lines
under steady state conditions, in which voltage and current were sinusoidal and
at a single frequency. In this section we move away from the simple time-
harmonic case and consider transmission line responses to voltage step functions
and pulses, grouped under the general heading of transients. Line operation in
transient mode is important to study, as it allows us to understand how lines can
be used to store and release energy (in pulse-forming applications, for example).
Pulse propagation is important in general since digital signals, composed of
sequences of pulses, are widely used.

We will confine our discussion to the propagation of transients in lines that
are lossless and have no dispersion, so that the basic behavior and analysis
methods may be learned. We must remember, however, that transient signals
are necessarily composed of numerous frequencies, as Fourier analysis will show.
Consequently, the question of dispersion in the line arises, since, as we have
found, line propagation constants and reflection coefficients at complex loads
will be frequency-dependent. So in general, pulses are likely to broaden with
propagation distance, and pulse shapes may change when reflecting from a
complex load. These issues will not be considered in detail here, but are readily
addressed when the precise frequency dependences of 8 and I' are known. In
particular, B(w) can be found by evaluating the imaginary part of y, as given in
Eq. (4), which would in general include the frequency dependences of R, C, G,
and L arising from various mechanisms. For example, the skin effect (which
affects both the conductor resistance and the internal inductance) will result in
frequency-dependent R and L. Once B(w) is known, pulse broadening can be
evaluated using the methods presented in Chapter 12.

We begin our basic discussion of transients by considering a lossless trans-
mission line of length, /, terminated by a matched load, R; = Z, as shown in
Fig. 13.16a. At the front end of the line is a battery of voltage, V, which is
connected to the line by closing a switch. At time ¢ = 0, the switch is closed, and
the line voltage at z = 0 becomes equal to the battery voltage. This voltage,
however, does not appear across the load until adequate time has elapsed for
the propagation delay. Specifically, at ¢ = 0, a voltage wave is initiated in the line
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FIGURE 13.16

(a) Closing the switch at time ¢ = 0 initiates voltage and current waves, V'™ and I*. The leading edge of
both waves is indicated by the dashed line, which propagates in the lossless line toward the load at velocity
v. In this case, V' = V); the line voltage is V'™ everywhere to the left of the leading edge, where current is
It =V*/Zy. To the right of the leading edge, voltage and current are both zero. Clockwise current,
indicated here, is treated as positive, and will occur when VT is positive. (b) Voltage across the load
resistor as a function of time, showing the one-way transit time delay (//v).

at the battery end, which then propagates toward the load. The leading edge of
the wave, labeled V' in the figure, is of value V' = V. It can be thought of as a
propagating step function, since at all points to the left of V", the line voltage is
Vy; at all points to the right (not yet reached by the leading edge), the line voltage
is zero. The wave propagates at velocity v, which in general is the group velocity
in the line.®> The wave reaches the load at time 7 =/ /v, and then does not reflect,
since the load is matched. The transient phase is thus over, and the load voltage
is equal to the battery voltage. A plot of load voltage as a function of time is
shown in Fig. 13.16b, indicating the propagation delay of t = //v.

3Since we have a step function (composed of many frequencies) as opposed to a sinusoid at a single
frequency, the wave will propagate at the group velocity. In a lossless line with no dispersion as considered
in this section, 8 = wv/LC, where L and C are constant with frequency. In this case we would find that the
group and phase velocities are equal; (i.e, dw/dB = w/B = v = 1/~/LC). We will thus write the velocity as
v, knowing it to be both v, and v,.
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Associated with the voltage wave, V', is a current wave whose leading edge
is of value I'". This wave is a propagating step function as well, whose value at all
points to the left of VT is IT = V*/Z; at all points to the right, current is zero.
A plot of current through the load as a function of time will thus be identical in
form to the voltage plot of Fig. 13.165, except that the load current at ¢t = //v will
be I = V+/Z() = V()/RL.

We next consider a more general case, in which the load of Fig. 13.16a is
again a resistor, but is not matched to the line (R, # Z,). Reflections will occur at
the load, thus complicating the problem. At ¢ = 0, the switch is closed as before
and a voltage wave, V;” = V,, propagates to the right. Upon reaching the load,
however, the wave will now reflect, producing a back-propagating wave, V.
The relation between V| and V' is through the reflection coefficient at the load:

Ve R~ Z

R VA

(46)
As Vi propagates back toward the battery, it leaves behind its leading edge a
total voltage of V';" + V. Voltage V| exists everywhere ahead of the V| wave
until it reaches the battery, whereupon the entire line now is charged to voltage
ViE+ V. At the battery, the V|~ wave reflects to produce a new forward wave,
V. The ratio of ;" and V7 is found through the reflection coefficient at the
battery:

W_F_@—%_WZL
Ve 8 Zy+Zy 0+Zy

~1 (47)

where the impedance at the generator end, Z,, is that of the battery, or zero.

VY (equal to —V/|") now propagates to the load, where it reflects to produce
backward wave V; =T V5. This wave then returns to the battery, where it
reflects with I’y = —1, and the process repeats. Note that with each round trip
the wave voltage is reduced in magnitude since |[I';| < 1. Because of this the
propagating wave voltages will eventually approach zero, and steady state is
reached.

The voltage across the load resistor can be found at any given time by
summing the voltage waves that have reached the load and have reflected
from it up to that time. After many round trips, the load voltage will be in
general:

Ve=Vi+Vi+Vy+Vs+Vi+Vi+...
= V(14 Do+ DTy + D0 4+ 1203 4120 + )

Performing a simple factoring operation, the above becomes

n:Wﬂ+nm+Qn+@@+m) (48)
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Allowing time to approach infinity, the second term in parenthesis in (48)
becomes the power series expansion for the expression 1/(1 —I',I'z). Thus, in
steady state we obtain,

14+T¢
Ve =V{i|l——=- 49
L 1 <1 - FgFL> ( )
In our present example, V';" = V) and I'; = —1. Substituting these into (49), we

find the expected result in steady state: V', = V5.

A more general situation would involve a non zero impedance at the bat-
tery location, as shown in Fig. 13.17. In this case, a resistor of value R, is
positioned in series with the battery. When the switch is closed, the battery
voltage appears across the series combination of R, and the line characteristic
impedance, Z,. The value of the initial voltage wave, V", is thus found through
simple voltage division, or

vi= Mz (50)
R+ Zy

With this initial value, the sequence of reflections and the development of the

voltage across the load occurs in the same manner as determined by (48), with

the steady state value determined by (49). The value of the reflection coefficient

at the generator end, determined by (47), is I'y = (R, — Zo)/(Ry + Zo).

A useful way of keeping track of the voltage at any point in the line is
through a voltage reflection diagram. Such a diagram for the line of Fig. 13.17 is
shown in Fig. 13.18a. It is a two-dimensional plot in which position on the line, z,
is shown on the horizontal axis. Time is plotted on the vertical axis, and is
conveniently expressed as it relates to position and velocity through ¢ = z/v. A
vertical line, located at z = /, is drawn which, together with the ordinate, define
the z axis boundaries of the transmission line. With the switch located at the

Vi
. I
t=0 ” -~ =
. 0 < v .
ey
R |
g Zl] : RL

|
|

"l mge .

z=0 -~ z=l

|

FIGURE 13.17

With a series resistance at the battery location, voltage division occurs when the switch is closed, such that
Vo = Ve + V. Shown is the first reflected wave, which leaves voltage V;" + V| behind its leading edge.
Associated with the wave is current /-, which is — V7 /Z,. Counter-clockwise current is treated as nega-
tive, and will occur when V| is positive.
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FIGURE 13.18
(a) Voltage reflection diagram for the line of Fig. 13.17. A reference line, drawn at z = 3//4, is used to
evaluate the voltage at that position as a function of time. (») The line voltage at z = 3//4 as determined
from the reflection diagram of (a). Note that the voltage approaches the expected VoR; /(R, + Ry ) as time
approaches infinity.

battery position, the initial voltage wave, V', starts at the origin, or lower left
corner of the diagram (z = t = 0). The location of the leading edge of V" as a
function of time is shown as the diagonal line that joins the origin to the point
along the right-hand vertical line that corresponds to time ¢t = //v (the one-way
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transit time). From there (the load location) the position of the leading edge of
the reflected wave, V|, is shown as a “reflected” line which joins the ¢ =//v
point on the right boundary to the ¢t = 2//v point on the ordinate. From there (at
the battery location) the wave reflects again, forming V", shown as a line parallel
to that for V. Subsequent reflected waves are shown, and their values are
labeled.

The voltage as a function of time at a given position in the line can now be
determined by adding the voltages in the waves as they intersect a vertical line,
drawn at the desired location. This addition is performed starting at the bottom
of the diagram (¢ = 0) and progressing upward (in time). Whenever a voltage
wave crosses the vertical line, its value is added to the total at that time. For
example, the voltage at a location three-fourths the distance from the battery to
the load is plotted in Fig. 13.18b. To obtain this plot, the line z = (3/4)/ is drawn
on the diagram. Whenever a wave crosses this line, the voltage in the wave is
added to the voltage that has accumulated at z = (3/4)/ over all earlier times.
This general procedure enables one to easily determine the voltage at any specific
time and location. In doing so, the terms in (48) that have occurred up to the
chosen time are being added, but with information on the time at which each
term appears.

Line current can be found in a similar way through a current reflection
diagram. 1t is easiest to construct the current diagram directly from the voltage
diagram by determining a value for current that is associated with each voltage
wave. In dealing with current, it is important to keep track of the sign of the
current as it relates to the voltage waves and their polarities. Referring to Figs.
13.16a and 13.17, we use the convention in which current associated with a
forward-z traveling voltage wave of positive polarity is positive. This would result
in current that flows in the clockwise direction, as shown in the Fig. 13.16a.
Current associated with a backward-z traveling voltage wave of positive polarity
(thus flowing counterclockwise) is negative. Such a case is illustrated in Fig.
13.17. In our two-dimensional transmission line drawings, we assign positive
polarity to voltage waves propagating in either direction if the upper conductor
carries a positive charge and the lower conductor a negative charge. In Figs.
13.16a and 13.17, both voltage waves are of positive polarity, so their associated
currents will be net positive for the forward wave, and net negative for the
backward wave. In general, we write

y+
I"=— 1
7 (s1)
and
_ V=
I~ = —70 (52)

Finding the current associated with a backward-propagating voltage wave imme-
diately requires a minus sign, as (52) indicates.
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FIGURE 13.19

(a) Current reflection diagram for the line of Fig. 13.17 as obtained from the voltage diagram of Fig.
13.18a. (b) Current at the z = 3//4 position as determined from the current reflection diagram, showing the
expected steady state value of Vy/(Rr + Ry).

Fig. 13.19a shows the current reflection diagram that is derived from the
voltage diagram of Fig. 13.18a. Note that the current values are labeled in terms
of the voltage values, with the appropriate sign added as per (51) and (52). Once
the current diagram is constructed, current at a given location and time can be
found in exactly the same manner as voltage is found using the voltage diagram.

4| p | eTextMainMenu | Textbook Table of Contents



470

ENGINEERING ELECTROMAGNETICS

tA 1A

(*R J
°8 |

(®)

FIGURE 13.20
Voltage (@) and current (b) reflection diagrams for Example 13.5.

Fig. 13.19bh shows the current as a function of time at the z = (3/4)/ position,
determined by summing the current wave values as they cross the vertical line
drawn at that location.

I Example 13.5

In the line shown in Fig. 13.17, Ry = Zy = 502, R, = 25 R, and the battery voltage is
Vo = 10 V. The switch is closed at time ¢ = 0. Determine the voltage at the load resistor
and the current in the battery as functions of time.

Solution. Voltage and current reflection diagrams are shown in Fig. 13.20a and b. At
the moment the switch is closed, half the battery voltage appears across the 50 ohm
resistor, with the other half comprising the initial voltage wave. Thus V" = (1/2)Vy = 5
V. The wave reaches the 25 ohm load, where it reflects with reflection coefficient

_25-50 1
FT25450 3
So Vi =—(1/3)V}} = —5/3 V. This wave returns to the battery, where it encounters

reflection coefficient, I', = 0. Thus, no further waves appear; steady state is reached.
Once the voltage wave values are known, the current reflection diagram can be
constructed. The values for the two current waves are
vi s 1

IF="1lL_-"— - _ A
' Zy 50710
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and
_ vy S\/1 1
i) s)
Note that no attempt is made here to derive I from I;. They are both obtained
independently from their respective voltages.

The voltage at the load as a function of time is now found by summing the voltages
along the vertical line at the load position. The resulting plot is shown in Fig. 13.21a.
Current in the battery is found by summing the currents along the vertical axis, with the
resulting plot shown as Fig. 13.21h. Note that in steady state, we treat the circuit as
lumped, with the battery in series with the 50 and 25 ohm resistors. Therefore, we expect
to see a steady-state current through the battery (and everywhere else) of

10 1
50+25 75

Ip(steady state) =

This value is also found from the current reflection diagram for ¢ > 2//v. Similarly, the
steady-state load voltage should be

Vi +Vr=5-53

Iy i
(@)

()

FIGURE 13.21
Voltage across the load (@), and current in the battery (b), as determined from the reflection diagrams of
Fig. 13.20 (Example 13.5).
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R, (10025 10
Ry+ R, 50+25 3

Vi (steady state) = V)

which is found also from the voltage reflection diagram for ¢ > //v.

Another type of transient problem involves lines that are initially charged.
In these cases, the manner in which the line discharges through a load is of
interest. Consider the situation shown in Fig. 13.22, in which a charged line of
characteristic impedance Zj is discharged through a resistor of value R, when a
switch at the resistor location is closed.® We consider the resistor at the z =0
location; the other end of the line is open (as would be necessary) and is located
atz=1.

When the switch is closed, current Iz begins to flow through the resistor,
and the line discharge process begins. This current does not immediately flow
everywhere in the transmission line, but begins at the resistor, and establishes its
presence at more distant parts of the line as time progresses. By analogy, con-
sider a long line of automobiles at a red light. When the light turns green, the cars
at the front move through the intersection first, followed successively by those
further toward the rear. The point which divides cars in motion and those
standing still is in fact a wave which propagates toward the back of the line.
In the transmission line, the flow of charge progresses in a similar way. A voltage
wave, V", is initiated and propagates to the right. To the left of its leading edge,
charge is in motion; to the right of the leading edge, charge is stationary, and
carries its original density. Accompanying the charge in motion to the left of ¥}
is a drop in the charge density as the discharge process occurs, and so the line
voltage to the left of V" is partially reduced. This voltage will be given by the
sum of the initial voltage, V, and Vl+ , Which means that Vfr must in fact be

i

I

|
|
L
|
|
|
|
|
|
:
|
"’R |
|
|
|

FIGURE 13.22
In an initially charged line, closing the switch as shown initiates a voltage wave of opposite polarity to that
of the initial voltage. The wave thus depletes the line voltage and will fully discharge the line in one round
trip if R, = Zj.

®Even though this is a load resistor, we will call it R, since it is located at the front (generator) end of the
line.
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negative (or of opposite sign to V). The line discharge process is analyzed by
keeping track of V" as it propagates and undergoes multiple reflections at the
two ends. Voltage and current reflection diagrams are used for this purpose in
much the same way as before.

Referring to Fig. 13.22, we see that for positive V the current flowing
through the resistor will be counterclockwise, and hence negative. We also
know that continuity requires that the resistor current be equal to the current
associated with the voltage wave, or

V+
Ig=-I =—-1
R 1 Z()
Now the resistor voltage will be
+ + Vi
Vi=Vo+ V] =IgRy=—I} R, = —ZRg
We solve for V;" to obtain
—VoZo
Vi=——"- 53
! Zy+ R, (33)

Having found V", we can set up the voltage and current reflection dia-
grams. That for voltage is shown in Fig. 13.23. Note that the initial condition of
voltage V) everywhere on the line is accounted for by assigning voltage V| to the
horizontal axis of the voltage diagram. The diagram is otherwise drawn as
before, but with I'y = 1 (at the open-circuited load end). Variations in how the
line discharges thus depend on the resistor value at the switch end, R,, which
determines the reflection coefficient, I',, at that location. The current reflection
diagram is derived from the voltage diagram in the usual way. There is no initial
current to consider.

FIGURE 13.23

Voltage reflection diagram for the charged line of

Fig. 13.22, showing the initial condition of ¥
z everywhere on the line at 1 = 0.
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P’;?l

83| R

FIGURE 13.24
Voltage across the resistor as a function of time, as determined from the reflection diagram of Fig. 13.23,
in which R, = Z (I'y = 0).

A special case of practical importance is that in which the resistor is
matched to the line, or R, = Zj. In this case, Eq. (53) gives V1+ = —Vy/2. The
line fully discharges in one round-trip of V;', and produces a voltage across the
resistor of value Vg = V{/2, which persists for time 7 = 2//v. The resistor vol-
tage as a function of time is shown in Fig. 13.24. The transmission line in this
application is known as a pulse-forming line. Pulses that are generated in this way
are well-formed and of low noise, provided the switch is sufficiently fast.
Commercial units are available that are capable of generating high-voltage pulses
of widths on the order of a few nanoseconds, using thyratron-based switches.

When the resistor is not matched to the line, full discharge still occurs, but
does so over several reflections, leading to a complicated pulse shape.

||II»Example 13.6

In the charged line of Fig. 13.22, the characteristic impedance is Zy, = 100 €2, and
R, =100/3 Q. The line is charged to an initial voltage, Vo = 160 V, and the switch is
closed at time 7 = 0. Determine and plot the voltage and current through the resistor for
time 0 < ¢ < 8//v (four round-trips).

Solution. With the given values of R, and Z,, Eq. (47) gives I'; = —1/2. Then, with
'y, =1, and using (53), we find
3

V=V = ~7 Vo=—-120V

V=V, =T, V; =460V

Vi=Vy =TIV, =-30V

Vi=Vy=I,V; =+15V
Using these values on the voltage reflection diagram, we evaluate the voltage in time at

the resistor location by moving up the left-hand vertical axis, adding voltages as we
progress, and beginning with ¥, + V" at 1 = 0. Note that when we add voltages along
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the vertical axis, we are encountering the intersection points between incident and
reflected waves, which occur (in time) at each integer multiple of 2//v. So, when moving
up the axis, we add the voltages of both waves to our total at each occurrence. The
voltage within each time interval is thus:

Ve=Vo+ V=40V 0 <t<2l/v)
=Vo+Vi+Vy+Vy=-20V Qljv <t < 4l/v)
=Vo+Vi+ Vi +Vi+Vy +V{ =10V (4l/v <t < 6l/v)

=Vo+Vi+Vi+VE+ Vs +Vi+Vy+V,==5V  (6l/v<t<38i/v)

The resulting voltage plot over the desired time range is shown in Fig. 13.25a.

Yk
40
10
| —
I —=5 ‘
-20
2 4 6l 8l
L v v v
(a)
Ir
1.2
0.6 1]
0.15
[—]
t
—06 -0.3
“1L2/ 3 FIGURE 13.25
2 Al 6l 8/ Resistor voltage (@) and current (b)
b v . i as functions of time for the line of
Fig. 13.22, with values as specified
(b) in Example 13.6.
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The current through the resistor is most easily obtained by dividing the voltages in
Fig. 13.25a by —R,. As a demonstration, we can also use the current diagram of Fig.
13.19a to obtain this result. Using (51) and (52), we evaluate the current waves as
follows:

It =V{/zy=-12A

Iy =—Vi/Zy=+12A
Ii=-I =V§/Zy=+0.6A
If =—Iy = V{/Zy=—030A
Lf=—I; =V/}/Zy=+0.15A

Using the above values on the current reflection diagram, Fig. 13.19a, we add up
currents in the resistor in time by moving up the left-hand axis, as we did with the
voltage diagram. The result is shown in Fig. 13.25b. As a further check to the correct-
ness of our diagram construction, we note that current at the open end of the line
(Z =) must always be zero. Therefore, summing currents up the right-hand axis
must give a zero result for all time. The reader is encouraged to verify this.

SUGGESTED REFERENCES

1. Brown, R. G., R. A. Sharpe, W. L. Hughes, and R. E. Post: “Lines, Waves,
and Antennas,” 2d ed., The Ronald Press Company, New York, 1973.
Transmission lines are covered in the first six chapters, with numerous exam-
ples.

2. Cheng, D. K.: “Field and Wave Electromagnetics,” 2nd ed., Addison-
Wesley Publishing Company, Reading, Mass., 1989. Provides numerous
examples of Smith Chart problems and transients.

3. Seshadri, S. R.: “Fundamentals of Transmission Lines and Electromagnetic
Fields,” Addison-Wesley Publishing Company, Reading, Mass., 1971.

4. Weeks, W. L.. “Transmission and Distribution of Electrical Energy,”
Harper and Row, Publishers, New York, 1981. Line parameters for various
configurations of power transmission and distribution systems are discussed
in Chap. 2, along with typical parameter values.

PROBLEMS

The parameters of a certain transmission line operating at 6 x 103 rad/s
are L =04uH/m, C =40 pF/m, G =80 mS/m, and R =20 Q/m. (a)
Find y, o, B, A, and Z;. (b) If a voltage wave travels 20 m down the line,
by what percentage is its amplitude reduced, and by how many degrees is
its phase shifted?

13.2 A lossless transmission line with Z, = 60 €2 is being operated at 60 MHz.
The velocity on the line is 3 x 108 m/s. If the line is short-circuited at
z=0, find Z;,, at z=: (a) —1 m; (b) =2 m; (¢) —2.5 m; (d) —1.25 m.
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The characteristic impedance of a certain lossless transmission line is
72Q. If L =0.5puH/m, find: (a) C; (b) v,; (c) B if f =80 MHz. (d)
The line is terminated with a load of 60 Q. Find I' and s.

A lossless transmission line having Zy =120 Q is operating at
o =5 x 10% rad/s. If the velocity on the line is 2.4 x 10® m/s, find: (a)
L; (b) C. (c) Let Z; be represented by an inductance of 0.6 wH in series
with a 100-Q2 resistance. Find I' and s.

Two characteristics of a certain lossless transmission line are Z, = 50
and y = 0+4;0.2zrm™" at f = 60 MHz: (a) find L and C for the line. (b)
A load Z; = 60 + ;80 Q is located at z = 0. What is the shortest distance
from the load to a point at which Z;, = R;, +j0?

The propagation constant of a lossy transmission line is 1 +/2m™~', and
its characteristic impedance is 20 4+ j0 Q at @ = 1 Mrad/s. Find L, C, R,
and G for the line.

The dimensions of the outer conductor of a coaxial cable are b and c,
¢ > b. Assume o = o, and let u = . Find the magnetic energy stored
per unit length in the region b < r < ¢ for a uniformly distributed total
current / flowing in the opposite directions in the inner and outer con-
ductors.

The conductors of a coaxial transmission line are copper (o, = 5.8 x 107
S/m), and the dielectric is polyethylene (€ = 2.26, o/we’ = 0.0002). If
the inner radius of the outer conductor is 4 mm, find the radius of the
inner conductor so that: (a) Zy=50 Q; (b) C =100 pF/m; (c)
L =0.2uH/m. A lossless line can be assumed.

Two aluminum-clad steel conductors are used to construct a two-wire
transmission line. Let oa; = 3.8 x 107 S/m, og; =5 x 10® S/m, and
usy = 100 uH/m. The radius of the steel wire is 0.5 in., and the alumi-
num coating is 0.05 in thick. The dielectric is air, and the center-to-center
wire separation is 4 in. Find C, L, G, and R for the line at 10 MHz.
Each conductor of a two-wire transmission line has a radius of 0.5 mm;
their center-to-center separation is 0.8 cm. Let f =150 MHz, and
assume o and o, are zero. Find the dielectric constant of the insulating
medium if: (a) Zy = 300 Q; (b) C =20 pF/m; (¢) v, = 2.6 x 10% m/s.
Pertinent dimensions for the transmission line shown in Fig. 13.4 are
b =3 mm and d = 0.2 mm. The conductors and the dielectric are non-
magnetic. (a) If the characteristic impedance of the line is 15 €, find €.
Assume a low-loss dielectric. (b) Assume copper conductors and opera-
tion at 2 x 10® rad/s. If RC = GL, determine the loss tangent of the
dielectric.

A transmission line constructed from perfect conductors and an air
dielectric is to have a maximum dimension of 8 mm for its cross section.
The line is to be used at high frequencies. Specify the dimensions if it is:
(a) a two-wire line with Zy = 300 2; (b) a planar line with Zy = 15 ©; (c)
a 72-Q coax having a zero-thickness outer conductor.
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13.13

13.14

13.15

13.16

13.17
13.18
13.19

120/0° V

The incident voltage wave on a certain lossless transmission line for
which Zy =50 Q and v, =2 x 10% m/s is VT(z, t) = 200 cos(wt — 7z)
V. (a) Find w. (b) Find I7(z, ). The section of line for which z > 0 is
replaced by a load Z; = 50 430 @ at z = 0. Find: (c) I'z; (d) V7 (2); (e)
Viat z=-2.2m.

Coaxial lines 1 and 2 have the following parameters: w©; = us = wo,
o] 20’220, G/Rl :2.25, €/R2:4, ay :a2:0.8 mm, bl :61’1’11‘1’1, b2:3
mm, Z;, = Zy, and Z;; is Z;p. (a) Find Zy; and Zy,. (b) Find s on line
1. (¢) If a 20-cm length of line 1 is inserted immediately in front of Z;,
and /= 300 MHz, find s on line 2.

For the transmission line represented in Fig. 13.26, find V,,, if f = :(a)
60 Hz; (b) 500 kHz.

A 300-Q2 transmission line is 0.8 m long and terminated with a short
circuit. The line is operating in air with a wavelength of 0.8 m and is
lossless. (a) If the input voltage amplitude is 10 V, what is the maximum
voltage amplitude at any point on the line? (b) What is the current
amplitude in the short circuit?

Determine the average power absorbed by each resistor in Fig. 13.27.
The line shown in Fig. 13.28 is lossless. Find s on both sections 1 and 2.
A lossless transmission line is 50 cm in length and operating at a fre-
quency of 100 MHz. The line parameters are L = 0.2 uH/m and C = 80
pF/m. The line is terminated in a short circuit at z = 0, and there is a
load Z; =50+ ;20 Q across the line at location z = —20 cm. What
average power is delivered to Z; if the input voltage is 100/0° V?

129Q

Lossless, v=2c¢/3

Zy=50Q Vo 80 Q

80 m

FIGURE 13.26
See Problem 15.

0.5/0°A

Lossless, v=2¢/3

Zy=50Q _L

264

I—

100 © 25Q

FIGURE 13.27
See Problem 17.
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| 0.2 %
| |
T o 50Q
©) 100 Q @)
Z,=50Q Z,=509Q .
\—/t\‘ 100 Q
FIGURE 13.28
See Problem 18.
200 40 Q
Air, lossless
100/0°V Zy=350Q j30Q
27X

FIGURE 13.29
See Problem 20.

13.20 (a) Determine s on the transmission line of Fig. 13.29. Note that the

dielectric is air. (b) Find the input impedance. (c) If 1 /wC = 10 , find /.
(d) What value of C will produce a maximum value for |[j| at w =1
Grad/s? For this value of C, calculate the average power: (e) supplied by
the source; (f) delivered to Z; = 40 + ;30 Q.
A lossless line having an air dielectric has a characteristic impedance of
400 . The line is operating at 200 MHz and Z;, = 200 — j200 2. Use
analytic methods or the Smith chart (or both) to find: (a) s, (b) Z,, if the
line is 1 m long; (c) the distance from the load to the nearest voltage
maximum.

13.22 A lossless two-wire line has a characteristic impedance of 300 2 and a
capacitance of 15 pF/m. The load at z = 0 consists of a 600-$2 resistor in
parallel with a 10-pF capacitor. If @ = 10® rad/s and the line is 20 m
long, use the Smith chart to find: (a) |T'z|; (b) s; (c) Zjy-

13.23 The normalized load on a lossless transmission line is 2 + j1. Let / = 20
m and make use of the Smith chart to find: (a) the shortest distance from
the load to a point at which z;, = r;, +jO, where r;, > 0; (b) z;, at this
point. (¢) The line is cut at this point and the portion containing z; is
thrown away. A resistor r = r;, of part (a) is connected across the line.
What is s on the remainder of the line? (d) What is the shortest distance
from this resistor to a point at which z;,, =2+ ;1?

13.24 With the aid of the Smith chart, plot a curve of |Z;,| vs. [/ for the
transmission line shown in Fig. 13.30. Cover the range 0 < //1 < 0.25.
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20Q

Lossless Lossless

Zy=50Q Zy=50Q 20Q

20Q

FIGURE 13.30
See Problem 24.

13.25

13.26

13.27

13.28

13.29

13.30

13.31

A 300-Q2 transmission line is short-circuited at z = 0. A voltage maxi-
mum, |V|,,.,. = 10 V, is found at z = —25 cm, and the minimum voltage,
[ V]min = 0 is at z = =50 cm. Use the Smith chart to find Z; (with the
short circuit replaced by the load) if the voltage readings are: (a)
Vg =12 Vat z= =5 cm, and |V],;, =5 V; (0) |V]par =17 V at
z=-20 cm, and |V|,,, = 0.

A lossless 50-2 transmission line operates with a velocity that is 3/4 ¢. A
load Z; = 60 + j30 Q2 is located at z = 0. Use the Smith chart to find: (a)
s; (b) the distance from the load to the nearest voltage minimum if
f =300 MHz; (c) the input impedance if /' =200 MHz and the input
isat z=—110 cm.

The characteristic admittance (Y, = 1/Z;) of a lossless transmission line
1s 20 mS. The line is terminated in a load Y; = 40 — j20 mS. Make use of
the Smith chart to find: (a) s; (b) Yy, if /=0.15%; (c) the distance in
wavelengths from Y, to the nearest voltage maximum.

The wavelength on a certain lossless line is 10 cm. If the normalized input
impedance is z;, = 1 +j2, use the Smith chart to determine: (a) s; (b) zz,
if the length of the line is 12 cm; (¢) x,, if z; = 2 4+ jx; where x; > 0.
A standing wave ratio of 2.5 exists on a lossless 60-2 line. Probe mea-
surements locate a voltage minimum on the line whose location is
marked by a small scratch on the line. When the load is replaced by a
short circuit, the minima are 25 cm apart, and one minimum is located at
a point 7 cm toward the source from the scratch. Find Z;.

A 2-wire line constructed of lossless wire of circular cross section is
gradually flared into a coupling loop that looks like an egg beater. At
the point X, indicated by the arrow in Fig. 13.31, a short circuit is placed
across the line. A probe is moved along the line and indicates that the
first voltage minimum to the left of X is 16 cm from X. With the short
circuit removed, a voltage minimum is found 5 cm to the left of X, and a
voltage maximum is located that is 3 times the voltage of the minimum.
Use the Smith chart to determine: (a) f; (b) s; (¢) the normalized input
impedance of the egg beater as seen looking to the right at point X.

In order to compare the relative sharpness of the maxima and minima of
a standing wave, assume a load z; =4+ ;0 is located at z =0. Let
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13.34

13.35

13.36

TRANSMISSION LINES

FIGURE 13.31
See Problem 30.

[V]min = 1 and A = 1 m. Determine the width of the: (a) minimum where
V] < 1.1; (b) maximum where V| > 4/1.1.

A lossless line is operating with Zy =40 Q, f = 20 MHz, and 8 = 7.57
rad/m. With a short circuit replacing the load, a minimum is found at a
point on the line marked by a small spot of puce paint. With the load
installed, it is found that s = 1.5 and a voltage minimum is located 1 m
toward the source from the puce dot. (a) Find Z;. (b) What load would
produce s = 1.5 with |V],,,. at the paint spot?

In Fig. 13.14, let Z; =40 —j10 @, Zy = 50 , f = 800 MHz, and v = .
(a) Find the shortest length d; of a short-circuited stub, and the shortest
distance d that it may be located from the load to provide a perfect
match on the main line to the left of the stub. (b) Repeat for an open-
circuited stub.

The lossless line shown in Fig. 13.32 is operating with A = 100 cm. If
di =10 cm, d = 25 cm, and the line is matched to the left of the stub,
what is Z;?

A load, Z; =25+ 75 €, is located at z =0 on a lossless two-wire line
for which Zy = 50 Q and v =c¢. (a) If f =300 MHz, find the shortest
distance d (z = —d) at which the input admittance has a real part equal
to 1/Zy and a negative imaginary part. (b) What value of capacitance C
should be connected across the line at that point to provide unity stand-
ing wave ratio on the remaining portion of the line?

The two-wire lines shown in Fig. 13.33 are all lossless and have Z; = 200
Q. Find d and the shortest possible value for d; to provide a matched
load if 2 = 100 cm.

FIGURE 13.32
See Problem 34.
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5.C

Matched

- 100 €

FIGURE 13.33
See Problem 36.

13.38

13.39

13.40

13.41

13.42

In the transmission line of Fig. 13.17, Ry = Zy = 50 ©, and R, =25 Q.
Determine and plot the voltage at the load resistor and the current in the
battery as functions of time by constructing appropriate voltage and
current reflection diagrams.

Repeat Problem 37, with Zy = 50 ©, and R, = R, = 25 Q. Carry out the
analysis for the time period 0 < ¢ < 8//v.

In the transmission line of Fig. 13.17, Zy = 50 ©, and R, = R, =25 Q.
The switch is closed at t = 0 and is opened again at time t = [/4v, thus
creating a rectangular voltage pulse in the line. Construct an appropriate
voltage reflection diagram for this case and use it to make a plot of the
voltage at the load resistor as a function of time for 0 < ¢ < 8//v (note
that the effect of opening the switch is to initiate a second voltage wave,
whose value is such that it leaves a net current of zero in its wake).

In the charged line of Fig. 13.22, the characteristic impedance is
Zy =100 Q, and R, =300 Q. The line is charged to initial voltage,
Vo =160 V, and the switch is closed at r = 0. Determine and plot the
voltage and current through the resistor for time 0 < ¢ < 8//v (four
round-trips). This problem accompanies Example 13.6 as the other spe-
cial case of the basic charged line problem, in which now R, > Z.

In the transmission line of Fig. 13.34, the switch is located midway down
the line, and is closed at = 0. Construct a voltage reflection diagram for
this case, where R; = Z;. Plot the load resistor voltage as a function of
time.

A simple frozen wave generator is shown in Fig. 13.35. Both switches are
closed simultaneously at ¢ = 0. Construct an appropriate voltage reflec-
tion diagram for the case in which R; = Zj. Determine and plot the load
resistor voltage as a function of time.

4| p | eTextMainMenu | Textbook Table of Contents



TRANSMISSION LINES

\ 1=0
V=", W V=0 .
S zZ R,
z=0 ¥=0 z=1
FIGURE 13.34
See Problem 41.
\‘ =0 \‘ t=0
V=-¥, V="V, V=0
& 0 O/O 0 O/C 2
Z R

2

FIGURE 13.35
See Problem 42.
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